

Concentration of Selected Sulfonylurea, Sulfonamide, and Imidazolinone Herbicides, Other Pesticides, and Nutrients in 71 Streams, 5 Reservoir Outflows, and 25 Wells in the Midwestern United States, 1998

Water-Resources Investigations Report 00–4225

U.S. Department of the Interior U.S. Geological Survey Concentration of Selected Sulfonylurea, Sulfonamide, and Imidazolinone Herbicides, Other Pesticides, and Nutrients in 71 Streams, 5 Reservoir Outflows, and 25 Wells in the Midwestern United States, 1998

By W.A. Battaglin, E.T. Furlong, and M.R. Burkhardt

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 00-4225

Denver, Colorado 2001

U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary

U.S. GEOLOGICAL SURVEY

Charles G. Groat, Director

The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.

For additional information write to:

District Chief U.S. Geological Survey Box 25046, Mail Stop 415 Denver Federal Center Denver, CO 80225–0046 Copies of this report can be purchased from:

U.S. Geological Survey Information Services Box 25286 Federal Center Denver, CO 80225

CONTENTS

Abstract	1
Introduction	1
Purpose and Scope	3
Herbicide Properties	3
Previous Investigations and Expected Concentrations	4
Acknowledgments	5
Methods	5
Sampling Sites	5
Sampling Schedule and Procedure	8
Analytical Methods	19
Sulfonylurea, Sulfonamide, and Imidazolinone Herbicides	19
Other Pesticides and Degradates	20
Nutrients, Physical Properties, and Discharge	20
Quality Assurance	20
Sample Collection	20
Analytical Methods	23
Quality-Assurance Samples for Sulfonylurea, Sulfonamide, and Imidazolinone Herbicides	24
Quality-Assurance Samples for Other Herbicides	26
Duplicate Analysis of Selected Herbicides	26
Occurrence of Sulfonylurea, Sulfonamide, and Imidazolinone Herbicides	28
Streams	28
Reservoir Outflows	46
Ground Water	46
Occurrence of Other Pesticides	47
Streams	47
Reservoir Outflows	50
Ground Water	51
Occurrence of Nutrients and Physical Properties	79
Streams	79
Reservoir Outflows	96
Ground Water	97
Herbicides in Pre-Emergence and Post-Emergence Stream and Reservoir Outflow Samples	97
Sulfonylurea, Sulfonamide, and Imidazolinone Herbicides Relative to Atrazine and Metolachlor	109
Conclusions	120
References Cited	120

FIGURES

1.	Graph showing estimated acres of corn, soybeans, and wheat treated with selected sulfonylurea, sulfonamide, and imidazolinone herbicides, 1998–98, in 11 Midwestern States	2
2.	Graph showing EC50 concentrations in micrograms per liter for selected herbicides on five	
	aquatic plants	4
3–5.	Maps showing:	
	3. Location and associated basin for the nine stream sites with large drainage areas	8
	4. Location and associated basin for the 62 stream and 5 reservoir sites with smaller	
	drainage areas	9
	5. Location of the 25 well sites	12
6.	Diagram showing sample preparation steps for analysis of sulfonylurea, sulfonamide, and	
	imidazolinone herbicides	19

7–13. Graphs showing:

	7.	Recoveries of 16 sulfonylurea, sulfonamide, and imidazolinone herbicides from 27 reagent water samples spiked at 0.050 or 0.10 microgram per liter	25
	8.	Differences between herbicide concentrations in 28 pairs of unspiked laboratory duplicate natural-water samples	26
	9.	Recoveries of 16 sulfonylurea, sulfonamide, and imidazolinone herbicides from 28 surface- and ground-water samples spiked at 0.10 microgram per liter. The recoveries are corrected for the ambient water herbicide concentration	27
	10.	Differences between herbicide concentrations in 21 pairs of unspiked field duplicate natural- water samples	28
	11.	Percent differences between herbicide concentrations reported by the National Water Quality Laboratory and concentrations reported by the Organic Geochemistry Research Laboratory for 177 surface- and ground-water samples	29
	12.	Differences between herbicide concentrations reported by the National Water Quality Laboratory and concentrations reported by the Organic Geochemistry Research Laboratory for 177 surface- and ground-water samples	29
	13.	Sulfonylurea, sulfonamide, and imidazolinone herbicide concentrations and percent detections at or above the method reporting limit of 0.01 microgram per liter in 133 stream samples	42
14–16.	Map	os showing:	
	14.	Spatial distributions of imazethapyr concentrations in: (<i>A</i>) pre-emergence samples from small stream and reservoir outflow sites, (<i>B</i>) pre-emergence samples from large river sites, (<i>C</i>) post-emergence samples from small stream and reservoir outflow sites, and (<i>D</i>) post-emergence samples from large river sites	43
	15.	Spatial distributions of flumetsulam concentrations in: (<i>A</i>) pre-emergence samples from small stream and reservoir outflow sites, (<i>B</i>) pre-emergence samples from large river sites, (<i>C</i>) post-emergence samples from small stream and reservoir outflow sites, and (<i>D</i>) post-emergence samples from large river sites	44
	16.	Spatial distributions of nicosulfuron concentrations in: (<i>A</i>) pre-emergence samples from small stream and reservoir outflow sites, (<i>B</i>) pre-emergence samples from large river sites, (<i>C</i>) post-emergence samples from small stream and reservoir outflow sites, and (<i>D</i>) post-emergence samples from large river sites	45
17–24.	Grap	phs showing:	
	17.	Sulfonylurea, sulfonamide, and imidazolinone herbicide concentrations in eight reservoir outflow samples	47
	18.	Sulfonylurea, sulfonamide, and imidazolinone herbicide concentrations in 25 ground- water samples	51
	19.	Pesticide and pesticide degradate (2,6-diethylaniline to fonofos) concentrations and percent detections at or above the method detection limit in 134 stream samples	79
	20.	Pesticide and pesticide degradate (lindane to trifluralin) concentrations and percent detections at or above the method detection limit in 134 stream samples	79
	21.	Herbicide and herbicide degradate concentrations and percent detections at or above the method reporting limit in 141 midwestern stream samples	97
	22.	Concentrations of atrazine in samples collected from midwestern streams and reservoir outflows in relation to: (<i>A</i>) imazethapyr, (<i>B</i>) flumetsulam, and (<i>C</i>) nicosulfuron	118
	23.	Concentrations of metolachlor in samples collected from midwestern streams and reservoir outflows in relation to: (<i>A</i>) imazethapyr, (<i>B</i>) flumetsulam, and (<i>C</i>) nicosulfuron	119
	24.	Ratios of imazethapyr, flumetsulam, and nicosulfuron concentrations to atrazine and metolachlor concentrations in pre- and post-emergence stream and reservoir outflow samples	119

TABLES

1.	Common names, trade names, and manufacturers for pesticides analyzed for in this study	6
2.	Surface-water sampling sites	10
3.	Ground-water sampling sites and sample type, number, and date of collection	13
4.	Collection dates, sample types, sample numbers, and daily mean discharge for samples from	
	surface-water sites	14
5.	Method of determination or analysis and reporting limits for physical properties and chemical	
	compounds in water samples	21
6.	Sulfonylurea, sulfonamide, and imidazolinone herbicide concentrations in water samples from	•
_	71 midwestern streams and 5 midwestern reservoirs	30
7.	Statistical summary of sulfonylurea, sulfonamide, and imidazolinone herbicide concentrations	40
0	in 155 water samples from /1 midwestern streams	42
8.	statistical summary of sulfonylurea, sulfonamide, and imidazolinone herbicide concentrations	46
0	Sulfonvlures, sulfonemide, and imidezelinone barbicide concentrations in water samples collected	40
9.	from 25 midwestern wells	48
10	Statistical summary of sulfonylurea, sulfonamide, and imidazolinone herbicide concentrations in	10
10.	25 water samples from 25 midwestern wells	50
11.	Pesticide and pesticide degradate (2.6-diethylaniline through fonofos) concentrations in water	
	samples from 70 midwestern streams and 5 midwestern reservoirs	52
12.	Pesticide and pesticide degradate (lindane through terbacil) concentrations in water samples from	
	70 midwestern streams and 5 midwestern reservoirs	62
13.	Pesticide and pesticide degradate (terbufos through p,p'-DDE) concentrations in water samples	
	from 70 midwestern streams and 5 midwestern reservoirs	72
14.	Statistical summary of 46 pesticide and pesticide degradate concentrations in 134 water samples	
	from 71 midwestern streams	78
15.	Concentrations of 13 herbicides in water samples from 71 midwestern streams and 5 midwestern	00
16	reservoirs	80
10.	5 midwestern reservoirs	90
17	Statistical summary of 23 herbicide and herbicide degradate concentrations in 141 water samples	70
17.	from 71 midwestern streams	96
18.	Statistical summary of 46 pesticide and pesticide degradate concentrations in 10 water samples	
	from five midwestern reservoir outflows	98
19.	Statistical summary of 13 herbicide and 10 herbicide degradate concentrations in 10 water	
	samples from five midwestern reservoir outflows	99
20.	Pesticide and pesticide degradate (2,6-diethylaniline through fonofos) concentrations in	
	water samples collected in 1998 from 23 midwestern wells	100
21.	Pesticide and pesticide degradate (lindane through terbacil) concentrations in water samples	
	from 23 midwestern wells	102
22.	Pesticide and pesticide degradate (terbufos through p,p'-DDE) concentrations in water samples	10.4
	from 23 midwestern wells	104
23.	Statistical summary of 46 pesticide and pesticide degradate concentrations in 23 water samples	105
24	Concentrations of 12 harbicides in water complex from 25 midwasters	105
24. 25	Concentrations of 10 harbicide degradates in water concells from 25 midwestern Wells	100
23. 26	Concentrations of 10 herbicide degradates in water samples from 25 midwestern weils	108
26.	Statistical summary of 13 neroticide and 10 neroticide degradate concentrations in 25 water	100
	sumptes from 25 milliwestern wens	107

27.	Concentrations of nutrients and field data for water samples from 71 midwestern streams and outflow from five midwestern reservoirs	. 110
28.	Statistical summary of nutrient, field, and discharge data in water samples from 71 midwestern streams	. 115
29.	Statistical summary of nutrient, field, and discharge data in water samples from five midwestern reservoir outflows	. 115
30.	Concentrations of nutrients and field data for water samples from 25 midwestern wells	. 116
31.	Statistical summary of nutrient and field data in water samples from 25 midwestern wells	. 117
32.	Statistical summary of selected herbicide concentrations and discharge in pre-emergence and post- emergence water samples from midwestern streams and reservoir outflows	. 117
33.	Median of differences between post-emergence and pre-emergence concentrations of selected herbicides and Wilcoxon signed-rank test results	. 118

Concentration of Selected Sulfonylurea, Sulfonamide, and Imidazolinone Herbicides, Other Pesticides, and Nutrients in 71 Streams, 5 Reservoir Outflows, and 25 Wells in the Midwestern United States, 1998

By W.A. Battaglin, E.T. Furlong, and M.R. Burkhardt

Abstract

Sulfonylurea (SU), sulfonamide (SA), and imidazolinone (IMI) herbicides are recently developed herbicides that function by inhibiting the action of a key plant enzyme, stopping plant growth, and eventually killing the plant. These compounds generally have low mammalian toxicity, but crop and non-crop plants demonstrate a wide range in sensitivity to SUs, SAs, and IMIs, with over a 10,000-fold difference in observed toxicity levels for some compounds. SUs, SAs, and IMIs are applied either pre- or post-emergence to crops commonly at 1/50th or less of the rate of other herbicides. Little is known about their occurrence, fate, or transport in surface water or ground water in the United States.

To obtain information on the occurrence of SU, SA, and IMI herbicides in the Midwestern United States, 214 water samples were collected from 76 surface-water and 25 ground-water sites in 1998. These samples were analyzed for 16 SU, SA, and IMI herbicides by using highperformance liquid chromatography/mass spectrometry. Samples also were analyzed for 46 pesticides and pesticide degradation products and 13 herbicides and 10 herbicide degradates.

At least 1 of the 16 SUs, SAs, or IMIs was detected at or above the method reporting limit of 0.010 microgram per liter (μ g/L) in 83 percent of 133 stream samples. Imazethapyr was detected

most frequently (69 percent of samples), followed by flumetsulam (65 percent of samples) and nicosulfuron (53 percent of samples). At least one SU, SA, or IMI herbicide was detected at or above the method reporting limit in 6 of 8 reservoir samples and 5 of 25 ground-water samples. SU, SA, and IMI herbicides occurred less frequently and at a fraction (often 1/50th or less) of the concentrations of other herbicides such as atrazine. Acetochlor, atrazine, cyanazine, and metolachlor were all detected in 95 percent or more of 136 stream samples.

INTRODUCTION

During the last 20 years, low application rate herbicides have been developed that act by inhibiting the action of a key plant enzyme, which stops plant growth and eventually causes plant death. Sulfonylurea (SU), sulfonamide (SA), and imidazolinone (IMI) herbicides are three classes of compounds that share this mode of action (Whitcomb, 1998; Meister, 1999). Crops that can be treated with SU, SA, and IMI herbicides include barley, corn, cotton, durum wheat, rice, canola, peanuts, soybeans, sugar beets, spring wheat, and winter wheat. Some compounds also are approved for use on Conservation Reserve Program acreage and for noncropland weed control.

