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STRESS-INDUCED ANISOTROPIC POROELASTICITY
RESPONSE IN SANDSTONE

David A. Lockner and Nicholas M. Beeler1

Abstract.  We present measurements of the elastic and poroelastic (both drained and undrained) properties
of intact Berea sandstone at confining pressures up to 50 MPa and differential stresses from 0 to 120 MPa.
Tests were carried out under axisymmetric loading conditions so that the rock developed transverse
anisotropy as stress was applied. We measured the drained and undrained Young’s moduli and Poisson’s
ratios in axial (z) and transverse (t) directions over the entire range of confining pressure and differential
stress. We also directly measured the isotropic Skempton coefficient B p m= ( )∂ ∂σ

σ∆
, as well as axial and

transverse ‘generalized’ Skempton coefficients B pt t
z

= ( )( )3 2 ∂ ∂σ
σ

 and B pz z
t

= ( )3 ∂ ∂σ
σ . In addition we

directly determined the pore space storage coefficient. The sandstone has intrinsic anisotropy at low
confining pressure and stress-induced anisotropy which increases with applied differential stress due to
reversible changes in pore structure. We observed significant anisotropy, with Bt as much as four times
larger than Bz. Furthermore, the Biot coefficient α of the effective pressure law σ σ αe p= −  is not 1.0, but

rather α varies systematically with stress and can be less than 0.6 at these fairly modest load conditions.

INTRODUCTION

The undrained pore pressure changes accompanying seismic faulting significantly influence
Coulomb stress changes, and are generally assumed to be equal to the mean stress change.
However, geologic observations show that rocks, soils, and fault zones typically have anisotropic
and inhomogeneous material properties. In addition, the high differential stress commonly
associated with seismic faulting can induce elastic and poroelastic anisotropy in otherwise
isotropic materials.  For rocks exhibiting significant elastic anisotropy, changes in differential
stress σ σ σ∆ = −1 3 as well as changes in mean stress σ σm ii= 3 will induce changes in pore
pressure p when the rock is undrained (i.e., no fluid flow into or out of the pores). While this
anisotropic response has been predicted on theoretical grounds, experimental verification has
been limited. In terms of earthquake occurrence, and triggered seismicity, it is necessary to
evaluate the importance of both inherent and stress-induced anisotropy in influencing pore
pressure fluctuations and consequently the stabilization or destabilization of seismogenic faults.

Bedding, mineral fabric and aligned microcracks and fractures are common causes of
intrinsic anisotropy in rock. These properties are often considered in discussions of anisotropic
poroelastic response. However, application of deviatoric stress will also produce significant
anisotropy. Stress-induced anisotropy of compressional and shear body waves in rocks is well
documented (Nur and Simmons, 1969; Bonner, 1974; Lockner et al., 1977; Stanchits et al.,
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2003). Since these are the direct result of anisotropic changes in the elastic modulus tensor,
corresponding changes in poroelastic response are implied. Direct measurement of stress-induced
anisotropic poroelastic response has been limited (Wang, 1997; Lockner and Stanchits, 2002).
Lockner and Stanchits (2002), hereafter referred to as LS, measured the undrained poroelastic
response of sandstones and an unconsolidated sand pack at 20 MPa confining pressure (Pc) and 3
MPa pore pressure (p). LS reported an undrained pore pressure response pu to changes in mean
stress σm consistent with the standard definition of the pressure buildup or Skempton coefficient
for isotropic materials B pu

m= ( )∂ ∂σ
σ∆

 (Skempton, 1954). In addition, they observed a pore

pressure response to changes in differential stress at constant mean stress A pu

m

= ( )∂ ∂σ
σ∆ , similar

to the differential stress response ASkem proposed by Skempton (1954) in his original paper. (Note
that the parameter η was used by LS and is related to A by A B ASkem= = −( )η 2 1 3 .) LS found that
A was negative and increased approximately linearly in magnitude with increasing differential
stress for the sandstones and unconsolidated sand samples. We now expand on the earlier studies,
measuring drained as well as undrained poroelastic constants at effective confining pressures up
to 50 MPa and differential stresses up to approximately 50% failure stress. Differential stresses
were limited in this study to avoid adding a significant number of new stress-induced cracks and
thereby permanently changing the elastic properties of the sample.

