
UCRL-JC- 13424 1 
PREPRINT 

Scalable Preconditioned Conjugate 
Gradient Inversion of Vector 

Finite Element Mass Matrices 

J. Koning 
G. Rodrigue 

D. White 

This paper was prepared for submittal to 
Numerical Linear Algebra 

June 1,1999 

This is a preprint of a paper intended for publication in a journal or proceedings. nr ..^_ .l.---.. .--_. L-l?--.. -..L,:-...:-- __^_ A-&:.. -,.,l.. ^..,.:,-L,.. . . ..a. 



DISCLAIMER 

This document was prepared as an account of work sponsored by an agency of 
the United States Government. Neither the United States Government nor the 
University of California nor any of their employees, makes any warranty, express 
or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States 
Government or the University of California. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States 
Government or the University of California, and shall not be used for advertising 
or product endorsement purposes. 



Scalable Preconditioned Conjugate Gradient 
Inversion of Vector Finite Element Mass 
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1.0 Mass Matrices 

The Gram matrix of the linear independent elements $1, $2, . . ., @, in an inner product 

space V is the symmetric positive - definite y1 x n matrix 

@Q 1) 

[5]. A classic example of a Gram matrix is the Hilbert matrix given by e,(x) = xi - 1 and 

I 
1 

the inner product (u, v) = O~(~)v(~)& in which case G = [g,] = [(i + j + 1)-l]. 

Gram matrices naturally arise in the numerical solution of time-dependent partial differen- 
tial equations by the Galerkin method, [ 141 . Specifically, given the weak differential equa- 
tion 

au ( 1 TP = w4, v> @Q 2) 
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A function &(x, t) = i a,(t)@.( ) ’ 1 x 1s sought out in a finite-dimensional subspace 
i=l b 

spanned by a linearly independent set of basis functions $t (x), &(x), . . . , Q,(X) that 
approximates the weak solution of EQ 2 . The Gale&in method calculates this approxima- 
tion by defining U to satisfy 

= (L[“l, ~j), j = ‘, 2, “‘,’ (EQ 3) 

Then, if we let a(t) = [a,, a2, . . ., a,]‘, this results in a system of ordinary differential 
equations 

da GTtt = F(a) (EQ 4) 

where G is the Gram matrix of EQ 1 and is called the mass matrix of the Galerkin proce- 
dure. 

If one approximates EQ 4 by any numerical time differencing scheme, we see that it is 
necessary to invert the mass matrix at each time step. Hence, the ease and rapidity of the 
mass matrix inversion process is an important part of any Gale&in method. 

2.0 Numerical Inversion of the Mass Matrix 

Since the mass matrix G is symmetric and positive definite, the natural choice for its 
inversion is the preconditioned conjugate gradient method. The efficiency of the precondi- 
tioned conjugate gradient method relies on the choice of the preconditioner Q . Examples 
of preconditioners include the incomplete Cholesky factorization [9], the SSOR precondi- 
tioner [22], multigrid preconditioners [3] and domain decomposition preconditioners [2]. 

An efficient preconditioner must possess three properties: 

1. The precondition& must re relatively easy to solve; 

2. The matrix Q-l G must “approximate the identity; and 

3. The preconditioner must yield a “scalable’ method in the sense that the number of iter- 
ations to convergence must approach a constant as the size of the matrix n approaches 
infinity. 

For the preconditioned conjugate gradient method, the spectral condition number ratio 
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K(Q-'G) = I,,, <Q-l G) 
hmin (Q-’ G) 

of the largest to the smallest eigenvalue of Q’G enters into the upper bound for the error 

@Q 5) 

where the G-norm of the error /l&II G, is defined as ( ek)tGek. The bound in EQ 5 is not 
sharp for the conjugate gradient method. A sharp error bound for the conjugate gradient 
method is more complicated [lo], involving the distribution of al eigenvalues of 
Q 1 G .However, a spectral condition number close to 1 and bounded from above as the 
size IZ approaches infinity is sufficient to ensure fast and scalable convergence of the con- 
jugate gradient algorithm. 