The amount of cropland in the Midwestern United States treated with SU, SA, and IMI herbicides nearly tripled between 1990 and 1997. The total

corn, soybean, and wheat acreages on which nine SUs, one SA, and two IMIs were applied in 11 Midwestern States (Illinois, Indiana, Iowa, Kansas, Kentucky, Minnesota, Missouri, Nebraska, Ohio, South Dakota, and Wisconsin) from 1990 through 1998 are shown in figure 1 (U.S. Department of Agriculture, 1991–99). In 1997, more than 66 million acres were treated with one of the 12 herbicides. For comparison, in the same 11-State area, atrazine, a triazine herbicide, was used on 41 million acres of corn: metolachlor, a chloroacetanilide herbicide, was used on 23 million acres of corn and soybeans; and glyphosate, an amino acid derivative, was used on 16 million acres of corn, soybeans, or wheat. In 1998, only 45 million acres of cropland were treated with one of the 12 low application rate herbicides, while 43 million acres were treated with atrazine, 21 million acres were treated with metolachlor, and 29 million acres were treated with glyphosate (U.S. Department of Agriculture, 1999).

Although applied over comparable areas as triazine or chloroacetanilide herbicides, SU, SA, and IMI herbicides are frequently applied after crops have

Figure 1. Estimated acres of corn, soybeans, and wheat treated with selected sulfonylurea, sulfonamide, and imidazolinone herbicides, 1998–98, in 11 Midwestern States.

emerged, and at low rates (typically less than 25 grams active ingredient per hectare). These application rates are commonly 1/50th or less of the rates for triazine or chloroacetanilide herbicides (typically more than 1,200 grams per hectare). Hence, the total amount of SU, SA, and IMI herbicides applied annually is small compared to the amount of triazines and chloroacetanilides applied. For example, in 1997 in the 11-State area, an estimated 22,390 tons of atrazine, 23,680 tons of metolachlor, and 5,660 tons of glyphosate were applied to cropland, while the total estimated use of the nine SUs, one SA, and two IMIs was only 1,200 tons (U.S. Department of Agriculture, 1998). In 1998, an estimated 23,770 tons of atrazine, 20,760 tons of metolachlor, and 12,450 tons of glyphosate were applied to cropland, while the estimated use of the nine SUs, one SA, and two IMIs was only 676 tons (U.S. Department of Agriculture, 1999).

Little was known about the occurrence, fate, or transport of SUs, SAs, and IMIs in the hydrologic systems in the United States. To gain a better understanding of the occurrence of these herbicides, a Cooperative Research and Development Agreement (CRADA) between the U.S. Geological Survey (USGS) and DuPont Agricultural Products was initiated in 1997. Battaglin and others (1998b) provided a complete description of this CRADA. The overall objective of the CRADA was to determine if and at what concentrations selected SUs, SAs, and IMIs occur in surface- and ground-water resources of the Midwestern United States. Specific objectives included:

- Developing an analytical method for selected SUs, SAs, and IMIs.
- Conducting a reconnaissance to determine the environmental occurrence of SU, SA, and IMI herbicides in surface water and ground water.
- Determining the frequency of detection and concentration distributions of SU, SA, and IMI herbicides relative to those of selected other herbicides.

These specific hypotheses were tested:

- The frequency of detections and concentrations of SU, SA, and IMI herbicides were significantly less than those of other herbicides that are applied in greater total amounts.
- The frequency of detections and concentrations of SU, SA, and IMI herbicides were greater in postemergence runoff samples than in pre-emergence runoff samples.
- The frequency of detections and concentrations of SU, SA, and IMI herbicides were greater in streams and reservoirs than in ground water.
- The frequency of detections and concentrations of SU, SA, and IMI herbicides were greater in smaller watersheds that are predominantly agricultural than in larger watersheds that have more diverse land use and land cover.

Purpose and Scope

The purpose of this report is to describe analytical and data-collection methods and qualityassurance procedures and present data on selected SU, SA, and IMI herbicides, other pesticides, nutrients, and streamflow for samples collected in the spring and summer of 1998. These data are only adequate to identify the occurrence of selected SU, SA, IMI, and other pesticides during spring and summer runoff events in Midwestern streams and in ground water in parts of Iowa and Illinois. More data would be needed to estimate annual mean concentrations of detected analytes or to ensure that analytes that were not detected are not present at other times of the year.

Herbicide Properties

The soil half-lives of SUs, SAs, and IMIs generally range from 1 to 25 weeks depending on soil type, soil pH, and temperature. Their water solubilities range from 6 to 40,000 milligrams per liter (mg/L). The water solubilities of SUs are dependent on water pH. SUs degrade by chemical hydrolysis and microbial activity. SUs degrade faster in warm, moist, low pH soils with low organic content (DuPont, 1998). IMIs degrade by microbial activity and photolysis. IMIs degrade faster in warm, moist, low organic soils (Goetz and others, 1990).

SUs, SAs, and IMIs act upon a key plant enzyme (acetolactate synthase) that is not found in mammals or other animals. These herbicides are reported to have very low toxicities in animals (Brown, 1990; Meister, 1999). Terrestrial and aquatic plants demonstrate a wide range in sensitivity to SUs, SAs, and IMIs (Peterson and others, 1994; Whitcomb, 1998) with over a 10,000-fold difference in observed toxicity levels for some compounds. EC50 concentrations are measures of compound toxicity. An EC50 is the concentration in water of a compound that causes a 50-percent reduction in a chosen plant characteristic for which a toxicity endpoint exists. For example, EC50s for algae can be calculated from laboratory tests measuring biomass development in the presence of varying compound concentrations. EC50 values for selected SU, SA, IMI, and other herbicides on five aquatic plants are shown in figure 2 (Fahl and others, 1995; U.S. Environmental Protection Agency, 2000; Sabater and Carrasco, 1997; Fairchild and others, 1997; Wei and others, 1998; C.J. Peter, DuPont Agricultural Products, written commun., 1999). The EC50 values plotted are for green algae (Selenastrum capricornutum), duckweed (Lemna gibba), blue-green algae (Anabaena flos-aquae), freshwater algae (Scenedesmus costatum), and freshwater diatom (Navicula pelliculosa). In some cases, EC50 values from more than one test on the same plant species are included. EC50 values for several herbicides range over three orders of magnitude. The EC50 data plotted in figure 2 support the hypothesis that an individual concentration of 0.1 µg/L (microgram per liter) in water is an acceptable baseline for non-target aquatic plant toxicity.

SUs, SAs, and IMIs are active at very low concentrations. They can cause reduced yields in some crop rotations, even when only 1 percent or less of the originally applied material remains. Some of these herbicides have demonstrated residual phytotoxicity to rotation crops such as corn, sunflowers, sugar beets, and dry beans (Anderson and Humburg, 1987; Curran and others, 1991). The labels of some of these herbicides restrict the planting of certain rotational crops. Fletcher and others (1993) indicated that spray drift containing SUs at concentrations less than 1 percent

Figure 2. EC50 concentrations in micrograms per liter for selected herbicides on five aquatic plants.

of the recommended application rate may adversely impact fruit tree yields. Felsot and others (1996) suggested that the appearance of chlorotic spots on crops in south-central Washington is a result of exposure to low levels of SU herbicides from precipitation and not from direct spray drift. However, Obrigawitch and others (1998) questioned the validity of Fletcher's findings and the results of other studies (Al-Khatib and others, 1992; Curran and others, 1991) that based their findings on short-term plant-response assessments. Obrigawitch and others (1998) found that a treatment rate of 0.1 gram of the most active SU ingredient per hectare (0.00009 pound per acre) represents a "threshold dose" and would be unlikely to reduce the yields of even the most sensitive non-target plants.

Previous Investigations and Expected Concentrations

Detections of SUs, SAs, and IMIs in water collected from environmental settings have been rare, and the few reported detections have been at nanogram per liter concentrations (Bergstrom, 1990; Michael and Neary, 1993; D'Ascenzo and others, 1998; Okamoto and others, 1998; Steinheimer and others, 2000; Battaglin and others, 2000). However, several studies indicate that some SU, SA, and IMI herbicides may leach beyond the active root zone and enter ground-water or surface-water systems (Anderson and Humburg, 1987; Bergstrom, 1990; Flury and others, 1995; Veeh and others, 1994). Once in ground water or surface water, some SUs, SAs, and IMIs will tend to persist as the parent compound while others will tend to hydrolyze (Dinelli and others, 1997; Harvey and others, 1985). A study by Afyuni and others (1997) indicated that between 1.1 and 2.3 percent of an applied SU was lost in runoff during a simulated rainfall event 24 hours after herbicide application.

Because of their low application rates and low overall use amounts, SU, SA, and IMI herbicides were expected to occur at below part-per-billion concentrations in most water resources. One also can assume, based upon their chemical characteristics, application rates, and acres treated, that individual SU, SA, and IMI herbicides would be expected to occur in surface or ground water at 1 to 0.1 percent or less of the concentration of the more commonly used triazine herbicides. The USGS measured concentrations of 11 common herbicides and 2 herbicide metabolites in samples from 52 midwestern streams during runoff events that occurred soon after herbicide application in 1989, 1990, 1994, and 1995 (Goolsby and others, 1994; Scribner and others, 1998). Median atrazine concentration for the 4 years of data ranged from 5.5 to 10.9 µg/L; median cyanazine concentrations ranged from 1.3 to 2.7 µg/L; and median metolachlor concentrations ranged from 1.7 to 2.5 µg/L. Maximum concentrations for these three compounds for the 4 years ranged from 10.6 to 108 μ g/L. Thus, one could expect to observe SU, SA, and IMI herbicides in midwestern streams during post-application runoff events at concentrations ranging from 0.001 to 0.1 µg/L. Further, one could expect maximum concentrations of SU, SA, and IMI herbicides to range from 0.01 to 1.0 μ g/L (Battaglin and others, 1998a). The concentrations of triazine herbicides observed in ground water (Kolpin and others, 1994) are generally one to two orders of magnitude less than those observed in streams during post-application runoff. Hence, one would expect that SU, SA, and IMI concentrations would seldom exceed 0.01 µg/L in ground water.

Acknowledgments

Mariel Rodriguez, C. John Peter, Michael Duffy, and Dayan Goodnough of DuPont Agricultural Products provided information and insights regarding the environmental and analytical chemistry of the herbicides investigated. Samples for this study were collected by USGS employees from Illinois, Indiana, Iowa, Kansas, Kentucky, Minnesota, Missouri, Nebraska, Ohio, and Wisconsin and analyzed by USGS employees at the National Water Quality Laboratory (NWQL) in Lakewood, Colorado, and the USGS Laboratory in Lawrence, Kansas. The authors are grateful for comments by Michael Duffy, DuPont, and reviews by Tom Leiker, Donald Goolsby, and John Flager of the USGS.

METHODS

The study involved collection of more than 200 samples during a 1998 reconnaissance. Samples were collected in the spring and early summer from streams, large rivers, reservoir outflows, and wells, sometimes in conjunction with USGS National Stream Quality Accounting Network (NASQAN) (Hooper and others, 1997) and National Water-Quality Assessment (NAWQA) (Leahy and Thompson, 1994) activities. All reconnaissance samples were analyzed for 16 SU, SA, and IMI herbicides (table 1) using high-performance liquid chromatography coupled with mass spectrometry. This custom analytical method has an estimated method reporting limit (MRL) of 0.010 µg/L for all analytes and is fully described by Furlong and others (2000). All samples also were analyzed for 69 other pesticides or degradates.