EXPERIMENTAL PROCEDURE

A single sample of Berea sandstone was tested in this study. The sample, cored
perpendicular to bedding, was a right-cylinder with 7.62 cm diameter, 19.05 cm length and 21%
porosity. Total volume and pore volume were 868.7 and 182.4 cm3, respectively. In a procedure
similar to Hart and Wang (1995) two axial foil strain gages were epoxied on the sample
midplane, 180° apart to measure axial strain (ez). Two transverse strain gages also were epoxied
to the midplane, again 180° apart, to measure transverse strain (et). The sample was jacketed in a
polyurethane sleeve, clamped to steel end plugs and placed in a triaxial pressure vessel (Figure 1).
Confining pressure and pore pressure were computer controlled and measured to precisions of
±0.01 and ±0.003 MPa, respectively. Axial load was measured using a load cell inside the
pressure vessel with a precision of ±0.02 MPa. Strain gage precision was ±0.5 µstrain.
Displacement of the piston on the pore pressure generator was monitored during drained tests
(maintaining constant pore pressure). Under these conditions, movement of the pressure generator
provided a direct measure of the change in pore volume of the sample during drained tests.
Precision of pore volume measurements was ±0.0005 cm3 or ±0.6 µstrain in terms of volumetric
strain. All pressures, strains and displacements were monitored and recorded at a sampling rate of
1/sec.

Undrained Tests
A series of undrained tests was carried out in which the volume of the external pore pressure

system was minimized by closing an isolation valve near the sample assembly (Figure 1). In this
case, the pore pressure system consisted of the sample, the pore pressure transducer and a low
volume calibrated manual pressure generator. An ideal undrained test would have only the sample
volume with no additional pore volume. In the LS study, the external pore pressure system was
calibrated to determine the change in volume associated with changes in pore pressure and
confining pressure. These calibrations were then used to create a virtual no-flow boundary at the
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sample/end-plug interface. In the present study, the sample pore volume is approximately 100
times larger than in the LS study. Consequently, corrections for the volume of the external pore
pressure system are less stringent. To determine the errors introduced by the isolated pore volume
system, calibration runs were carried out using a dummy steel sample. By manually adjusting the
calibrated pressure generator, the ratio of pore volume change to pore pressure change was
determined. Then, by measuring changes in pore pressure in response to changes in confining
pressure and axial load (using the dummy sample) the change in pore volume of the end plug and
other portions of the external system could be determined. Due to the large pore volume of the
test sample (182.4 cm3), the systematic errors in determining B and A were typically ±0.005.
Repeated measurements of the poroelastic coefficients were obtained by cycling stresses up and
down by 1 to 2 MPa. Repeatability of successive measurements was typically ±0.01.
Consequently, we have not included corrections for system volume in the undrained poroelastic
measurements reported here.

All measurements were conducted at a nominal pore pressure of 10 MPa. A typical test
sequence would begin by raising confining pressure and differential stress to the desired test
condition, adjusting pore pressure to 10 MPa and closing the isolation valve. Then, a series of
four tests was performed in which changes in pore pressure and strain were recorded in response
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Computer-controlled
Pore Pressure GeneratorIsolation Valve

.

Figure 1.  Test configuration showing sample in pressure vessel. Drained tests
measured stress-induced pore volume changes in the sample while maintaining
constant pore pressure using the computer-controlled pressure generator.
Undrained tests measured pore pressure buildup with the isolation valve closed to
minimize external pore pressure system volume.