In this paper we concentrate on determining preconditioners that yield scalable conjugate 
gradient algorithms. That is we seek preconditioners such that 

lim K( Q-l G) < C 
n--3- 

for some constant Cindependent of ~1. 

Condition number bounds can sometimes be achieved by obtaining a bound on the condi- 
tion number of an associated matrix and then “comparing” it to the original system. 
Unfortunately, there are few theoretical comparison results for the condition number of 
preconditioned systems. An exception is the case of diagonal and block diagonal precon- 
ditioners. Van der Sluis [ 191 proved the following theorem about diagonal scaling of a 
symmetric positive matrix G : 

Theorem (Van Der Sluis) Let D be the diagonal of the symmetric positive definite matrix 

G , and let fi be any other positive definite diagonal matrix. Then 

K(D-~ G) I m(d-” G) 

where m is the maximum number of nonzeros in any row of G . 

When the matrix G has property-A, I that is when G an permuted into the form 

G= Dl B i I B’ D, 
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where D, and D, are diagonal matrices), a stronger result holds, [S]. 

Theorem (Forsythe & Stratlss) Using the above notation, if the symmetric positive defi- 
nite matrix G has property - A, then 

K(D-~ G) I K(b-1 G) . 

A generalization of the Van der Sluis theorem has also been proved for block diagonal pre- 
conditioners, [6]. 

Theorem (DemmeZ) Let D be the block diagonal of the symmetric positive definite matrix 

G , and let b be any other symmetric positive definite block diagonal matrix with same 
size blocks. Then 

K(D-~ G) 5 bK(b-‘G) 

where b is the number of blocks in D . 

A result similar to that of Forsythe & Strauss has also been proved for block diagonal pre- 
conditioners [7], when the matrix G is block 2-cyclic and is permuted into the form 

@Q 6) 

where Di, i = 1,2 is a block diagonal matrix with diagonal blocks Di, j, j = 1, 2, . . . , Yi . 

Theorem (Eisenstat, Lewis, Schultz) Let G be of the form in EQ 6 and let D be the block 

diagonal matrix whose diagonal blocks are {D,, ,, . . ., D,, r,, D,, *, . . ., D,, r,}. Let b be 

any other block diagonal matrix with same size blocks. Then 

K(D-* G) 2 K(b)-‘G) . 

3.0 The Finite Element Galerkin Method 

The finite element Galerkin method is a systematic technique for constructing the basis 
functions Qi for the Gale&in method based around a numerical grid. Irregular domains 
and mixed boundary conditions are easily accommodated and the resulting equations 
describing the discrete model are generally well-conditioned. 

Formally, a finite element (K, P,, AK) is defined as follows, [4], 

1. K, a quadrilateral domain 
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2. P, = (P# = P, 0 . . . 0 PN , a vector space consisting of the tensor product of a 

polynomial vector spaces Pi defined on K. P, has a basis {‘I’,, ‘I”,, Yy,, Y,} 

3. A,, a set of linear functionals defined on P, having a basis a,, a2, a3, a4 (called 
degrees of freedom) 

Each finite element (K, P,, AK) will be isoparametrically equivalent to a single refer- 

ence finite element (K,, P,, A,) where K, = { -1 I x, y I 1). If we assume the num- 
bering configuration for the nodes and edges of a given quadrilateral in Figure 1 , then the 
isoparametric mapping is given by 

where K is the quadrilateral with vertices {(xi, Yi), i = 1, 2, 3,4} and 

~&J-l) = t(l-5>u -rl) 

~&3-l) = &+ w -q) 

~&Jl) = t(l+5>U +rl) 

~&A = ;(I -5w +rl) 

Then, P, is defined by 

@Q 7) 

P, = {p = po. Fkl : p. E PO> @Q 8) 

5 



FIGURE 1. Numbering configuration for reference element KO and quadrilateral element K. 

x4(O) e2(‘) x3(O) 

e4(“) e3m 

xp) elcuy x2(O) 

K, 

and the basis of P, is given by Yi = Y,‘o) + Fil where 

PO = span [Y {O), Y&O), Y&O), Y&O)] . 