Sampling Sites

Samples were collected from 71 sites on free-flowing streams in the Upper Mississippi, Missouri, and Ohio River basins (figs. 3 and 4, table 2). Fifty-two of the surface-water sites have been studied in previous Midcontinent Herbicide Initiative (MHI) investigations (Thurman and others, 1992; Goolsby and others, 1994; Scribner and others,

 Table 1.
 Common names, trade names, and manufacturers for pesticides analyzed for in this study (data from Larson and others, 1997; Meister, 1999)

Sulfonylurea, Sulfonanide, and Inidazolinone Herbicides bensulfuron methyl sulfonylurea Londax DuPont chlorimuron ethyl sulfonylurea Classic, Preview DuPont chlorimuron ethyl sulfonylurea Glean, Telar, Finesse DuPont flumetsulam sulfonylurea Batalion, Manage, Permit, Sempra Monsanto, Nissan imazapyr imidazolinone Arsenal, Chopper, Lightning BASF imazapyr imidazolinone Secpter, Detail, Squadron BASF imazethapyr imidazolinone Secpter, Detail, Squadron BASF imazethapyr imidazolinone Secpter, Detail, Squadron BASF imazethapyr imidazolinone Secort, Finesse, Canvas DuPont primisulfuron methyl sulfonylurea Alie, Ally, Escort, Finesse, Canvas DuPont prosulfuron sulfonylurea Alie, Ally, Escort, Finesse, Canvas DuPont prosulfuron sulfonylurea Paek, Exceed Novartis sulfonylurea Quest DuPont DuPont triasulfuron methyl sulfonylu	Common name	Chemical class	Trade names	Primary bulk producer(s)				
bensuffuron methylsulfonylureaLondaxDuPontchlorimuron ethylsulfonylureaGlasaic, PreviewDuPontflumetsulamsulfonylureaBroadstrike, Preside, Scorpion, PythonDow AgroScienceshalosulfuron methylsulfonylureaBattalion, Manage, Permit, SempraMonsanto, NissanimazapyrimidazolinoneScepter, Detail, SquadronBASFimazapinimidazolinoneScepter, Detail, SquadronBASFimazathyrimidazolinoneScepter, Detail, SquadronBASFimazathyrimidazolinoneScepter, Detail, SquadronDuPontincosulfuron methylsulfonylureaAlice, Ally, Escort, Finesse, CanvasDuPontprisulfuron methylsulfonylureaRecent, Basis Gold, Celebrity+DuPontprosulfuronsulfonylureaPeak, EsceedNovartissulfonylureaInnacle, Canvas, Basis, Reliance, HarmonDuPonttrifusulfuron methylsulfonylureaPinacle, Canvas, Basis, Reliance, HarmonDuPonttrifusulfuron methylsulfonylureaHarnes, Field Master, SurpasMonsanto, ZenecaalachorcatoringLaso, Partner, Lariat, Bronco, FreedomMonsanto, ZenecaalachorinazardingGanophosphateSurpancatoringunitoranineSurpanSurpancatoringunitoranineSuringSurpanindizonineSuringSuringMorarissulfonylureaSurpanSurpanMorarissulfonylureaAltrex, Gesaprim, BicepMoraris <th colspan="8">Sulfonylurea, Sulfonamide, and Imidazolinone Herbicides</th>	Sulfonylurea, Sulfonamide, and Imidazolinone Herbicides							
chlorimuron ethylsulfonylureaClassic, PreviewDuPontchlorsulfuronsulfonylureaGiean, Telar, FinesseDuPonthalosulfuron methylsulfonylureaBattalion, Manage, Permit, SempraMonsanto, NissanimazapyrimidazolinoneArsenal, Chopper, LightningBASFimazquinimidazolinonePursuit, Lightning, ContourBASFimazdhapyrimidazolinonePursuit, Lightning, ContourBASFimazthapyrsulfonylureaAccent, Basis Gold, Celebrity+DuPontnicosulfuron methylsulfonylureaPeak, ExceedNovartisprimisulfuron methylsulfonylureaPeak, ExceedNovartissulfonylureaPinacel, Canvas, Basis, Reliance, HarmonDuPontsulfonylureaJufonylureaPinacel, Canvas, Basis, Reliance, HarmonDuPonttrifusulfuron methylsulfonylureaPinacel, Canvas, Basis, Reliance, HarmonDuPonttrifusulfuron methylsulfonylureaPinacel, Canvas, Basis, Reliance, HarmonNorartissulfonylureaulfonylureaPinacel, Canvas, Basis, Reliance, HarmonNorartissulfonylureasulfonylureaStarter, Starter, Start	bensulfuron methyl	sulfonylurea	Londax	DuPont				
chlorsulfuronsulfonylureaGlean, Telar, FinesseDuPontflumetsulamsulfonamideBroadstrike, Preside, Scorpion, PythonNow AgroScienceshalosulfuron methylsulfonylureaBatalion, Manaeg, Pernit, SempraMosanto, NissanimazaquinimidazolinoneArsenal, Chopper, LightningBASFimazenhapyrimidazolinoneScepter, Detail, SquadronBASFimazethapyrimidazolinoneVersit, Lightning, ContourBASFnicosulfuronsulfonylureaAccent, Basis Gold, Celebrity+DuPontnicosulfuronsulfonylureaBeacon, Tell, ExceedNovartisprosulfuronsulfonylureaPeak. SceedNovartissulfonylureaQustDuPonttridusulfuron methylsulfonylureaPinacle, Canvas, Basis, Reliance, HarmonyDuPonttridusulfuron methylsulfonylureaPinacle, Canvas, Basis, Reliance, HarmonyDuPonttridusulfuron methylsulfonylureaPinacle, Canvas, Basis, Reliance, HarmonyDuPonttridusulfuron methylsulfonylureaHarnese, Field Master, SurpassMonsanto, CrystalalachorchoracetamideHarnese, Field Master, SurpassMonsanto, Crystalzi-deichylanilinealachorSutan +MoracristicealachororganophosphateSutan +Micro FioatrazinecarbanateSutan +Micro Fiobenfuralin (BenénJonanateSutan +Mora Fiobenfuralin (BenénGramateSutan +Mora Fiocarbortyrifos <td< td=""><td>chlorimuron ethyl</td><td>sulfonylurea</td><td>Classic, Preview</td><td>DuPont</td></td<>	chlorimuron ethyl	sulfonylurea	Classic, Preview	DuPont				
flumetsulamsulfonamideBroadstrike, Preside, Scorpion, PythonDow AgroScienceshalosulfuron methylsulfonylureaBattalion, Manage, Permit, SempraMonsanto, NissanimazapyrinidazolinoneArsenal, Chopper, LightningBASFimazethapyrinidazolinoneScepter, Detail, SquadronBASFimazethapyrinidazolinoneVersuit, Lightning, ContourBASFinazethapyruindonylureaAllie, Ally, Escort, Finesse, CanvasDuPontnicosulfuron methylsulfonylureaBeacon, Tell, EsceedNovartisprosulfuron methylsulfonylureaPeak, ExceedNovartissulfonylureaOustDuPontthifensulfuron methylsulfonylureaPinnacle, Canvas, Basis, Reliance, HarmonDuPonttrifusulfuron methylsulfonylureaMober, Graminon ForteNovartistrifusulfuron methylsulfonylureaMober, Graminon ForteNovartistrifusulfuron methylsulfonylureaMober, Graminon ForteNovartistrifusulfuron methylsulfonylureaLigbetNovartistrifusulfuron methylsulfonylureaLigbetNovartistrifusulfuronsulfonylureaAmber, Graminon ForteNovartistrifusulfuronsulfonylureaAmber, Graminon ForteNovartistrifusulfuronsulfonylureaLigbetNovartisactocholrchloracetamideLasso, Partner, Lariat, Bronco, FreedomMonsanto, Crystal2,6-diethylanilinegalcholrGuthion, GusathionBayer<	chlorsulfuron	sulfonylurea	Glean, Telar, Finesse	DuPont				
halosulfuron methylsuffonylureaBattalion, Manage, Permit, SempraMonsanto, NissanimazapyrinidazolinoneArsenal, Chopper, LightningBASFimazquiniinidazolinoneScepter, Detail, SquadronBASFimazthapyrinidazolinonePursuit, Lightning, ContourBASFmetsulfuron methylsulfonylureaAllie, Ally, Escort, Finesse, CanvasDuPontnicosulfuronsulfonylureaReacon, Tell, ExceedNovartisprinsulfuron methylsulfonylureaPeak, ExceedNovartissulfomylureaJulonylureaOustDuPonttrifusulfuron methylsulfonylureaPinnacle, Canvas, Basis, Reliance, HarmonyDuPonttrifusulfuron methylsulfonylureaPinnacle, Canvas, Basis, Reliance, HarmonyDuPonttrifusulfuron methylsulfonylureaUpbeetDuPonttrifusulfuron methylsulfonylureaAmber, Graminon ForteNovartisacetochlorchoracetamideHarness, Field Master, SurpassMonsanto, CrystalalachloracatnildeLasso, Partner, Lariat, Bronco, FreedomNovartis2,6-diethylanilineatarine degradateItarine degradateItarine degradateataryaineuritoraulineBalachActres, Gesaprim, BicepNovartisbenfluralin (Benefin)dinitoraulineBalachMoracetamidebutylatedirachamateSvinnofAreentiscarbarylcarbanateSvinnofAreentiscarbarylgranophosphateButan +BaSF <td< td=""><td>flumetsulam</td><td>sulfonamide</td><td>Broadstrike, Preside, Scorpion, Python</td><td>Dow AgroSciences</td></td<>	flumetsulam	sulfonamide	Broadstrike, Preside, Scorpion, Python	Dow AgroSciences				
imazapyrimidazolinoneArsenal, Chopper, LightningBASFimazaquinimidazolinoneSepter, Detail, SquadronBASFimazethapyrimidazolinonePursuit, Lightning, ContourBASFimozolitaporsulfonylureaAllie, Ally, Escort, Finesse, CarvasDuPontnicosulfuronsulfonylureaBeacon, Tell, EsceedNovariisprimisulfuron methylsulfonylureaBeacon, Tell, EsceedNovariisprosulfuronsulfonylureaPeak, ExceedDuPontsulfongureaQuatAmber, Graminon ForteDuPonttrifusulfuron methylsulfonylureaUpbetDuPontsulfongureagulonylureaUpbetDuPontacetochlorchoracetamideHarness, Field Master, SurpasMonsanto, ZenecaalachloracetamideHarness, Field Master, SurpasMonsanto, ZenecaalachloracetamideHarness, Field Master, SurpasMonsanto, Crystal2,6-diethylanilinealachor degradatestrazineMovartisatrazinediritoralineBalanDow AgroSciencebutylateuintoralineSutan +More FiobutylateindicarbanateSevinolAcreencarbarylorganophosphateFuradanPower SciencescarbarylorganophosphateBalakAcreencarbarylorganophosphateBackaAsefchorogaciaBackaSciencesGacacarbarylorganophosphateBackaAsefcarbarylorganoph	halosulfuron methyl	sulfonylurea	Battalion, Manage, Permit, Sempra	Monsanto, Nissan				
imazaquinimidazolinoneScepter, Detail, SquadronBASFimaztahapyrimidazolinonePursuit, Lightning, ContourBASFmetsulfuron methylsulfonylueaAlice, Alix, Scort, Finesse, CanvasDuPontincosulfuronsulfonylueaAccent, Basis Gold, Celebrity+DuPontprinsiuffuron methylsulfonylueaBeacon, Tell, ExceedNovartisprosulfuronsulfonylueaPeak, ExceedNovartissulfoneturon methylsulfonylueaOustDuPontthisensulfuron methylsulfonylueaMinacle, Canvas, Basis, Reliance, HarmongDuPontthisensulfuronsulfonylueaUpbetDuPonttriasulfuronsulfonylueaUpbetDuPonttriasulfuronsulfonylueaUpbetDuPonttriafusulfuronsulfonylueaUpbetDuPontsulfonylueaUpbetDuPontDuPonttriafusulfuronsulfonylueaLipsex, Partner, Lariat, Bronco, FreedomMonsanto, ZenecaalachloracatanideLarso, Partner, Lariat, Bronco, FreedomMoratisSulfonylueadethylatrazineatrazine degradateItrazine degradateSulfonylueaSulfonylueaSulfonylueacarbarylorganophosphateGuthion, GusathionMoratisSulfonylueaSulfonylueabutylateInicoralinateSutan +MicoreFoSulfonylueaSulfonylueacarbarylcarbarateFuradanFuradanPartnerFuradancarbarylcarbarateSutin, SeximolAc	imazapyr	imidazolinone	Arsenal, Chopper, Lightning	BASF				
imazethapyrimidazolinonePursuit, Lightning, ContourBASFmetsulfuron methylsulfonylureaAllie, Ally, Escort, Finesse, CanvasDuPontnicosulfuronsulfonylureaReacon, Tell, ExceedNovartisprimisulfuron methylsulfonylureaBeacon, Tell, ExceedNovartissulfongureaPeak, ExceedNovartisNovartissulfongureaOusDuPontMorantiasulfongureaPinnacle, Canvas, Basis, Reliance, HarmonyDuPonttriasulfuron methylsulfongureaMober, Graminon ForteNovartistrisulfuron methylsulfongureaMober, Graminon ForteNovartistrisulfuron methylsulfongureaMober, Graminon ForteNovartisacetochlorchloroacetamideHarness, Field Master, SurpassMonsanto, ZenecaalachloracetanildeHarnes, Field Master, SurpassMosanto, Crystal2,6-diethylanilinealachlor degradateItrizineNovartiszariphos-methylorganophosphateGuthion, GusathionBayerbeffuralin (Benefin)dinicaralineSutan +Mora FolocarbarylcarbamateSevin, SevimolAventiscarbarylorganophosphateBurbane, EmpireDow AgroSciencescarbarylorganophosphateBurbane, EmpireMovarjo, Cleary ChemicaldicthrainmetasSevin, SevinolAventiscarbarylorganophosphateBurbane, EmpireSovarjo, Cleary ChemicaldicthrainmetasBakafi, KoxoutAventi	imazaquin	imidazolinone	Scepter, Detail, Squadron	BASF				
metsulfuron methylsulfonylureaAllie, Ally, Escort, Finesse, CanvasDuPontnicosulfuronsulfonylureaAccent, Basis Gold, Celebrity+DuPontprinsulfuron methylsulfonylureaBeacon, Tell, ExceedNovartisprosulfuronsulfonylureaDea, ExceedNovartissulfoneturon methylsulfonylureaOusDuPonttrifusulfuron methylsulfonylureaPinacle, Canvas, Basis, Reliance, HarmonyDuPonttrifusulfuron methylsulfonylureaUpbectNovartisactochlorchloroacetamideHarnes, Field Master, SurpassMonsanto, ZenecaactochlorchloroacetamideHarnes, Field Master, SurpassMonsanto, ZenecaalachlortrizineAdtex, Gesaprim, BicepMoratis2,6-diethylanilinealachlor degradateSurpassSurpassactanildefinzineGuthion, GusathionBayer2,6-diethylanilineorganophosphateGuthion, GusathionBayer2,6-diethylanilinedinicarbanateSutan +Moratis2,6-diethylanilineGuthionallineBalanDow AgroSciences2,6-diethylanilineGuthionalineSurpas, EmpireDow AgroSciences2,6-diethylanilineGuthionalineJursan, EmpireJouras2,6-diethylanilineGuthionalineSutan +Surpass2,6-diethylanilineGuthionalineSurpass, EmpireJouras2,6-diethylanilineGuthionalineJursan, EmpireJourass2,6-diethylanilineGuthioJursan, Em	imazethapyr	imidazolinone	Pursuit, Lightning, Contour	BASF				
nicosulfuronsulfonylureaAccent, Basis Gold, Celebrity+DuPontprimisulfuron methylsulfonylureaBeacon, Tell, ExceedNovartissulfonylureaPeak, ExceedNovartisNovartissulfonylureaSulfonylureaOustDuPontthifensulfuron methylsulfonylureaPinnacle, Canvas, Basis, Reliance, HarmonNovartistriasulfuronsulfonylureaUpbetNovartistrifusulfuron methylsulfonylureaUpbetDuPontaccentildechloroacetamideHarness, Field Master, SurpassMonsanto, ZenecaalachlorcateaniideKasen, Partnet, Lariat, Bronop, FreedomNovartisalachloracatinideAtrex, Gesaprim, BicepNovartisatrazinetriazineGution, GusathionBayerbethylatrazineindiroanilineBalanDow AgroSciencebutylateuicoarbanateSevin, SevinglMoragocarbordynarbanateSevin, SevinglMoragochloryprifosorganophosphateBalanMoragochloryprifosarbanateSevin, SevinglMoragochloryprifosarbanateSevin, SevinglMoragochloryprifosarbanateBaladeMoragochloryprifosorganophosphateBaladeMoragochloryprifosarbanateBaladeMoragochloryprifosarbanateBaladeMoragochloryprifosarbanateBaladeMoragodiatininizineBaladeMorago </td <td>metsulfuron methyl</td> <td>sulfonylurea</td> <td>Allie, Ally, Escort, Finesse, Canvas</td> <td>DuPont</td>	metsulfuron methyl	sulfonylurea	Allie, Ally, Escort, Finesse, Canvas	DuPont				
primisulfuron methylsulfonylureaBeacon, Tell, ExceedNovarisiprosulfuronsulfonylureaPeak, ExceedNovarisisulfonturon methylsulfonylureaOustDuPontthifensulfuron methylsulfonylureaPinnacle, Carvas, Basis, Reliance, HarmonNovaristriasulfuronsulfonylureaUpbetDuPontacetochlorchloroacetamideHarness, Field Master, SurpassMonsanto, ZenecaalachloracetanildeLasso, Partner, Lariat, Bronco, FreedomMosarto, Crystal2,6-diethylanilinealachlorAdrex, Gesaprim, BicepNovarisatrazinetriazine degradatestariane degradatestarianeatrazineorganophosphateGuthion, GusathionBagerbutylateorganophosphateSuria, SevinolAvers, Gesaprim, SicepMorescarbarylcarbamateSutan +Micro FloStartice, SevinolchloryrifoscarbamateFursan, EmpireDowAgroScienceschloryrifosorganophosphateBalaeStartice, SevinolAverschloryrifosorganophosphateBalexMicro FloStartice, SevinolStartice, SevinolchloryrifosorganophosphateBalexStartice, SevinolStartice, SevinolStartice, SevinolchloryrifosorganophosphateBalexStartice, SevinolStartice, SevinolStartice, SevinolchloryrifosorganophosphateBalexStartice, SevinolStartice, SevinolStartice, Sevinoldiatininnicrobenzica	nicosulfuron	sulfonylurea	Accent, Basis Gold, Celebrity+	DuPont				