Lockner & Beeler page 4

to changes in stress components. Tests included changes in mean stress at constant differential
stress followed by changes in differential stress at constant mean stress. For the triaxial test
geometry, σx = σy = Pc, and a second pair of tests was carried out imposing changes in σz at
constant Pc, and changes in Pc at constant σz. Given the transverse symmetry in the applied stress
field achievable in the triaxial test geometry, the  σm/σ∆ test and σz/Pc test represent redundant
pairs of measurements for determining the undrained poroelastic response. For each test
sequence, the control stress variable was cycled up and down twice by 1 to 3 MPa to obtain
repeated measurements of the pore pressure response. In many cases, the first half cycle in
loading included a component of irreversible pore pressure response. For this reason, only the
second, third and fourth half cycle measurements were used in determining the reversible elastic
response. (See (Lockner and Stanchits, 2002) for a more detailed description of this effect.) This
irreversible component in the pore pressure response was found to occur even though the sample
had initially been ‘pre-conditioned’ (see, for example, (Hart and Wang, 1995)) by raising
confining pressure and stress to a level higher than any of the stresses used during the main
sequence of tests. Over the course of the experiment, tests were repeated at 20 MPa confining
pressure and differential stresses of 0 and 10 MPa to check for permanent changes in the
poroelastic response due to stress cycling. Pore pressure responses were consistent to within the
experimental error, indicating that irreversible damage accumulated during the entire experiment
must be small.

Drained Tests
A second series of drained tests was carried out in which pore pressure was held constant

while the sample was subjected to different stress paths. Again, imposed stress paths included
changes in mean stress at constant differential stress, changes in differential stress at constant
mean stress, changes in σz at constant Pc and changes in Pc at constant σz. During these tests,
changes in strain and pore volume were measured. The  σm/σ∆ test  and σ z/Pc test represent
redundant pairs of measurements for determining the drained poroelastic response.

Compressibility Test
A final test was conducted at each applied stress state to measure sample compressibility.

With the isolation valve closed, the calibrated pressure generator was adjusted by 0.040 cm3 (45
µstrain in volume) and the changes in p, et and ez were recorded.

RESULTS

Axisymmetric Poroelasticity
Results are presented using the formalism of Cheng (1997). We will use “engineering

notation” in which stresses and strains are expressed as

σ σ σ σ τ τ τ=  x y z x y z

T
(1)

e e e ex y z x y z=  γ γ γ
T
. (2)

Then, the constitutive equations for linear poroelasticity can be expressed as
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σ α= −Me p (3)

p M e= −( )ζ α T (4)

where M  is the drained stiffness matrix (equivalent to the familiar Hooke’s law moduli), α
represents the generalized Biot effective stress coefficients (Biot and Willis, 1957), ζ  is the fluid
mass flow out of the sample, and the parameter M is related to bulk modulus. The inverse form of
(3) and (4) gives the constitutive equations in terms of the compliance matrix C :

e C
C

Bp= +σ
3

(5)

ζ σ= +



C p B

1

3
T . (6)

In this case, B represents the generalized Skempton coefficients and C is a storage coefficient.
The constitutive equations apply to linear, or at least incrementally linear, poroelasticity. For
stress-induced anisotropy, which dominates the poroelastic behavior reported here, poroelastic
coefficients vary continuously with stress state. In this case, the constitutive equations (3) through
(6) are understood to relate small changes in strain and fluid pressure to incremental stress
variations about some ambient stress state.

The triaxial test geometry imposes a radial or transverse symmetry on the stress and strain
fields occurring in our experiments. In this case, the 28 independent constitutive coefficients
needed to characterize fully anisotropic poroelasticity in equations (3) through (6) are reduced to
eight. Cheng (1997) provides formulas for expressing the drained stiffness tensor coefficients in
terms of drained Young’s moduli in the transverse plane of symmetry E E Et x y= =  and parallel to

the sample axis Ez , and two Poisson’s ratios ν t  and ν z . The Poisson ratio ν t  represents the
contraction in the plane of symmetry perpendicular to a tensile stress applied in the plane of
symmetry. Similarly, νz represents the contraction in the plane of symmetry resulting from a
tensile stress applied axially. For a transversely isotropic system, M  is composed of

M

M M M

M M M

M M M

G

G

G

=

























11 12 13

12 11 13

13 13 33

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

'

'

(7)

where G M M= −( )11 12 2  and individual terms are expressed as

M
E E Et z t z

11

2 2

=
−( )ν
Λ

(8)

M
E E Et z t t z

12

2 2

=
+( )ν ν

Λ
(9)
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M
E Et z z t z

13

2

=
+( )ν ν ν

Λ
(10)

M
E Ez t t

33

2 21
=

−( )ν
Λ

(11)

with

Λ = +( ) − −( )E E E Et t z z t t z1 2 2ν ν ν . (12)

The four parameters Ez , Et , ν z , and ν t  can be determined from strain gage response to
independent application of axial load and confining pressure. Determination of G'  would require,
for example, application of a shear stress in the axial direction and cannot be achieved by static
loading in a standard triaxial system. Consequently, we have computed four of the five
independent elements of the stiffness matrix by applying incremental stress cycles under drained
(constant pore pressure) conditions.