A finite element is said to be unisolvent if the set of degrees of freedom A, determines a 

unique polynomial in P, . If this is the case, then for any function f defined on K, there 

exists a unique interpolant n;(f) E P such that a(f) = a[~(f)] for all a E A,. 

The element mass matrix is defined to be the 4 x 4 matrix 

Yie YjdK Yt”) l Y,(O) det (J,)dtdq 

where 

J, = 

The mass matrix is then given by 
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where the matrix behind the summation signs are expanded or augmented by zero filling. 

4.0 Nodal Finite Elements 

Here, the polynomial space P, = P = span [ 1, X, y, xy ] . The four degrees of freedom 
are 

AK = span [q(p) = P(Xi, Yi>, p E p,, i = 1,2,3,41 (EQ 9) 

where (xi, yi) are the coordinates of the nodes of K. Clearly, the finite element is unisol- 
vent under the degrees of freedom in EQ 9 . For the reference element, 
P, = span [N,, N,, N,, NJ (the Ni are defined in EQ 7 ). An important result regarding 
the scalability of the conjugate gradient method for solving mass matrix systems arising 
from nodal finite elements is the following. 

Theorem (Ciarlet) Assume 

l R a polygonal domain in R2 

l r the boundary of 62 

l G,, a quadrilateral decomposition of Sz , i.e., a decomposition of $2 into a set 

G,, = K,, K,, . . . . K, of non-overlapping quadrilaterals Ki such that ti = U K 
KE G, 

and no vertex of one quadrilateral lies on the edge of another quadrilateral. 

l h=maxKEG 
h 

diam (K) where diam (K) is the longest side of quadrilateral K. 

l There exists positive constants pt, p2 independent of h 

such that for all K E G, , 

Plh I h, = diam (K) I P2h. 

l $17 49, a-*, 0, are a nodal basis functions of V, 

Then if M = matrix (bqi$#2) is the mass matrix, there exist constants C,, C, depend- 

ing only on PI, p2 such that 
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Hence we see that if a sequence of grids satisfies the previous theorem, then the precondi- 
tioned conjugate gradient will attain a constant number of iterations as the number of grid 
points increases whenever the preconditioner satisfies any of the theorems in Section 2.0 . 

Another important property of nodal mass matrices is that they can be consistently 
“lumped”, [ 151. That is, they can be consistently approximated by a diagonal matrix. 

5.0 Motivation - The Vector Wave Equation 

The two-dimensional Maxwell’s equations consist of two equations that relate the vector 
electric field E = [E,, E2] , a scalar magnetic field H and a divergence condition, [ 121. 

VxE = - F 

V.D = 0 

(EQ 10) 

(EQ 11) 

(EQ 12) 

where 

dE, dE, 
vxE=z& -- 

aY 

Two constitutive relations are required to close Maxwell’s equations, 

D = EE, B = pH (EQ 13) 

where the dielectric permittivity E and the magnetic permeability p are scalar functions 
of position. 

The magnetic field is eliminated by applying the operation 9 x to EQ 10 and applying 
the identities EQ 11 and EQ 13 to obtain the vector wave equation for the electric field 

d2E 
&at2 

= - 9x&E 
I-L 

(EQ 14) 
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The Galerkin method for solving EQ 14 computes an approximation 

h = [Et, g21f = i a,(t)$(x, y) such that 
i=l 

~E[$h]tGSjdL2 = -~[dXSVXk]t3jdC2 
R 

=- I '[VXE]'[VX&j]dQ 
np 

where the second equality follows from Green’s second vector theorem, [20]. Substituting 
the expansion for E we get a square system of equations 

yielding the system of ordinary differential equations in EQ 4 where the mass matrix G is 
given by 

