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Abstract
We describe our submission to the TREC-7 Spoken Document Retrieval (SDR) track and the speech recognition and
information retrieval engines. We present SDR evaluation results and a brief analysis. A few developments are also
described in greater detail including:

• A new, probabilistic retrieval engine based on language models.
• A new, TFIDF-based weighting function that incorporates word error probability.
• The use of a simple confidence estimate for word probability based on speech recognition lattices.

Although improvements over a development test set were promising, the new techniques failed to yield significant
gains in the evaluation test set.

1. The SDR Data and Task
The entire set of speech data for the 1998 TREC-7 spoken document retrieval track consisted of  153 hours of
broadcast news, approximately 80 for training and 73 for testing. The data had been segmented into stories and
manually transcribed. In the test set, there were three “versions” of the data available: A manually generated
transcript, speech recognition transcripts based on IBM and CMU recognizers, and the raw audio data, to be
transcribed by our own recognizer.

The entire training set was used  to train acoustic models for the speech recognition system. The remainder was held
out as unseen test data. There were about  3245 stories in the training data set and 2866 in the test set. To develop
and debug the system, the TREC-6 evaluation set was used in a Known-Item Retrieval system -- where every query
has only one document assigned as relevant.

In our experiments on the evaluation test set, the average precision of the retrieval for each of the relevant
documents was used to judge the quality of the retrieval. However, since relevance judgements were not available
for the development test set, we used the Average Inverse Rank from last year's evaluation to judge retrieval quality.

2. System Overview
In this section we give a system description of the actual CMU TREC-7 SDR submission. The speech recognition
system is outlined as well as a fully automatic information retrieval weighting scheme suitable for retrieving
documents imperfectly transcribed by automatic speech recognition.



The Speech Recognition Component
The Sphinx-III speech recognition system used for this evaluation was configured similarly to that used in the 1997
TREC-7 SDR evaluation [1], although several changes have been made since then. Sphinx-III is a large vocabulary,
speaker independent, fully continuous hidden Markov model speech recognizer with separately trained acoustic,
language and lexical models.

For the current evaluation a gender-independent HMM with 6000 senonically-tied states and 16 diagonal-covariance
Gaussian mixtures was trained on the TREC-7 SDR training set.

The decoder used a Katz-smoothed trigram language model trained on the 1992-1996 Broadcast News Language
Modeling (BN LM) corpus and the LDC-provided supplemental newswire (NW) data from 1997-1998. This is a
fairly standard language model, much like those that have been used in the DARPA speech recognition community
for the past several years. The lexicon was chosen from the most common words in this corpus. For this evaluation,
the vocabulary was comprised of the most frequent 64k  words in the BN LM + NW corpora.

The Information Retrieval Component
Both documents and queries were processed using the same conditioning tools, namely noise filtering, stopword
removal, and term stemming:

• Noise Filtering: The goal of noise filtering was simply to remove non-alphabet ASCII characters, punctuation,
and other junk considered irrelevant to IR. All punctuation was removed except for spelled-letter words, e.g.
"C.M.U," and the use of the apostrophe for contractions, e.g. "CAN'T." Any changes in case were removed.

• Stopword removal: A set of 811 stopwords was compiled from a combination of the SMART IR engine and
several selected by hand based on document frequency. These words were removed entirely.

• Term mappings: A set of 4578 mappings was used to map words with irregular word endings that were not
properly covered by an implementation of the Porter algorithm. An on-line Houghton-Mifflin dictionary was
used for this lookup of irregular words and their roots.
An example of this mapping is APPENDICES→ APPENDIX

• Term stemming: An implementation of the Porter algorithm was applied to map words to their common root.

For this evaluation, we had two different relevance weighting schemes using entirely different approaches. The first
was a vector-space model built on the LNU weighting scheme [3], whereas the second used a language model
approach to estimate likelihoods.