The compliance matrix can be written explicitly as

C

E E E

E E E

E E E

G

G

G

t t t z z

t t t z z

z z z z z=

− −
− −
− −

























1 0 0 0

1 0 0 0

1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

ν ν
ν ν
ν ν

'

'

. (13)

Other coefficients become

α α α α=  t t z 0 0 0
T

(14)

B B B Bt t z=  0 0 0
T

(15)

with

α t
s

M M M

K
= − + +

1
3

11 12 13 (16)

α z
s

M M

K
= − +

1
2

3
33 13 (17)

B
C C C C

Ct
s=

+ +( ) −3 11 12 13 (18)

B
C C C

Cz
s=

+( ) −3 233 13 . (19)
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For a monomineralic matrix, K Cs s=1  represents the bulk modulus of the matrix constituent. For
isotropic samples this is typically determined from an ‘unjacketed’ pressure test in which P = Pc

= p according to K P es = − . The storage coefficient C is given by

C C C C Cs f s= −( ) + −( )* φ (20)

with

C C C C C* = + + +2 2 411 33 12 13 , (21)

φ is porosity and C Kf f=1 , where K f  is the fluid bulk modulus.

Drained Tests
Two examples of the stiffness matrices are presented demonstrating the development of

anisotropy as differential stress was applied to the sample. Matrix components are computed from
strain gage response in drained tests (pore pressure held constant at 10 MPa) according to
equations (8) through (12). Tests were conducted at an ambient confining pressure of 30 MPa and
differential stresses of 10 and 70 MPa, respectively. Failure stress of Berea sandstone at this
effective confining pressure is 140 MPa. Matrix components are expressed in GPa.

M
MPaσ∆ =

=

























10

20 00 4 01 4 85 0 0 0

4 01 20 00 4 85 0 0 0

4 85 4 85 22 27 0 0 0

0 0 0 8 00 0 0

0 0 0 0 0

0 0 0 0 0

. . .

. . .

. . .

.

?

?

(22)

M
MPaσ∆ =

=

























70

17 34 3 10 4 84 0 0 0

3 10 17 34 4 84 0 0 0

4 84 4 84 29 42 0 0 0

0 0 0 7 12 0 0

0 0 0 0 0

0 0 0 0 0

. . .

. . .

. . .

.

?

?

(23)

At 10 MPa load, the sample has developed a modest anisotropy which increases significantly as
load is increased. For example, the ratio M M11 33  drops from 0.90 at 10 MPa to 0.59 at 70 MPa
(50% failure stress). These changes in moduli would result in a decrease in the ratio of slow
(transverse) to fast (axial) P wave speed from 0.95 to 0.77. Young’s moduli and Poisson’s ratios
for drained tests at confining pressures of 20 and 60 MPa are plotted in Figure 2. Increasing
confining pressure has two primary effects. First, the rock matrix is stiffened, increasing the
moduli. Second, increased confining pressure tends to suppress anisotropy. These measurements
were all conducted below 50% failure stress so that the trends here are reversible. We verified the
reversibility of the measurements by periodically repeating measurements at Pc = 20 MPa and σ∆

= 0 and 10 MPa. If tests had been extended to higher differential stress, new microcrack damage
would have been introduced in the sample resulting in significantly larger anisotropy (Lockner et
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al., 1977; Lockner and Stanchits, 2002).
Biot’s effective pressure coefficients α  can now be calculated using equations (16) and (17).