prosulfuronsulfonylureaPeak, ExceedNovarisisulfoneturon methylsulfonylureaOustDuPonttridnesulfuron methylsulfonylureaPinacle, Canvas, Basis, Reliance, HarnomyDuPonttridnusulfuron methylsulfonylureaAmber, Graminor ForteNovarisitridnusulfuron methylsulfonylureaPimacle, Canvas, Basis, Reliance, HarnomyDuPonttridnusulfuron methylsulfonylureaPimereDuPontactochorchloroacetamideHarness, Field Master, SurpassMonsanto, ZenecaalachloracetanildeLasso, Partner, Lariat, Bronco, FreedomMonsanto, Crystal2,6-diethylanilinealachlor degradateNovarisatrazinetriazine degradateNovarisedethylatrazineorganophosphateGuthion, GusathionBayerbenfluralin (Benefin)dinitoranilineSutan +Micro FlocarbarylcarbamateSevin, SevimolAventiscarbarylcarbamateFurdanMoracisciencescarbofuraninganophosphateBalaexMoracisciencescarbofuraninganophosphateBalexSevin, SevimolcarbofuranorganophosphateBalexSevin SevimolchlorophosphateBalexSevin SevimolSevin SevimolchlorophosphateBalexSevin SevimolSevin SevimolchlorophosphateBalexSevin SevimolSevin SevimolchlorophosphateBalexSevin SevimolSevin Sevimoldiatinonorganophosphate<	primisulfuron methyl	sulfonylurea	Beacon, Tell, Exceed	Novartis				
sulfometuron methylsulfonylureaOustDuPontthifensulfuron methylsulfonylureaAmber, Canvas, Basis, Reliance, HarmonyDuPonttriasulfuronsulfonylureaAmber, Graminon ForteNovartistridusulfuron methylsulfonylureaUpbeetDuPontactochlorchloroacetamideHarnes, Field Master, SurpassMonsanto, ZenecaalachloracetanilideLasso, Partner, Lariat, Bronco, FreedomMonsanto, Crystal2.6-diethylanilinealchlor degradateatrazinetriazine degradateSovartisatrazineriganophosphateGuthion, GusathionBayerbutylateinitroanilineBalanMovartisbutylatecarbamateFurdanMicro FloecarbarylcarbamateFurdanMovartiscarbarylcarbamateSevin, SevimolAventiscarbarylcarbanteFurdanBalexcarbarylcarbanteBalaeBow AgroSciencescarbarylcarbanteFurdanMicro FloecarbarylcarbanteSevin, SevimolAventiscarbarylcarbanteBalexBalexcarbarylcarbanteBalexSovartis, Cleary	prosulfuron	sulfonylurea	Peak, Exceed	Novartis				
thifensulfuron methylsulfonylureaPinnacle, Canvas, Basis, Reliance, HarmonDuPonttriasulfuron methylsulfonylureaAmber, Graminon ForteNovartistriflusulfuron methylsulfonylureaUpbetDuPontUEVENCIONALINALINALINALINALINALINALINALINALINALI	sulfometuron methyl	sulfonylurea	Oust	DuPont				
triasulfuronsulfonylureaAmber, Graminon ForeNovariistriflusulfuron methylsulfonylureaUpbetDuPontacetochlorchloroacetamideHarness, Field Master, SurpassMonsanto, ZenecaalachloracetaniideLasso, Partner, Lariat, Bronco, FreedomMonsanto, Zeneca2,6-diethylanilinealachlor degradateKarza, Gesaprim, BicepMoratisatrazinetriazine degradateKarza, Gesaprim, BicepNovarisdeethylarzineorganophosphateGuthion, GusathionBayerbenfluralin (Benefin)dinitroanilineBalanDow AgroSciencebutylatecarbamateSevin, SevimolActensitioncarborfurancarbamateFuradanFMCcarborfuranGushonsphateBualesMonsorfuranchloropenzotcarbamateSevin, SevimolMoratischloryrifosorganophosphateBusda, KnoxoutMoratis, Cleary ChemicaldiazinonorganophosphateBalakSevinalMoratis, Cleary ChemicaldiazinonorganophosphateBaldexMoratis, Cleary ChemicaldiazinonorganophosphateBaldexMoratis, Cleary ChemicaldiazinonorganophosphateBalanSevinaldiazinonorganophosphateBaladexMoratis, Cleary ChemicaldiazinonorganophosphateBaldexMoratis, Cleary ChemicaldiazinonorganophosphateBaladexMoratis, Cleary ChemicaldiazinoforganophosphateBaladexMoratis, Cleary Che	thifensulfuron methyl	sulfonylurea	Pinnacle, Canvas, Basis, Reliance, Harmony	DuPont				
trifusulfuron methylsulfonylureaUpbetDuPontacetochlorchloracetamideHarness, Field Master, SurpassMonsanto, ZenecaalachloracetanildeLasso, Partner, Lariat, Bronco, FreedomMonsanto, Crystal2,6-diethylanilinealachlorMonsanto, CrystalatrazinetiazineAdrex, Gesaprim, BicepNovartisdeethylarazineorganophosphateGuthion, GusathionBayerbenfuralin (Benefin)dinitroanilineBalanDow AgroSciencebuylatecarbanateSvin 4MorescarbarylcarbanateSvin 4MorescarbarylcarbanateSura, SeminolMoreschofuraninocarbanateSura, SeminolMoreschofuraninoinitroanilineBalacMorescarbarylcarbanateSurin 4MoreschofuraninocarbanateSurin 4MoreschofuraninoinitroanilineBudexMoreschofuraninoinitroanilineBalacMoreschofuraninoinitroanilineSurin 4MoreschofuraninoinitroanilineSurin 4MoreschofuraninoinitroanilineBalacMoreschofuraninoinitroanilineBalanMoreschofuraninoinitroanilineSurin 4MoreschofuraninoinitroanilineBalanMoreschofuraninoinitroanilineBalacMoreschofuraninoinitroanilineBalanMoreschofurani	triasulfuron	sulfonylurea	Amber, Graminon Forte	Novartis				
acetochlorchloroacetanideHarness, Field Master, SurpassMonsano, Zeneca, Caneca,alcahloracetanildeLasso, Partner, Lariat, Bronco, FreedomMonsano, Crystal2.6-diethylanilnealchlor degradaeNovartisatrazinetriazineAAtrex, Gesaprin, BicepNovartisdeethylatrazinearazine degradaeSayon, Song, Son	triflusulfuron methyl	sulfonylurea	Upbeet	DuPont				
acetochlorchloroacetamideHarness, Field Master, SurpassMonsanto, ZenecaalachloracetanilideLasso, Partner, Lariat, Bronco, FreedomMonsanto, Crystal2,6-diethylanilinealachlor degradateatrazinetriazineAAtrex, Gesaprim, BicepNovartisdeethylatrazineatrazine degradateazinphos-methylorganophosphateGuthion, GusathionBayerbenfluralin (Benefin)dinitroanilineBalanDow AgroSciencebutylatethiocarbamateSvatan +Micro FlocarbarylcarbamateSevin, SevimolAventiscarbofuranorganophosphateBudexFMCchlorpyrifosorganophosphateDursban, EmpireDow AgroSciencescyanazinetriazineBadarZenecadiatinonorganophosphateBadexNovartis, Cleary ChemicaldiazinonorganophosphateDichlark (Scontinued, 1991)ShelldiasulfotonorganophosphateDisyston, Furmin ALBayer, NovartisdisulfotonorganophosphateDisyston, Furmin ALBayer, NovartisEPTCthiocarbamateEptam, EradicaneZenecaethalfluralindinitroanilineSonalanDow AgroScience			Other Pesticides and Degradates					
alachloracetanilideLasso, Partner, Lariat, Bronco, FreedomMonsanto, Crystal2,6-diethylanilinealachlor degradateatrazinetriazineAAtrex, Gesaprim, BicepNovartisdeethylatrazineatrazine degradateazinphos-methylorganophosphateGuthion, GusathionBayerbenfluralin (Benefin)dinitroanilineBalanDow AgroSciencebutylatethiocarbanateSevin, SevimolAventiscarbarylcarbamateSevin, SevimolAventischlorpyrifosorganophosphateDursban, EmpireDow AgroScienceschlorpyrifostriazineBladexSenecadacthalchlorobenzoic acidDacthalZenecadiazinonorganophosphateBasudin, KnoxoutNovartis, Cleary ChemicaldieldrinorganophosphateDieldrex (discontinued, 1991)ShelldisulfotonorganophosphateDisyston, Furmin ALBayer, NovartisEPTCthiocarbanateSonalanDow AgroScience	acetochlor	chloroacetamide	Harness, Field Master, Surpass	Monsanto, Zeneca				
2,6-diethylanilinealachlor degradateNovartisatrazinetriazineAAtrex, Gesaprim, BicepNovartisdeethylatrazineatrazine degradatestrazine degradateSayerazinphos-methylorganophosphateGuthion, GusathionBayerbenfluralin (Benefin)dinitroanilineBalanDow AgroSciencebutylatethiocarbamateSutan +Micro FlocarbarylcarbamateFuradanAventiscarbofurancarbamateFuradanDow AgroScienceschlorpyrifosorganophosphateDursban, EmpireDow AgroSciencescyanazinetriazineBladexBASFdacthalcriganophosphateBasudin, KnoxoutNovartis, Cleary ChemicaldiazinonorganophosphateDieldrex (discontinued, 1991)ShelldisulfotonorganophosphateDisyston, Furmin ALBayer, NovartisdisulfotonorganophosphateSingan, EradicaneZenecaethalfluralindinitroanilineSonalanDow AgroScience	alachlor	acetanilide	Lasso, Partner, Lariat, Bronco, Freedom	Monsanto, Crystal				
atrazinetriazineAAtrex, Gesaprim, BicepNovartisdeethylatrazineatrazine degradateatrazine degradatesayerazinphos-methylorganophosphateGuthion, GusathionBayerbenfluralin (Benefin)dinitroanilineBalanDow AgroSciencebutylatethiocarbamateSutan +Micro FlocarbarylcarbamateSevin, SevimolAventiscarbofurancarbamateFuradanFMCchlorpyrifosorganophosphateDursban, EmpireDow AgroSciencescyanazinetriazineBaladxSevindi ActivationSevencidiazinonorganophosphateBasudin, KnoxoutNovartis, Cleary ChemicaldieldrinorganophosphateDieldrex (discontinued, 1991)ShelldisulfotonorganophosphateDisyston, Furmin ALBayer, NovartisEPTCthiocarbamateSonalanDow AgroScience	2,6-diethylaniline	alachlor degradate						
deethylatrazineatrazine degradateazinphos-methylorganophosphateGuthion, GusathionBayerbenfluralin (Benefin)dinitroanilineBalanDow AgroSciencebutylatethiocarbamateSutan +Micro FlocarbarylcarbamateSevin, SevimolAventiscarbofurancarbamateFuradanFMCchlorpyrifosorganophosphateDursban, EmpireDow AgroSciencescyanazinetriazineBladexSachalSevencediazinonorganophosphateBasudin, KnoxoutNovartis, Cleary ChemicaldialidrinorganophosphateDieldrex (discontinued, 1991)ShelldisulfotonorganophosphateDisyston, Furmin ALBayer, NovartisEPTCthiocarbamateSonalanDow AgroSciences	atrazine	triazine	AAtrex, Gesaprim, Bicep	Novartis				
azinphos-methylorganophosphateGuthion, GusathionBayerbenfluralin (Benefin)dinitroanilineBalanDow AgroSciencebutylatethiocarbamateSutan +Micro FlocarbarylcarbamateSevin, SevimolAventiscarbofurancarbamateFurdanFMCchlorpyrifosorganophosphateDursban, EmpireDow AgroSciencescyanazinetriazineBladexBASFdiazinonorganophosphateDacthalZenecadiazinonorganophosphateDieldrex (discontinued, 1991)ShelldisulfotonorganophosphateDisyston, Furmin ALBayer, NovartisEPTCthiocarbamateSnalanSnalanDow AgroSciencesethalfluralindinitroanilineSonalanDow AgroScience	deethylatrazine	atrazine degradate						
benfluralin (Benefin)dinitroanilineBalanDow AgroSciencebutylatethiocarbamateSutan +Micro FlocarbarylcarbamateSevin, SevimolAventiscarbofurancarbamateFuradanFMCchlorpyrifosorganophosphateDursban, EmpireDow AgroSciencescyanazinetriazineBladexBASFdacthalchlorobenzoic acidDacthalZenecadiazinonorganophosphateDieldrex (discontinued, 1991)ShelldisulfotonorganophosphateDisston, Furmin ALBayer, NovartisfisulfotonorganophosphateEptam, EradicaneZenecafehaffuralindinitroanilineSonalanDow AgroScience	azinphos-methyl	organophosphate	Guthion, Gusathion	Bayer				
butylatethiocarbamateSutan +Micro FlocarbarylcarbamateSevin, SevimolAventiscarbofurancarbamateFuradanFMCchlorpyrifosorganophosphateDursban, EmpireDow AgroSciencescyanazinetriazineBladexBASFdacthalchlorobenzoic acidDacthalZenecadiazinonorganophosphateDieldrex (discontinued, 1991)Novartis, Cleary ChemicaldieldrinorganophosphateDisyston, Furmin ALBayer, NovartisEPTCthiocarbamateSonalanDow AgroScience	benfluralin (Benefin)	dinitroaniline	Balan	Dow AgroScience				
carbarylcarbamateSevin, SevimolAventiscarbofurancarbamateFuradanFMCchlorpyrifosorganophosphateDursban, EmpireDow AgroSciencescyanazinetriazineBladexBASFdacthalchlorobenzoic acidDacthalZenecadiazinonorganophosphateBasudin, KnoxoutNovartis, Cleary ChemicaldieldrinorganophosphateDieldrex (discontinued, 1991)ShelldisulfotonorganophosphateEytam, EradicaneZenecaEPTCthiocarbamateSonalanDow AgroScience	butylate	thiocarbamate	Sutan +	Micro Flo				
carbofurancarbamateFuradanFMCchlorpyrifosorganophosphateDursban, EmpireDow AgroSciencescyanazinetriazineBladexBASFdacthalchlorobenzoic acidDacthalZenecadiazinonorganophosphateBasudin, KnoxoutNovartis, Cleary ChemicaldieldrinorganochlorineDieldrex (discontinued, 1991)ShelldisulfotonorganophosphateEptam, EradicaneZenecaEPTCthiocarbamateSonalanDow AgroScience	carbaryl	carbamate	Sevin, Sevimol	Aventis				
chlorpyrifosorganophosphateDursban, EmpireDow AgroSciencescyanazinetriazineBladexBASFdacthalchlorobenzoic acidDacthalZenecadiazinonorganophosphateBasudin, KnoxoutNovartis, Cleary ChemicaldieldrinorganochlorineDieldrex (discontinued, 1991)ShelldisulfotonorganophosphateDisyston, Furmin ALBayer, NovartisEPTCthiocarbamateEptam, EradicaneDow AgroScienceethalfluralindinitroanilineSonalanDow AgroScience	carbofuran	carbamate	Furadan	FMC				
cyanazinetriazineBladexBASFdacthalchlorobenzoic acidDacthalZenecadiazinonorganophosphateBasudin, KnoxoutNovartis, Cleary ChemicaldieldrinorganochlorineDieldrex (discontinued, 1991)ShelldisulfotonorganophosphateDisyston, Furmin ALBayer, NovartisEPTCthiocarbamateEptam, EradicaneZenecaethalfluralindinitroanilineSonalanDow AgroScience	chlorpyrifos	organophosphate	Dursban, Empire	Dow AgroSciences				
dacthalchlorobenzoic acidDacthalZenecadiazinonorganophosphateBasudin, KnoxoutNovartis, Cleary ChemicaldieldrinorganochlorineDieldrex (discontinued, 1991)ShelldisulfotonorganophosphateDisyston, Furmin ALBayer, NovartisEPTCthiocarbamateEptam, EradicaneZenecaethalfluralindinitroanilineSonalanDow AgroScience	cyanazine	triazine	Bladex	BASF				
diazinonorganophosphateBasudin, KnoxoutNovartis, Cleary ChemicaldieldrinorganochlorineDieldrex (discontinued, 1991)ShelldisulfotonorganophosphateDisyston, Furmin ALBayer, NovartisEPTCthiocarbamateEptam, EradicaneZenecaethalfluralindinitroanilineSonalanDow AgroScience	dacthal	chlorobenzoic acid	Dacthal	Zeneca				
dieldrinorganochlorineDieldrex (discontinued, 1991)ShelldisulfotonorganophosphateDisyston, Furmin ALBayer, NovartisEPTCthiocarbamateEptam, EradicaneZenecaethalfluralindinitroanilineSonalanDow AgroScience	diazinon	organophosphate	Basudin, Knoxout	Novartis, Cleary Chemical				
disulfotonorganophosphateDisyston, Furmin ALBayer, NovartisEPTCthiocarbamateEptam, EradicaneZenecaethalfluralindinitroanilineSonalanDow AgroScience	dieldrin	organochlorine	Dieldrex (discontinued, 1991)	Shell				
EPTCthiocarbamateEptam, EradicaneZenecaethalfluralindinitroanilineSonalanDow AgroScience	disulfoton	organophosphate	Disyston, Furmin AL	Bayer, Novartis				
ethalfluralin dinitroaniline Sonalan Dow AgroScience	EPTC	thiocarbamate	Eptam, Eradicane	Zeneca				
	ethalfluralin	dinitroaniline	Sonalan	Dow AgroScience				
ethoprophos organophosphate Chipco, Mocap Aventis	ethoprophos	organophosphate	Chipco, Mocap	Aventis				
fonofos organophosphate fonofos Zeneca	fonofos	organophosphate	fonofos	Zeneca				
lindane organochloride Sevidol Aventis	lindane	organochloride	Sevidol	Aventis				
linuron urea Lorox, Metolin DuPont	linuron	urea	Lorox, Metolin	DuPont				
malathion organophosphate Malatox, Malixol Helb USA, Aventis	malathion	organophosphate	Malatox, Malixol	Helb USA, Aventis				
metolachlor chloracetanilide Dual, Pennant, Derby, Bicep Novartis	metolachlor	chloracetanilide	Dual, Pennant, Derby, Bicep	Novartis				
metribuzin triazine Contrast, Turbo, Sencor, Lexone, Canopy Bayer, DuPont	metribuzin	triazine	Contrast, Turbo, Sencor, Lexone, Canopy	Bayer, DuPont				
molinate thiocarbamate Ordram Zeneca	molinate	thiocarbamate	Ordram	Zeneca				
napropamide amide Devrinol United Phosphorus	napropamide	amide	Devrinol	United Phosphorus				
parathion organophosphate not registered for use in U.S. BASF	parathion	organophosphate	not registered for use in U.S.	BASF				