3. Word Probability In The Relevance Equation: Mutual Information
Some combination of the two factors frequency and selectivity that is used to evaluate the relevance of documents to
queries. Many retrieval engines use derivatives of Salton’s vector space model, specifically a measure commonly
known as TFIDF (Term Frequency by (log) Inverse Document Frequency.)

Given a set of M documents, a word iw , and a specific document mD , the IDF is defined as:
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Although it is obvious that the IDF provides some measure of term selectivity, it is important, for its application in
this paper, to derive a theoretical basis for its use. If documents and queries are regarded from a probabilistic point
of view, the significance of IDF is readily apparent and motivates the proper use of word probabilities derived from
the speech recognition.



Let documents and queries be defined as mappings of words into probabilities:
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The space of distinct documents is defined as:
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The a-priori  probabilities of document relevance are equal:
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Consider the information content of word iw  to be the mutual information between the document set and the word:
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Expanding, using the definition of entropy:
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The relevance of query Q to document mD in space D is defined as the expected value of this information content:
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Assuming documents and queries to be independent:
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If, following the usual practice, documents and queries map words to indicator functions (Boolean):
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And the relevance function reduces to the familiar:
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Where the indicator functions are the TF values. By this logic, it is seen that the IDF can be supported as a
meaningful derivative of information content. In addition, the more general form in Equation 1 can be used when
word probabilities are available.



4. Estimating Word Probability From Recognition Lattices
In the course of decoding the incoming speech signal into a word string, the Sphinx III recognizer produces a lattice
of words representing the many competing hypotheses. Each hypothesized word in the lattice has a starting time, an
ending time, a link to possible following words, and model probabilities for the word. After producing this lattice,
the recognizer selects the most probable path after weighing evidence from the different modeling sources available.
The best path, also called the top-1 hypothesis, is generated as the output of the recognizer.

Although the lattice is available, only the best path has typically been used for the purpose of information retrieval.
Although the lattice does not contain all possible word sequences, it is a far more detailed representation of what
may have been said than can be given in a single transcription. One serendipitous benefit of the lattice is that the
presence of a large number of options at any moment in time may indicate an uncertainty in word recognition. This
is valuable, since it should be beneficial to predict which words in the top-1 hypothesis are incorrect, and discount
them during information retrieval.

One way of measuring the number of competing hypotheses for a specific node in a lattice is the following:

• Count the time span (in frames) of the node: N
• Count the number of frames contained in other nodes that occur simultaneously with this node (partially or

completely): M
• The Lattice Occupation Density (LOD) is N/(N+M).
In the example shown in Figure 1, the recognition system is less certain about the presence of “today” than “news"
because the latter word has no competing hypotheses.
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Figure 1: A simple lattice. Numbers show the
Lattice Occupation Density (LOD) values for the various nodes

The TREC-6 training corpus was used to build a probability model by analyzing the lattices created during
recognition. The LOD values for each word in the top-1 hypotheses were collected, and the word errors tallied. In
Figure 2, the probability that a hypothesized word occurred in the reference transcript is compared with its LOD
value from the lattice. From these measurements of the training set, a parameterized model of word probability was
derived. The model adopted for this paper was a best fitting exponential of the form:

( ) LODLODwP 2.01| −≈
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Figure 2: Using LOD to predict word probability in the top-1 hypothesis. For example, hypothesized words with an
LOD of 1.0 appeared in the reference text approximately 85% of time.

Performance of Mutual-Information Metric On Development Test Set
As can be seen in Table 1, using error prediction in conjunction with the mutual information metric can reduce the
average inverse rank difference between reference texts and the top1 hypotheses by 25%.

Average Inverse RankTranscription
Source LNU LNU+Mutual

Inf.
REF 0.82

TOP1 0.74 0.76

Table 1: Performance of the mutual information metric on the development test set.
Values are average inverse ranks for the different transcription sources.

5. Finding the Best IR Lattice Path
Although improving the word error rate of the transcription is the primary goal for speech recognition tasks, in the
case of indexing and searching audio material, some consideration for the application of the transcription should be
made.  Since many types of "errors" in transcription are benign (for example a substitution of one stop-word for
another) it is apparent that reducing the word error rate blindly does not necessarily result in improved retrieval
performance.