We use K GPas = 30  which is an average value of solid constituent bulk modulus reported by Hart
and Wang (1995) for a suite of five Berea sandstone samples. The result, plotted in Figure 3,
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Figure 2. (a) Changes in axial (Ez) and transverse (Et) Young’s moduli in response to
increasing differential stress during drained tests. Pore pressure was 10 MPa. Confining
pressures were 20 and 60 MPa. Failure strengths at these effective confining pressures
were 140 and 224 MPa, respectively. (b) Corresponding measurements of Poisson’s
ratios. Increased confining pressure reduces anisotropy while increased differential
stress increases anisotropy.
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shows a pronounced dependence of α  on both confining pressure and differential stress. At
higher confining pressure, the pore pressure contribution to effective pressure is diminished and
the overall anisotropy in the Biot coefficients is suppressed. At low differential stress, the Biot
coefficient for Berea sandstone is nearly isotropic (α αt z≅ ). Increasing differential stress results
in a linear increase in anisotropy over the range of measurements reported here.

Undrained Tests
In this section we show results for incremental stress cycling tests of the Berea sandstone

sample under undrained conditions. In this case, fluid trapped in the pores will respond to stress
changes as the pore space compresses or dilates. The principal measure of undrained poroelastic
response is the generalized Skempton or pressure build up coefficient B appearing in constitutive
equations (5) and (6). For the fully anisotropic material, B is comprised of six independent
coefficients. However, the transversely isotropic symmetry imposed by the triaxial loading
geometry reduces the independent coefficients to two (equation (15)); representing axial and
transverse sensitivity. It is possible to calculate B by combining elasticity measurements from
drained tests with determinations of compliances of the pore fluid and solid matrix (see, for
example, equations (18) through (21)). First, we show results from the direct measurement of
pore pressure buildup during undrained tests. Skempton coefficients are determined directly from
equation (6) by applying a no-flow condition (ζ = 0), which in the case of transverse symmetry
leads directly to

dp B dP B du
t c z z= − +( )1

3
2 σ . (24)

Here we have written the pressure change as a differential since the poroelastic coefficients vary
with pressure and stress and the governing equations are only incrementally linear. Skempton
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coefficients are determined at a given stress state from two tests: varying axial stress at constant
confining pressure and varying confining pressure at constant axial stress. Results for tests at 10
MPa pore pressure and ambient confining pressures of 20 and 60 MPa are shown in Figure 4. At
low confining pressure and low differential stress Bz  and Bt  differ by about 30%, indicating an
intrinsic anisotropy in this sample. Increasing confining pressure erases the intrinsic anisotropy
by decreasing Bz . Similar to the other coefficients, anisotropy of the Skempton coefficient
increased with increasing differential stress.

Three independent methods of determining standard Skempton coefficient B pu
m= ( )∂ ∂σ

σ∆

are plotted in Figure 5 to test the self consistency of the system of measurements presented here.
Solid circles and squares show determinations of B from direct undrained measurements in which
mean stress was varied at constant differential stress. Uncertainties are estimated as ±0.01. The
scalar coefficient B shows minor sensitivity to increasing differential stress. However, the
stiffening effect of increasing confining pressure reduces B from 0.56 to 0.39. Open circles and
squares show estimates of B as calculated from undrained pore pressure measurements of Bz  and
Bt . Pore pressure changes are then predicted according to equation (24) using the constraint that
d dP dm const c zσ σ

σ∆ =
= +( )2 3 . Uncertainties in these calculations are approximately ±0.015. The

final determination of B comes from the strain measurements during drained tests. In this case,
the compliance matrix is calculated from stress tests at constant pore pressure according to
equation (13). Then Bz  and Bt  are estimated using equations (18) through  (21). Finally, B is
calculated according to (24) and plotted in Figure 5 as solid triangles. Uncertainties are estimated
to be ±0.02. At 60 MPa confining pressure, both estimates of B coincide well with the direct
measurements. At 20 MPa confining pressure, estimates of B derived from strain measurements
during tests differ from direct measurements of B by up to 7%. In one sense, it is remarkable that
this procedure, estimating pore pressure buildup from measurements made without any pore
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Lockner & Beeler page 11

pressure interaction, are this successful. This comparison represents a test of a number of
fundamental assumptions used in the development of poroelasticity theory regarding, for
example, assumptions of micro-homogeneity and micro-isotropy (Cheng, 1997).

Storage Coefficients
A parameter often used by hydrogeologists is storativity S (Cheng, 1997) or one-dimensional

storage coefficient (Green and Wang, 1990; Hart and Wang, 1995), expressed as S p
e ex y z

= = = =ζ σ 0
.