Common name	Chemical class	Trade names	Primary bulk producer(s)
	Other I	Pesticides and Degradates—Continued	
parathion methyl	organophosphate	Bladan, Metacide	Bayer
pebulate	thiocarbamate	Tillam	Zeneca
pendimethalin	dinitroaniline	Accotab, Herbadox, Stomp	BASF, Scotts
phorate	organophosphate	Geomet, Thimet, Granutox	BASF
prometon	triazine	Pramitol	Novartis
propachlor	acetanilide	Ramrod	Monsanto
propanil	amide	Surcopur, Cedar Porpanil	Bayer, Cedar Chemical
propargite	sulfite ester	Comite, Omite, Ornamite	Uniroyal Chemical
propyzamide (also prona- mide)	amide	Kerb, Rapier	Rohm and Haas, United Phos- phorus
simazine	triazine	Gesatop, Princep, Derby	Novartis
tebuthiuron	urea	Spike	Dow AgroScience
terbacil	urea	Sinbar	DuPont
terbufos	organophosphate	Contraven, Counter	BASF
thiobencarb	thiocarbamate	Bolero, Saturn, Bigturn, Tobosa	Kumiai Chemical, Sanonda, Crystal Inter-America
tri-allate	thiocarbamate	Far-Go, Buckle	Monsanto
trifluralin	dinitroaniline	Treflan, Trilin, Tri-Scept	Dow AgroScience, Griffin
alpha-HCH	organochlorine	degradate of BHC, not sold for use in U.S.	Hooker Chemical
cis-Permethrin	pyrethroid	Ambush, Prelude, Dragon, Permit, Outflank, Astro, Flee, Ancothrin	BASF, FMC, Zeneca, Sanonda, Helb USA
	C	Other Herbicides and Degradates	
acetochlor	chloroacetamide	Harness, Field Master, Surpass	Monsanto, Zeneca
acetochlor ESA	acetochlor degradate		
acetochlor oxanilic acid	acetochlor degradate		
alachlor	acetanilide	Lasso, Partner, Lariat, Bronco, Freedom	Monsanto, Crystal
alachlor ESA	alachlor degradate		
alachlor oxanilic acid	alachlor degradate		
ametryn	triazine	Evik, Gesapaz, Crisatrina	Monsanto, Crystal
atrazine	triazine	AAtrex, Gesaprim, Bicep	Novartis
deethylatrazine	atrazine degradate		
deisopropylatrazine	atrazine degradate		
hydroxy-atrazine	atrazine degradate		
cyanazine	triazine	Bladex	BASF
cyanazine-amide	cyanazine degradate		
metolachlor	chloracetanilide	Dual, Pennant, Derby, Bicep	Novartis
metolachlor ESA	metolachlor degradate		
metolachlor oxanilic acid	metolachlor degradate		
metribuzin	triazine	Contrast, Turbo, Sencor, Lexone, Canopy	Bayer, DuPont
prometon	triazine	Pramitol	Novartis
prometryn	triazine	Cotton-Pro, Caparol, Gesagard	Novartis, Griffin
propachlor	acetanilide	Ramrod	Monsanto
propazine	triazine	Prozinex	Makhteshim-Agan
simazine	triazine	Gesatop, Princep, Derby	Novartis
terbutryn	triazine	Ternit, Terbutrex	Crystal, Makhteshim-Agan

 Table 1. Common names, trade names, and manufacturers for pesticides analyzed for in this study (data from Larson and others, 1997; Meister, 1999)—Continued

Figure 3. Location and associated basin for the nine stream sites with large drainage areas.