One could, of course, use the nodal finite elements to provide Galekrin vector approxima- 
tions to be the vector wave equation in EQ 14 .This has the advantage that the mass matri- 
ces can be consistently lumped and be solved by a scalable preconditioned conjugate 
gradient algorithm. Unfortunately, the continuity of the nodal finite element approxima- 
tions turns out to be a liability when applied to the vector wave equation when the dielec- 
tric E has a jump disconintuity. In this case, it is known that the tangential component of 
the electric field is continuous across the discontinuity while its normal component may be 
discontinuous. Consequently, an important property of electric fields that should be pre- 
served in any numerical approximation is the following: The tangential component of E 
across an inte$ace ii continuous but the normal componentf E across the same interface 
may be discontinuous. To ensure this, the tangential component of the numerical approxi- 
mation J? should be continuous along the edges of each quadrilateral of the grid but its 
normal component need not be. More specifically, if K, and K, are two elements with a 

common edge e then the tangential components of rcl (u) and 7r,( u) are the same on e 

for all u E Cm(K, u K2), [16]. Finite elements with this property are said to be confor- 
mal. Since the tangential and normal components of the Galerkin approximation provided 
by the nodal finite elements are continous , non-physical spurious oscillations have been 
observed when they are used to solve EQ 14 , [ 131. 
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6.0 Edge Elements 

Finite elements that enforce continuity of the electric field across edges have been recently 
discovered and analyzed, [16],[17]. Basically, these “vector finite element” assign degrees 
of freedom to the edges rather than to the nodes of the elements. For this reason, they are 
called edge elements. although these types of elements were described by Whitney, [21], 
as early as 35 years ago, their use and importance in electromagnetics was not realized 
until recently. Extensive investigations as well as some very successful applications have 
been carried over the past few years,[ 181 [20]. In this section we introduce the edge ele- 
ments (K, P,, AK) in two dimensions and analyze the mass matrices that arise from their 
use in the Galerkin procedure. 

The degrees of freedom A, for the edge elements are the line integrals 

ai = J p l tidei, P E P 
ei; 

where ti is the unit tangent along edge ei, i = 1,2, 3,4, [13]. The fact that these ele- 
ments are conforming is found in [ 171. On the reference element, 

P, = {a+bq}O{c+dk} 

and the conditions 

ai = I P l tjdo = 6,, PE P, 
eijji 

yields the basis functions 

Then, P, = span[Yt, Y2, Y,, Y4] where Yi(X, y) = YfO)[Fi;l(x, y)]. Note that if 
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tj is the unit tangent vector along edge ej , then 

5 (Y~(x, Y) . tj)dej = 6, 
ej 

The element mass matrix is given by 

7.0 Edge Element Mass Matrices 

7.1 Uniform Grid 

We first consider the edge element mass matrices generated on a uniform grid of grid size 
h . Here, K = {(Xi<XIxi+h,yiiy<yi-th)} and the element matrix is given by 

h2 hfK=x 

This yields a block diagonal mass matrix 

h2 M=x 

t 11 

A2 
\ 

2100 
1200 

m 1 

0021 
0012 

\ ’ Ai = 

A n-l 

ArIm 

210 I I 141 
012 

If we estimate the eigenvalues of the mass matrix Musing Gerschgorin discs, we get the 
following result. 

Theorem 1: If M is the mass matrix generated from vector edge elements on a uniform 
rectangular grid, then 

K(M) 5 6 (EQ 15) 

Table 1 tabulates the actual condition number for a variety of matrix sizes. We see that the- 
bound on the condition number in EQ 15 appears to be an over-estimate. 
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TABLE 1. Mass matrix condition number for n edge elements 

Of course, a natural question to ask would be whether the mass matrix can be consistently 
approximated by a diagonal matrix much in the same manner as is commonly done using 
mass lumping techniques for nodal elements. In this regard, if the trapezoid rule is used to 
evaluate the inner product integrals, we get the following result. 

Theorem 2: 

&I = MK+ O(h2) @Q 16) 

A corollary to Theorem 2 is that the diagonal approximation in EQ 16 yields the well- 
known Yee’s method which is totally consistent with vector wave equation, [ 131 . 