In order to clarify this point, the lattices from the speech recognition phase of the evaluation test set were scanned
for their lowest word-error paths.  This is commonly known as the Oracle Word Error Rate of the lattice. In addition
to these paths, the paths that generate the lowest word error after the text-processing steps described earlier, with
respect to the text-processed references, were generated.  The distinction of the latter is that paths containing  benign
errors are not penalized.



Table 2 shows the performance of the oracle path selection using the mutual information retrieval engine on a 2601
document subset of the evaluation set.  Approximately 10% of the original 2866 documents failed to produce
lattices, or were too long to rescore, and these were deleted from the test set.

Filtering after the oracle path is found is tantamount to finding the path that generates the oracle word error rate of
the lattice. As can be seen, this is not the optimal path through the lattice with respect to information retrieval.
However, filtering before the optimal path is found is a better representative of an error criterion commensurate with
the retrieval operation. What is most surprising is that the original performance on the reference transcripts can be
completely recovered from the speech-recognition lattices.

Baseline Oracle
Reference
Transcripts

Speech
Transcripts

Filter Before
Oracle

Filter After
Oracle

Training Set AIR=0.79 AIR=0.75 AIR=0.79 AIR=0.75

Testing Set PAVG=0.39 PAVG =0.36 PAVG =0.39 PAVG =0.37

Table 2: Baseline and Oracle Annotation on TREC-6 Training and Testing Sets.
Values are Average Inverse Rank (AIR) for the training set, and the average precision (PAVG) for the testing set.

6. Information Retrieval Using Language Models
We also experimented with a variation of the Language Modeling Approach to retrieval introduced recently by
Ponte and Croft [4].  The idea behind the LM approach is to estimate a separate language model for every document
in a collection; fielding queries involves discovering the documents whose models most closely accord with the
query.

Specifically, the LM approach associates with each document d a probability distribution ( )dtp |  over terms t . The
probability of a query },,,{ 21 nqqqq L=  is given as a product of individual term probabilities,
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Given a query q and a collection of documents d , the LM approach ranks documents by how well they “predict”
the query---in other words, by ( )dqp | . Of course, assuming a uniform prior ( )dp  on documents, ranking
documents by ( )dqp |  is equivalent to ranking them by ( )qdp | , which is perhaps a more natural perspective.

Estimating the parameters of these document-specific models is a delicate business. Maximum likelihood
estimation, where the probability for a term is proportional to the number of times the term appeared in the
document, will not work, since documents are often far too small for robust model estimation. Ponte and Croft's
proposed solution is to interpolate or “smooth” each document-specific model with a model estimated on the entire
collection of documents.

We adopted a different approach to language model construction. We use a penalized maximum likelihood objective
function to select, for each document, the optimal model within a family of exponential models. This approach is
more fully described in [5].

Table 3 shows the performance of the language model based retrieval engine on the development test set. In general,
the performance is on par with the more finely tuned mutual information retrieval engine. Work is progressing at
CMU on a more sophisticated approach which can better handle synonymy and polysemy.



Transcription
Source

Average
Inverse Rank

REF 0.80
TOP1 0.76

Table 3: Performance of the language model based metric on the development test set.
Values are average inverse ranks for the different transcription sources.

7. Official TREC-6 SDR Results
Table 4 shows the official CMU TREC SDR results. Unfortunately, the performance of the mutual information
retrieval engine, coupled with the probability estimator did not fare as well as hoped.  Upon investigation, the model
using the lattice occupation density turned out to be a poor estimate of the word probability for the evaluation test
set. However, the language model retrieval engine fared well in either case.

Transcription
Source

LNU metric
PAVG

LM metric
PAVG

REF 0.36 0.39
B1 0.33 0.35
B2 0.26 0.27

CMU 0.32 N/A
CMU+Lattice 0.29 N/A

Table 4: Performance of the CMU TREC-7 SDR Evaluation System
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