1998). These sites were selected from the set of 150 sites sampled in 1989 using a stratified random method (Scribner and others, 1993). The sampling strategy used was not designed to produce an unbiased estimate of herbicide occurrence in all midwestern streams; rather, the intent was to target higher risk areas while still capturing the variability of the entire population. Samples also were collected at 19 NASQAN or NAWQA sites. Figure 3 shows locations and associated basins for the sites with the nine largest drainage areas. The drainage areas for these sites ranged from 12,499 to 171,300 square miles, and the median drainage area was 37,050 square miles. Figure 4 shows locations and associated basins for the other 62 sites on free-flowing streams. Drainage areas for these sites ranged from 77.7 to 10,400 square miles, and the median drainage area was 655 square miles.

Samples also were collected just downstream from five reservoirs (table 2) at locations that had been sampled in a previous investigation (Coupe and others, 1995; Scribner and others, 1996). The locations and associated basins for these sites area also are shown in figure 4. Drainage areas for these sites ranged from 298 to 9,628 square miles. Ground-water samples were collected from 25 wells in Iowa and Illinois (fig. 5, table 3). Twenty samples are from a network of municipal wells in Iowa that are part of the Iowa Ground Water Monitoring (IGWM) program (Detroy and others, 1988; Kolpin and others, 1997). Wells from this network have been sampled systematically since 1982. The depths to the top of the well screen for the 20 sampled wells ranged from 6 to 83 meters with 16 of the 20 being less than 20 meters. Five samples are from observation wells in the Lower Illinois NAWQA study unit (Warner and Schmidt, 1994). These five wells were all less than 8 meters deep.

Sampling Schedule and Procedure

Two samples were collected at each surfacewater and reservoir site, and one sample was collected at each ground-water site in 1998. The first surfacewater samples were collected after pre-emergence herbicides were applied (May or June) and following a precipitation event that produced a significant increase in streamflow. These samples will be referred to as pre-emergence runoff samples. These samples are comparable to the "post-application" samples

Sampling site name

1-Vermillion River, Lake Vermillion, IL 2–Bonpas Creek at Browns, IL 3-Little Wabash River at Carmi, IL 4–S. Branch Kishwaukee River, Fairdale, IL 5–Iroquois River near Chebanse, IL 6-Dupage River near Shorewood, IL 7-Illinois River at Marseilles, IL 8-Spoon River at London Mills, IL 9-Sangamon River near Monticello, IL 10-Sangamon River at Riverton, IL 11-LaMoine River at Colmar, IL 14-Kaskaskia River near Cowden, IL 15-Shoal Creek near Breese, IL 16-Turkey River at Spillville, IA 18-Wapsipinicon River near Tripoli, IA 19-Wapsipinicon River at Independence, IA 20-Iowa River near Rowan, IA 21-Old Mans Creek near Iowa City, IA 22-Wolf Creek near Dysart, IA 24-N. Skunk River near Sigourney, IA 25-Skunk River at Augusta, IA 26-Des Moines River at Fort Dodge, IA

EXPLANATION

27-Raccoon River at Van Meter, IA 28-Little Sioux River, Correctionville, IA 29-Maple River at Mapleton, IA 30-Boyer River at Logan, IA 31-Chariton River below Rathbun Lake, IA 32-Nishnabotna River above Hamburg, IA 33-Whitewater River near Alpine, IN 34-Blue River at Fredericksburg, IN 35-Mississinewa River, Mississinewa Lake, IN 36-Eel River near Logansport, IN 37-Wildcat Creek near Jerome, IN 38-Wildcat Creek near Lafayette, IN 39-White River near Nora, IN 40-Sugar Creek near Edinburgh, IN 41-E. Fork White River near Bedford, IN 43-Cottonwood River near New Ulm, MN 44-Little Cobb River near Beauford, MN 47-Des Moines River at Jackson, MN 48-Rock River at Luverne MN 49-Black Vermillion River, Frankfort, KS 50-Big Blue River, Tuttle Creek Lake, KS 51-Delaware River near Muscotah, KS 53-Nodaway River near Graham, MO

54-North Dry Creek near Kearney, NE 55-Maple Creek near Nickerson, NE 56-Salt Creek at Roca, NE 57-Wahoo Creek at Ithaca, NE 59-Big Nemaha River, Falls City, NE 60-W. Fork Big Blue River, Dorchester, NE 61-Big Blue River at Barneston, NE 62-Little Blue River near Fairbury, NE 63-Clear Creek near Rockbridge, OH 64-Scioto River near Prospect. OH 65-Olentangy River at Claridon, OH 66-Olentangy River, Delaware Lake, OH 67-Big Darby Creek at Darbyville, OH 68-Scioto River at Higby, OH 69-L. Miami River near Oldtown, OH 70-Mad River at Eagle City, OH 71-Tiffin River at Stryker, OH 72-Auglaize River at Ft. Jennings, OH 73-Root River at Racine WI 74-St. Croix River, St. Croix Falls, WI 75-Wisconsin River at Muscoda, WI 76-Rock River at Afton, WI Stream sampling site Reservoir sampling site \cap

Figure 4. Location and associated basin for the 62 stream and 5 reservoir sites with smaller drainage areas.

Table 2. Surface-water sampling sites

[mi², square miles; dd, degrees; mm, minutes; ss, seconds]

Site no. (figs. 3, 4)	Station identification no.	Site name	Site type	Drainage area (mi ²)	Latitude (ddmmss)	Longitude (ddmmss)
		Illinois				
1	03338890	Vermillion River below Lake Vermillion Dam, IL	reservoir	298	400924	873906
2	03378000	Bonpas Creek at Browns, IL	stream	228	382311	875832
3	03381495	Little Wabash River at Carmi, IL	stream	3,088	380532	880922
4	05439500	S. Branch Kishwaukee River near Fairdale, IL	stream	387	420639	885402
5	05526000	Iroquois River near Chebanse, IL	stream	2,091	410032	874927
6	05540500	Dupage River near Shorewood, IL	stream	324	413120	881135
7	05543500	Illinois River at Marseilles, IL	stream	8,259	411937	884303
8	05569500	Spoon River at London Mills, IL	stream	1,072	404232	901653
9	05572000	Sangamon River near Monticello, IL	stream	550	400151	883520
10	05576500	Sangamon River at Riverton, IL	stream	2,618	395034	893252
11	05584500	LaMoine River at Colmar, IL	stream	655	401945	905355
12	05586100	Illinois River at Valley City, IL	stream	26,743	394212	903843
13	05587455	Mississippi River below Grafton, IL	stream	171,300	385805	902542
14	05592100	Kaskaskia River near Cowden, IL	stream	1,330	391350	885033
15	05594000	Shoal Creek near Breese, IL	stream	735	383635	892940
		Iowa				
16	05411600	Turkey River at Spillville, IA	stream	177	431228	915656
17	05420500	Mississippi River at Clinton, IA	stream	85,600	414650	901507
18	05420680	Wapsipinicon River near Tripoli, IA	stream	343	425010	921526
19	05421000	Wapsipinicon River at Independence, IA	stream	1,048	422749	915342
20	05449500	Iowa River near Rowan, IA	stream	429	424536	933723
21	05455100	Old Mans Creek near Iowa City, IA	stream	201	413623	913656
22	05464220	Wolf Creek near Dysart, IA	stream	299	421506	921755
23	05465500	Iowa River at Wapello, IA	stream	12,499	411041	911055
24	05472500	N. Skunk River near Sigourney, IA	stream	730	411803	921216
25	05474000	Skunk River at Augusta, IA	stream	4,303	404513	911640
26	05480500	Des Moines River at Fort Dodge, IA	stream	4,190	423022	941204
27	05484500	Raccoon River at Van Meter, IA	stream	3,441	413202	935659
28	06606600	Little Sioux River at Correctionville, IA	stream	2,500	422820	954749
29	06607200	Maple River at Mapleton, IA	stream	669	420925	954835
30	06609500	Boyer River at Logan, IA	stream	871	413833	954657
31	06903900	Chariton River near below Rathbun Lake Dam, IA	reservoir	549	404922	925322
32	06810000	Nishnabotna River above Hamburg, IA	stream	2,806	403757	953732
		Indiana				
33	03275000	Whitewater River near Alpine, IN	stream	529	393423	850927
34	03302800	Blue River at Fredericksburg, IN	stream	283	382602	861131
35	03327000	Mississinewa River below Mississinewa Lake Dam, IN	reservoir	808	404324	855727
36	03328500	Eel River near Logansport, IN	stream	789	404655	861550
37	03333450	Wildcat Creek near Jerome, IN	stream	146	402629	855508
38	03335000	Wildcat Creek near Lafayette, IN	stream	794	402626	864945
39	03351000	White River near Nora, IN	stream	1,219	395435	860620
40	03362500	Sugar Creek near Edinburgh, IN	stream	474	392139	855951
41	03371500	E. Fork White River near Bedford, IN	stream	3,861	384610	862430
42	03378500	Wabash River at New Harmony, IN	stream	29,234	380755	875625

Table 2. Surface-water sampling sites—Continued

[mi², square miles; dd, degrees; mm, minutes; ss, seconds]

Site no. (figs. 3, 4)	Station identification no.	Site name	Site type	Drainage area (mi ²)	Latitude (ddmmss)	Longitude (ddmmss)
		Minnesota				
43	05317000	Cottonwood River near New Ulm, MN	stream	1,300	441729	942624
44	05320270	Little Cobb River near Beauford, MN	stream	130	435948	935430
45	05330000	Minnesota River near Jordan, MN	stream	16,200	444135	933830
46	05331580	Mississippi River near Hastings, MN	stream	37,050	444448	925108
47	05476000	Des Moines River at Jackson, MN	stream	1,250	433710	945910
48	06483000	Rock River at Luverne, MN	stream	425	433915	961203
		Kansas				
49	06885500	Black Vermillion River at Frankfort, KS	stream	410	394103	962615
50	06887000	Big Blue River below Tuttle Creek Lake Dam, KS	reservoir	9,628	391516	963608
51	06890100	Delaware River near Muscotah, KS	stream	431	393117	953157
		Kentucky				
52	03303280	Ohio River at Cannelton Dam, KY	stream	97,000	375358	864220
		Missouri				
53	06817700	Nodaway River near Graham, MO	stream	1,380	401208	950407
		Nebraska				
54	06770195	North Dry Creek near Kearney, NE	stream	77.7	403828	990656
55	06800000	Maple Creek near Nickerson, NE	stream	369	413339	963227
56	06803000	Salt Creek at Roca, NE	stream	167	403929	963955
57	06804000	Wahoo Creek at Ithaca, NE	stream	273	410840	963210
58	06805500	Platte River at Louisville, NE	stream	85,370	410055	960928
59	06815000	Big Nemaha River at Falls City, NE	stream	1,339	400208	953545
60	06880800	W. Fork Big Blue River, Dorchester, NE	stream	1,192	404352	971038
61	06882000	Big Blue River at Barneston, NE	stream	4,447	400240	963512
62	06884000	Little Blue River near Fairbury, NE	stream	2,350	400654	971013
		Ohio				
63	03157000	Clear Creek near Rockbridge, OH	stream	89	393518	823443
64	03219500	Scioto River near Prospect, OH	stream	567	402510	831150
65	03223000	Olentangy River at Claridon, OH	stream	157	403458	825920
66	03225500	Olentangy River below Delaware Lake Dam, OH	reservoir	393	402118	830402
67	03230500	Big Darby Creek at Darbyville, OH	stream	534	394202	830637
68	03234500	Scioto River at Higby, OH	stream	5,131	391244	825150
69	03240000	L. Miami River near Oldtown, OH	stream	129	394454	835553
70	03267900	Mad River at Eagle City, OH	stream	310	395751	834954
71	04185000	Tiffin River at Stryker, OH	stream	410	413016	842547
72	04186500	Auglaize River at Fort Jennings, OH	stream	332	405655	841558
		Wisconsin				
73	04087240	Root River at Racine, WI	stream	190	424505	874925
74	05340500	St. Croix River at St. Croix Falls, WI	stream	6,240	452425	923849
75	05407000	Wisconsin River at Muscoda, WI	stream	10,400	431153	902636
76	05430500	Rock River at Afton, WI	stream	3,340	423633	890414

EXPLANATION

• Ground-water sampling site

Illinois 1—LUS1-4 2—LUS1-14 3—LUS1-26 4—LUS2-9 5—LUS2-22 Iowa 6—Blockton 1 7—Fort Madison 4 8—Shambaugh 3 0	lowa 13—Fontanelle 5 14—Menlo 3 15—Carlisle 5 16—Newton 3 17—Belle Plaine 4 18—Cedar Rapids S6 19—Vail 1 20—Marshalltown 8 21—Boone 20 22—Boxholm 2
7—Fort Madison 4 8—Shambaugh 3 9—Nodaway 4	21—Boone 20 22—Boxholm 2 23—Holstein 3
10—Silver City 3 11—Carson (5), 3 12—Cumberland 1	24—Kingsley 1 25—Sheffield 2

Figure 5. Location of the 25 well sites.

collected in 1989, 1990, 1994, and 1995 from many of the stream sites (Goolsby and others, 1994; Scribner and others, 1998). The second surface-water samples were collected after post-emergence herbicides were applied (June or July), again following a precipitation event that produced runoff and an increase in streamflow. These samples will be referred to as postemergence runoff samples. Samples collected at current NASQAN stations and the reservoir samples were collected 2–3 weeks after the first surface-water samples were collected from nearby sites. The second NASQAN and reservoir samples were collected 2–3 weeks after the second surface-water samples were collected from nearby sites. Ground-water samples were collected in June, July, or August. The dates of sample collection and discharge on the date of sample collection (for surface-water sites) are given in tables 3 and 4.