This coefficient relates the amount of fluid that can be extracted from a porous medium under the
conditions of constant overburden stress and uniaxial compaction. Now consider equation (6)
under the stress boundary condition: BT σ = 0 . Upon rewriting, we see that C p

BT= =ζ σ|
0
and C is

also a storage coefficient. In particular, C is the storage coefficient associated with constant stress
(σ = 0 ) boundary conditions and is referred to as the three-dimensional storage coefficient by
Hart and Wang (1995). We have measured C  directly under constant stress conditions by
measuring the pore pressure drop resulting from removal of 0.040 cm3 water from the sample. In
these tests, the pore pressure drop was on the order of 1 MPa. In addition to the direct
measurement, C was calculated using strain gage variations under drained conditions according to
equation (20). All measurements were made at a nominal pore pressure of 10 MPa. The storage
coefficient was determined to be relatively insensitive to differential stress. Consequently, we
report average values at two confining pressures. For Pc = 20 MPa, Cmeasured = (1.88 ± 0.10) x 10-4
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MPa-1 and Ccalc = (1.80 ± 0.14) x 10-4 MPa-1. For Pc = 60 MPa, Cmeasured = (1.34 ± 0.06) x 10-4

MPa-1 and Ccalc = (1.24 ± 0.04) x 10-4 MPa-1. Uncertainties represent two standard deviations. The
estimates of the storage coefficient based on drained rock compliances agreed with the directly
measured values to within 8%.

Next, consider uniaxial compaction under constant overburden stress for transverse
symmetry in the horizontal plane. For these boundary conditions, we can compare S and C
directly. Equation (6) becomes

S
p

C CB
p

e

t
t

t z

= = +
= =

ζ σ

σ 0

2

3
. (25)

Application of the boundary conditions to equation (5) and substitution into (25) gives

S
p

C
C C C C

C C
e

s

t z

= = −
+ + −





+= =

ζ

σ 0

11 12 13

2

11 12

3
. (26)

For Pc = 20 MPa, Scalc = (1.20 ± 0.12) x 10-4 MPa-1, and for Pc = 60 MPa, Scalc = (1.07 ± 0.04)  x
10-4 MPa-1. We have already noted that increasing confining pressure reduces the compliance of
the rock framework. This same stiffening effect reduces the magnitude of the storage coefficients
as well.

CONCLUSIONS

Through the combined measurements of strain and pore pressure changes in response to
specific incremental stress paths, we have determined anisotropic poroelastic coefficients for
Berea sandstone. At low confining pressure, Berea sandstone has a small component of intrinsic
anisotropy. Increasing confining pressure stiffens the rock matrix and eliminates the intrinsic
anisotropy. At all confining pressures tested, application of differential stress produced increased
anisotropy approximately proportional to the applied load. By limiting differential stress to less
than 50% failure stress, the amount of new, irreversible microcrack damage added to the sample
was minimized. Consequently, the stress-induced anisotropy that we observed was reversible and
the sample reverted to nearly its initial state upon removal of stress. These observations provide
new experimental confirmation of the theory of incremental linear anisotropic poroelasticity as
well as direct measurement of stress-induced anisotropic poroelastic response of rock.

The assumption of isotropy implies that four independent constitutive material properties are
needed to properly represent poroelastic systems. While this small number of constitutive
constants is desirable, there are many natural examples in which materials are clearly anisotropic.
Bedding and fabric are two obvious examples. In this paper we have shown that rocks that would
normally be isotropic become increasingly anisotropic as deviatoric stress is applied. Not only is
this true near the yield stress, but even at lower deviatoric stress levels, where rocks remain
within their elastic limit, stress-induced anisotropy can be significant. Regions in which seismic
shear wave splitting is observed will also exhibit anisotropy in poroelastic properties. These
include, for example, regions containing active faults. The simplest anisotropic system, tested in
this study, contains a plane of symmetry. Eight independent poroelastic constants are needed to
characterize this transversely isotropic system. The inherent increase in complexity may be
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necessary to properly model such diverse problems as basin evolution and fault interactions.
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