7.2 Non-Uniform Grid. 

We now examine the edge element mass matrices based upon a non-uniform grid. In this 
case, no consistent mass lumping procedure is known to exist and matrix inversion of the 
mass matrix is necessary to use the Gale&in procedure. In this section, we examine the 
condition numbers of the preconditioned mass matrices to determine if a scalable precon- 
ditioned conjugate gradient method exists. 

The non-uniform grids were constructed by recursivley forming four new quadrilaterals 
out of one initial quadrilateral. Along each eadge of the quad, a random position is chosen 
using: Xnewno& = ‘X,,dei + ( 1 - SIXnodej ,Ynewnode = Synod& + ( 1 - S)Yn,dej 7 where S is 

defined by a user chosen variable f as s = f + ( 1 - 2f)rand( l ) and 

r~nd( l ) is a random number between 0 and 1. These four new nodes are used to 
define the center by finding random postions between the new left and right nodes, as well 
as the new top and bottom nodes, thus giving four new quadrilaterals. This operation is 
preformed on each new quadrilateral until the desired number of elemnets is reached, see 
Figure 2 . 
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FIGURE 2. 32 X 32 numerical grids for different f values 

f =.5 

Illi~llllllllllllllllll1llllllllll 

f =A7 

13 



Table 2 and Table 3 list the condition number of the unconditioned and diagonally pre- 

TABLE 2. Condition number of element mass matrix for f =.44 

conditioned mass matrices . Inner product integrations were performed using a four point 
Gaussian quadrature rule. 

TABLE 3. Condition number calculations for diagonally preconditioned systems 

Table 4 list the number of iterations for convergence of the preconditioned conjugate gra- 
dient algorithm for the mass matrices generated on the unstructured grids generated when 
f = .44. The preconditioners used were Jacobi diagonal scaling and the Incomplete - 
LU. 

TABLE 4. Number of preconditioned conj. grad. iterations for f =.44 

n Jacobi ILU 

144 14 5 

544 15 6 

2112 16 6 

33024 16 7 

As one can be seen from the condition number computations for f = .35 in Table 3 , the 
condition number ofthe preconditioned does not seem to be approaching a constant as 
would be hoped. The reason for this is that, unlike uniform grids, the fundamental struc- 
ture of the grid is not the same as the number of grid points is increased, compare the grids 
in Figure 2 and in Figure 3 . This becomes evident when one compares the zone sizes and 
edge lengths of the different grids. Table 5 and Table 6 list ratios of maximum to mini- 
mum zone sizes and edge lengths of the different grid sizes. In this case, IZ refers to the 
number of edges in the grid. 
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FIGURE 3. 16 X 16 numerical grid for f = .35 

TABLE 5. Ratio of maximum zone area to minimum zone area for different grid sizes 

TABLE 6. Ratio of maximum edge length to minimum edge length for different grid sizes 

1.5 



FIGURE4. 2n-1 -t 1 XZnwl + 1 grids 

n=4 n=5 

n=6 n=7 
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In order to determine if a result holds that is similar to the Ciarlet Theorem for nodal finite 
elements, the previous computations were carried out on a sequence of grids whose diam- 
eters are related, see Figure 4 . The initial coarse grid was constructed using a seed of 
f = .35 . Mesh metrics, condition numbers and preconditioned conjugate gradient itera- 

TABLE 7. Mesh Metrics 

tions are given in Tables 7 - 9 respectively. 

TABLE 8. Condition numbers of mass matrix M and diagonally preconditioned matrix Q-’ M 

n K(M) K(Q-‘W 
4 20.29 4.44 

TABLE 9. Number of iterations for diagonally scaled conj. grad. and ILU conj. grad. 
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8.0 Conclusions 

In this paper we have established computationally that the condition number of the diago- 
nally preconditioned mass edge element matrix essentially remains constant as the size of 
a grid increases provided the ratio of the mesh lengths remains constant. . This is useful 
when the preconditioned conjugate gradient algorithm is used to invert the edge element 
mass matrix in Galerkin procedures for solving Maxwell’s equations. 

The authors would like to thank the Institute for Scientific Computing Research at the 
Lawrence Livermore National Laboratory for partial support of this research. 
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