Table 3. Ground-water sampling sites and sample type, number, and date of collection

		Depth to					Date of
Site no. (fig. 5)	Site name	top of well screen, in feet	Latitude (ddmmss)	Longitude (ddmmss)	Sample type	Sample no.	sample collection
			Illi	nois			
1	LUS1–4	15.5	410502	893925	W1	SU-11	05/19/1998
2	LUS1-14	24.0	404603	885635	W1	SU–7	05/18/1998
					WD	SU-10	05/18/1998
3	LUS1-26	8.33	403759	884226	W1	SU-118	06/18/1998
4	LUS2–9	12.50	401327	890252	W1	SU-111	06/15/1998
5	LUS2-22	7.66	395853	883644	W1	SU-121	06/18/1998
			Іо	wa			
6	Blockton 1	271	403659	942853	W1	SU-184	07/23/1998
7	Fort Madison 4	147	403745	911747	W1	SU-182	07/22/1998
8	Shambaugh 3	30	403906	950150	W1	SU-186	07/24/1998
9	Nodaway 4	36	405632	945344	W1	SU-185	07/23/1998
10	Silver City 3	60	410656	953802	W1	SU-198	07/31/1998
					WD	SU-199	07/31/1998
11	Carson (5), 3	28	411501	952513	W1	SU-200	07/31/1998
12	Cumberland 1	155	411622	945209	W1	SU-188	07/27/1998
13	Fontanelle 5	39	411727	943740	W1	SU-183	07/23/1998
14	Menlo 3	20	412852	942751	W1	SU-193	07/29/1998
15	Carlisle 5	30	413040	932905	W1	SU-187	07/27/1998
16	Newton 13	45	413913	930700	W1	SU-71	06/03/1998
17	Belle Plaine 4	42	415417	921801	W1	SU-70	06/02/1998
18	Cedar Rapids S6	65	420005	914312	W1	SU-211	08/25/1998
					WD	SU-212	08/25/1998
19	Vail 1	32	420336	951156	W1	SU-137	06/23/1998
20	Marshalltown 8	223	420405	925456	W1	SU-72	06/02/1998
21	Boone 20	63	420451	935613	W1	SU-190	07/28/1998
22	Boxholm 2	49	421025	940630	W1	SU-189	07/25/1998
					WD	SU-191	07/25/1998
23	Holstein 3	54	422915	953235	W1	SU-139	06/25/1998
24	Kingsley 1	37	423537	955839	W1	SU-138	06/25/1998
25	Sheffield 2	27	425341	931325	W1	SU-192	07/29/1998

[dd, degrees; mm, minutes; ss, seconds; W1, well sample from round 1; WD, duplicate well sample]

Table 4. Collection dates, sample types, sample numbers, and daily mean discharge for samples from surface-water sites

Site no. (figs. 3, 4)	Site name	Sample type	Sample no.	Date of sample collection	Daily mean discharge, in cubic feet per second						
	Illinois										
1	Vermillion River below Lake Vermillion Dam, IL	R1	SU-98	06/10/1998	494						
		RD	SU-103	06/10/1998	494						
		R2	SU-177	07/16/1998	162						
2	Bonpas Creek at Browns, IL	S 1	SU-43	05/23/1998	834						
		S2	SU-166	07/07/1998	499						
3	Little Wabash River at Carmi, IL	S 1	SU-33	05/23/1998	9,340						
		S2	SU-175	07/09/1998	4,020						
4	S. Branch Kishwaukee River near Fairdale, IL	S 1	SU-29	05/20/1998	1,620						
		S2	SU-195	07/29/1998	61						
5	Iroquois River near Chebanse, IL	S 1	SU-99	06/10/1998	1,340						
		SD	SU-101	06/10/1998	1,340						
		S2	SU-168	07/08/1998	8,490						
		SD	SU-170	07/08/1998	8,490						
6	Dupage River near Shorewood, IL	S 1	SU-100	06/09/1998	284						
		SD	SU-102	06/09/1998	284						
		S2	SU-194	07/29/1998	166						
		SD	SU-196	07/29/1998	166						
7	Illinois River at Marseilles, IL	S 1	SU-113	06/12/1998	36,800						
		S2	SU-176	07/09/1998	21,600						
8	Spoon River at London Mills, IL	S 1	SU-25	05/20/1998	1,270						
		SB	SU-26	05/20/1998	1,270						
		S2	SU-160	07/01/1998	1,780						
9	Sangamon River near Monticello, IL	S 1	SU-35	05/23/1998	836						
		S2	SU-201	08/05/1998	268						
10	Sangamon River at Riverton, IL	S 1	SU-44	05/26/1998	6,800						
		S2	SU-174	07/09/1998	4,070						
11	LaMoine River at Colmar, IL	S 1	SU-27	05/21/1998	939						
		S2	SU-142	06/29/1998	2,320						
		SD	SU-143	06/29/1998	2,320						
12	Illinois River at Valley City, IL	S 1	SU-120	06/18/1998	49,700						
		S2	SU-207	08/12/1998	21,700						
13	Mississippi River below Grafton, IL	S 1	SU-60	06/02/1998	172,000						
		S2	SU-116	06/15/1998	267,000						
14	Kaskaskia River near Cowden, IL	S 1	SU-30	05/20/1998	1,400						
		S 2	SU-169	07/08/1998	2,700						
15	Shoal Creek near Breese, IL	S 1	SU-32	05/22/1998	768						
		SD	SU-34	05/22/1998	768						
		S 2	SU–167	07/08/1998	761						

 Table 4.
 Collection dates, sample types, sample numbers, and daily mean discharge for samples from surface-water sites—

 Continued

Site no. (figs. 3, 4)	Site name	Sample type	Sample no.	Date of sample collection	Daily mean discharge, in cubic feet per second
		Iowa			
16	Turkey River at Spillville, IA	S 1	SU-64	06/02/1998	181
		S 2	SU-109	06/12/1998	534
17	Mississippi River at Clinton, IA	S 1	SU-55	05/27/1998	56,600
		S 2	SU-155	07/01/1998	101,000
18	Wapsipinicon River near Tripoli, IA	S 1	SU-54	05/27/1998	595
		SB	SU-125	06/20/1998	1,300
		S 2	SU-126	06/20/1998	1,300
19	Wapsipinicon River at Independence, IA	S1	SU–56	05/29/1998	2,570
		S 2	SU-110	06/12/1998	4,560
20	Iowa River near Rowan, IA	S 1	SU–65	06/02/1998	1,570
		S 2	SU-129	06/23/1998	3,770
21	Old Mans Creek near Iowa City, IA	S 1	SU–93	06/10/1998	209
		S 2	SU-147	06/30/1998	840
22	Wolf Creek near Dysart, IA	S 1	SU-87	06/10/1998	1,060
		SD	SU-88	06/10/1998	1,060
		S2	SU-128	06/22/1998	3,630
23	Iowa River at Wapello, IA	S 1	SU-53	05/27/1998	13,400
		S 2	SU-127	06/19/1998	37,200
		SD	SU-132	06/19/1998	37,200
24	N. Skunk River near Sigourney, IA	S 1	SU-21	05/21/1998	1,140
		S 2	SU–95	06/10/1998	1,810
25	Skunk River at Augusta, IA	S 1	SU-45	05/26/1998	15,600
		S 2	SU-122	06/18/1998	14,400
26	Des Moines River at Fort Dodge, IA	S 1	SU–8	05/16/1998	7,880
		S2	SU-108	06/12/1998	5,190
		SD	SU-114	06/12/1998	5,190
27	Raccoon River at Van Meter, IA	S 1	SU–9	05/17/1998	6,330
		S 2	SU–89	06/10/1998	9,160
28	Little Sioux River at Correctionville, IA	S 1	SU-42	05/27/1998	1,400
		S 2	SU-123	06/18/1998	2,760
29	Maple River at Mapleton, IA	S 1	SU–59	05/29/1998	891
		S 2	SU–90	06/09/1998	889
		SS	SU–97	06/09/1998	889
30	Boyer River at Logan, IA	S 1	SU-31	05/22/1998	1,070
		S 2	SU-96	06/09/1998	2,890
31	Chariton River near below Rathbun Lake Dam, IA	R1	SU-69	06/04/1998	868
		R2	SU-148	06/29/1998	812
32	Nishnabotna River above Hamburg, IA	S 2	SU-124	06/17/1998	53,700

Table 4. Collection dates, sample types, sample numbers, and daily mean discharge for samples from surface-water sites—

 Continued

Site no. (figs. 3, 4)	Site name	Sample type	Sample no.	Date of sample collection	Daily mean discharge, in cubic feet per second
	Iı	ndiana			
33	Whitewater River near Alpine, IN	S 1	SU-47	05/26/1998	727
		S2	SU-162	07/08/1998	652
		SD	SU-213	07/08/1998	652
34	Blue River at Fredericksburg, IN	S 1	SU-50	05/27/1998	447
		S2	SU-163	07/08/1998	490
35	Mississinewa River below Mississinewa Lake Dam, IN	R1	SU-83	06/09/1998	210
		R2	SU-164	07/09/1998	1,540
36	Eel River near Logansport, IN	S 1	SU-18	05/21/1998	701
		SB	SU-20	05/21/1998	701
		S2	SU-152	06/30/1998	688
37	Wildcat Creek near Jerome, IN	S 1	SU-19	05/21/1998	126
		S2	SU-151	06/30/1998	563
38	Wildcat Creek near Lafayette, IN	S 1	SU-22	05/20/1998	883
		S2	SU-150	07/01/1998	1,130
39	White River near Nora, IN	S 1	SU-51	05/28/1998	1,260
		S2	SU-149	07/01/1998	1,780
40	Sugar Creek near Edinburgh, IN	S 1	SU-46	05/26/1998	1,610
		S2	SU-178	07/20/1998	1,490
41	E. Fork White River near Bedford, IN	S 1	SU-52	05/28/1998	14,300
		S2	SU-161	07/06/1998	6,050
42	Wabash River at New Harmony, IN	S 1	SU-57	05/27/1998	66,000
		SD	SU-58	05/27/1998	66,000
		S2	SU-136	06/23/1998	170,000
	Mi	nnesota			
43	Cottonwood River near New Ulm, MN	S 1	SU-49	05/26/1998	525
		S2	SU-180	07/21/1998	673
		SD	SU-181	07/21/1998	673
44	Little Cobb River near Beauford, MN	S 1	SU-12	05/18/1998	166
		S2	SU-208	08/17/1998	2.8
45	Minnesota River near Jordan, MN	S 1	SU-13	05/19/1998	10,100
		S2	SU-135	06/26/1998	12,000
46	Mississippi River at Hastings, MN	S 1	SU-14	05/20/1998	21,600
		SD	SU-15	05/20/1998	21,600
		S2	SU-206	08/11/1998	8,770
47	Des Moines River at Jackson, MN	S 1	SU-48	05/26/1998	339
		S2	SU-210	08/24/1998	267
48	Rock River at Luverne, MN	S 1	SU-130	06/24/1998	60
		S2	SU-131	06/25/1998	161

 Table 4.
 Collection dates, sample types, sample numbers, and daily mean discharge for samples from surface-water sites—

 Continued

Site no. (figs. 3, 4)	Site name	Sample type	Sample no.	Date of sample collection	Daily mean discharge, in cubic feet per second
		Kansas			
49	Black Vermillion River at Frankfort, KS	S 1	SU-1	05/05/1998	80
		S2	SU-107	06/09/1998	162
50	Big Blue River below Tuttle Creek Lake Dam, KS	R1	SU-74	06/03/1998	3,610
		R2	SU-197	07/29/1998	89
51	Delaware River near Muscotah, KS	S 1	SU–2	05/05/1998	111
		S2	SU-105	06/10/1998	100
		SB	SU-106	06/10/1998	100
		Kentucky			
52	Ohio River at Cannelton Dam, KY	S 1	SU-75	06/04/1998	78,400
		SD	SU-214	06/04/1998	78,400
		S2	SU-173	07/07/1998	146,000
		Missouri			
53	Nodaway River near Graham, MO	S 1	SU-119	06/18/1998	5,030
		S2	SU-209	08/19/1998	282
		Nebraska			
54	North Dry Creek near Kearney, NE	S1	SU–28	05/22/1998	83
		S2	SU-76	06/08/1998	37
55	Maple Creek near Nickerson, NE	S1	SU-37	05/21/1998	208
		SD	SU-38	05/21/1998	208
		S2	SU-79	06/08/1998	705
56	Salt Creek at Roca, NE	S 1	SU–6	05/15/1998	470
		S2	SU–94	06/10/1998	148
57	Wahoo Creek at Ithaca, NE	S 1	SU–5	05/15/1998	118
		S2	SU-78	06/08/1998	495
58	Platte River at Louisville, NE	S 1	SU-39	05/22/1998	22,300
		SD	SU-40	05/22/1998	22,300
		S2	SU-77	06/09/1998	28,900
59	Big Nemaha River at Falls City, NE	S 1	SU-41	05/26/1998	333
		S2	SU-80	06/8/1998	438
60	W. Fork Big Blue River, Dorchester, NE	S 1	SU-36	05/23/1998	247
		S2	SU-82	06/10/1998	231
61	Big Blue River at Barneston, NE	S 1	SU-4	05/15/1998	1,110
		S 2	SU-104	06/09/1998	1,170
62	Little Blue River near Fairbury, NE	S 1	SU–3	05/12/1998	261
		S2	SU-81	06/08/1998	239
		Ohio			
63	Clear Creek near Rockbridge, OH	S 1	SU-86	06/10/1998	36
		S2	SU-145	06/30/1998	84
64	Scioto River near Prospect, OH	S 1	SU-63	06/02/1998	128
		S2	SU-141	06/29/1998	1,040

 Table 4.
 Collection dates, sample types, sample numbers, and daily mean discharge for samples from surface-water sites—

 Continued

[S1, pre-emergence stream sample; S2, post-emergence stream sample; R1, first reservoir outflow sample; R2, second reservoir outflow sample; SD, duplicate stream sample; RD, duplicate reservoir sample; SB, blank stream sample; SS, spiked stream sample]

Site no. (figs. 3, 4)	Site name	Sample type	Sample no.	Date of sample collection	Daily mean discharge, in cubic feet per second
	Ohi	o—Continued			-
65	Olentangy River at Claridon, OH	S 1	SU-85	06/09/1998	13
		S2	SU-157	06/29/1998	3,770
		SB	SU-156	06/29/1998	3,770
66	Olentangy River below Delaware Lake Dam, OH	R1	SU-84	06/09/1998	34
		R2	SU-153	07/01/1998	3,210
		RD	SU-154	07/01/1998	3,210
67	Big Darby Creek at Darbyville, OH	S 1	SU-62	06/03/1998	208
		S2	SU-140	06/29/1998	11,400
68	Scioto River at Higby, OH	S1	SU-73	06/04/1998	2,620
		S 2	SU-165	07/08/1998	5,030
69	L. Miami River near Oldtown, OH	S 1	SU-92	06/10/1998	97
		S2	SU-144	06/30/1998	191
70	Mad River at Eagle City, OH	S1	SU-91	06/10/1998	228
		S2	SU-146	06/30/1998	454
71	Tiffin River at Stryker, OH	S1	SU–66	06/01/1998	98
		SD	SU–67	06/01/1998	98
		S2	SU-172	07/07/1998	40
72	Auglaize River at Fort Jennings, OH	S1	SU-117	06/17/1998	670
		S2	SU-171	07/08/1998	751
		Wisconsin			
73	Root River at Racine, WI	S 1	SU61	06/01/1998	98
		S2	SU-204	08/03/1998	5.3
74	St. Croix River at St. Croix Falls, WI	S 1	SU–68	06/03/1998	4,220
		S 2	SU-205	08/05/1998	1,690
75	Wisconsin River at Muscoda, WI	S 1	SU-133	06/16/1998	12,900
		S2	SU-202	08/07/1998	8,890
		SD	SU-203	08/07/1998	8,890
76	Rock River at Afton, WI	S 1	SU-134	06/17/1998	2,140
		S2	SU-179	07/21/1998	1,830

Samples were collected using protocols that are identical to those used for the collection of samples for low levels of other dissolved organic compounds (Shelton, 1994). The equal-widthincrement sampling method was used for all stream and reservoir outflow samples except on some large rivers where equal-discharge-increment sampling was used (Edwards and Glysson, 1988). All equipment was precleaned with a Liquinox/tap-water solution, rinsed with tap water, deionized water, and then methanol, and air dried. All samples were filtered through 0.7-µm pore-size heat-cleaned glass-fiber filters using an aluminum-plate filter holder and a ceramic-piston fluid-metering pump with all Teflon tubing into precleaned 1-liter or 125-milliliter amber glass bottles. Samples were immediately chilled and shipped on ice from the field to the USGS National Water Quality Laboratory (NWQL) in Lakewood, Colo., and USGS Organic Geochemistry Research Laboratory (OGRL) in Lawrence, Kansas, within 2 days of collection.

Analytical Methods

Sulfonylurea, Sulfonamide, and Imidazolinone Herbicides

An analytical method was developed by researchers at the NWQL that is an extension and improvement of the high-performance liquid chromatography/mass spectrometry (HPLC/MS) method by Rodriguez and Orescan (1998). Briefly, the method consists of isolation of the analytes of interest from approximately 1 liter of water (precisely measured) using two stacked solid-phase extraction cartridges. After isolation, the cartridges are dried and the analytes eluted using acidified acetone. The analytes are then concentrated and solvent exchanged into 1 mL of 10 percent acetonitrile and 90 percent water. The sample processing procedure is shown schematically in figure 6.

HPLC/MS analysis is performed using a Hewlett Packard 1100 series HPLC, coupled to a Hewlett Packard LC/MSD. Electrospray ionization, operated in the positive ion mode, is used to ionize the analytes. Selected-ion monitoring is used to maximize sensitivity. External standard calibration curves are developed using a minimum of five standards. The linear range of the method is from 0.005 to $0.5 \,\mu$ g/L. Three ions (1 quantitation, 2 confirmation) are monitored for each compound. For confirmed identification of analytes, the relative ion abundances for the detection must be within 20 percent of average response for standards, as well as have the correct relative retention time (within 0.1 minute). Detected analytes that do not meet one criterion are reported as estimates (E on tables 6–10). Details of this analytical methods are provided by Furlong and others (2000).

Concentrations were quantified by comparing the sum of the three integrated ion peaks from an environmental sample to the sum of the integrated ion peaks from a calibration curve. Five-point external calibration curves for concentrations between 0.005 to 0.500 μ g/L were produced for the 16 target analytes (Furlong and others, 2000). A substantial fraction of the reported concentrations are flagged with an "E." All concentrations below the estimated reporting limit of 0.010 μ g/L or above the upper limit of 1.0 μ g/L are flagged with an "E," which indicates the qualitative

Figure 6. Diagram showing sample preparation steps for analysis of sulfonylurea, sulfonamide, and imidazolinone herbicides.

identification of the compound within a 20-percent acceptance criterion. An "E" qualifier for concentrations within the analytical range of the method indicates that the relative abundance of a secondary or tertiary ion fell outside the 20-percent acceptance criterion, likely due to a co-extracted interference.

Other Pesticides and Degradates

All samples were analyzed for several other classes of pesticides. Samples were analyzed at the NWQL for 46 pesticides and pesticide degradates by capillary-column gas chromatography/mass spectrometry (GC/MS) with selected-ion monitoring using methods described by Zaugg and others (1995). The compounds analyzed are listed under "Other Pesticides and Degradates" in table 1. This analytical method has method detection limits (MDLs) that range from 0.001 to 0.018 μ g/L (table 5). The compounds analyzed include selected triazine, acetanilide, and thiocarbamate herbicides and carbamate, organophosphate, and organochloride insecticides. A complete discussion of data reporting procedures, MDLs, MRLs and "E" coded data values is given by Childress and others (1999).

All samples were analyzed at the OGRL for 13 herbicides and 10 herbicide degradates. The 13 herbicides and 3 of the degradates were analyzed by GC/MS with selected-ion monitoring (Zimmerman and Thurman, 1999). The other seven degradates were analyzed by high-performance liquid chromatography (HPLC) with diode-array detection following solid-phase extraction on C_{18} cartridges (Ferrer and others, 1997a, 1997b; Kalkhoff and others, 1998; Hostetler and Thurman, 1999). The analytical method has an MRL of 0.05 µg/L for the 13 herbicides and 3 degradates, and 0.20 µg/L for the other 7 degradates (table 5). The compounds analyzed are listed under "Other Herbicides and Degradates" in tables 1 and 5.

Nutrients, Physical Properties, and Discharge

All samples were analyzed for nutrient concentrations including nitrate plus nitrate, nitrite, ammonia, ammonia plus organic nitrogen, orthophosphate, and total phosphorus. The samples were analyzed by automated colorimetric procedures (Fishman and Friedman, 1989) at the NWQL. Method reporting limits for nutrients are given in table 5. Specific conductance, pH, and water temperature were measured at the time samples were collected. Water discharge normally was measured with current meters. These measurements were used to confirm or adjust a rating for converting stream stage to water discharge. At most sites, estimates of daily mean discharge for the period of sample collection were calculated and are available in the USGS NWIS-W data base (U.S. Geological Survey, 2000). The daily mean discharge estimates at all surface-water sites on the dates of sample collection are given in table 4.

Quality Assurance

Because this study involved application of a new custom analytical method for the SU, SA, and IMI herbicide, a significant effort was put forth to ensure the quality of the results. This included the collection and(or) processing of extra samples in the field and in the laboratory. Also, there are duplicate analyses of some herbicides such as atrazine and metolachlor for nearly every sample (one from NWQL and one from OGRL).

Sample Collection

Quality-assurance (QA) samples were collected at selected sites to provide information on the variability and bias of the measured SU, SA, and IMI concentrations. A total of 26 field QA samples were collected in the field. These samples consist of 21 concurrent duplicates (CD), which are two samples collected as closely as possible in time and space but processed, handled, and analyzed separately; and 5 field blanks (FB), which are blank solutions that are subject to the same aspects of sample collection, field processing, preservation, transportation, and laboratory handling as the environmental samples. Concurrent duplicates were submitted blindly to the USGS NWOL, whereas field blanks were identified as such. Field QA samples were only collected and processed for the SU, SA, and IMI analysis.

Table 5. Method of determination or analysis and reporting limits for physical properties and chemical compounds in water samples

[µg/L, micrograms per liter; µS/cm, microsiemens per centimeter at 25 degrees Celsius; mg/L, milligrams per liter; ft³/s, cubic feet per second]

Property or compound	Method of analysis	Reporting limit
Sulfonylurea, sulfonam	ide, and imidazolinone herbicides	Method reporting limit (µg/L)
bensulfuron methyl	high-performance liquid chromatography/ electrospray ionization-mass spectrometry following solid phase extraction	0.010
chlorimuron ethyl	do.	do.
chlorsulfuron	do.	do.
flumetsulam	do.	do.
halosulfuron methyl	do.	do.
imazapyr	do.	do.
imazaquin	do.	do.
imazethapyr	do.	do.
metsulfuron methyl	do.	do.
nicosulfuron	do.	do.
primisulfuron methyl	do.	do.
prosulfuron	do.	do.
sulfometuron methyl	do.	do.
thifensulfuron methyl	do.	do.
triasulfuron	do.	do.
triflusulfuron methyl	do.	do.

Property or compound	Method of analysis	Reporting limit
Other pes	Method detection limit (µg/L)	
2,6-diethylaniline	gas chromatography/mass spectrometry following solid phase extraction	0.003
acetochlor	do.	.002
alachlor	do.	.002
atrazine	do.	.001
azinphos-methyl	do.	.001
benfluralin	do.	.002
butylate	do.	.002
carbaryl	do.	.003
carbofuran	do.	.003
chlorpyrifos	do.	.004
cyanazine	do.	.004
dacthal	do.	.002
deethylatrazine	do.	.002
diazinon	do.	.002
dieldrin	do.	.001
disulfoton	do.	.017
EPTC	do.	.002
ethalfluralin	do.	.004
ethoprophos	do.	.003
fonofos	do.	.003
lindane	do.	.004
linuron	do.	.002

Table 5. Method of determination or analysis and reporting limits for physical properties and chemical compounds in water samples—Continued

[µg/L, micrograms per liter; µS/cm, microsiemens per centimeter at 25 degrees Celsius; mg/L, milligrams per liter; ft³/s, cubic feet per second].

Property or compound	Method of analysis	Reporting limit
Other pesticides	and degradates	Method detection limit
Posiciae		(μ g/L)
malathion	do.	0.005
metolachlor	do.	.002
metribuzin	do.	.004
molinate	do.	.004
napropamide	do.	.003
parathion	do.	.004
parathion methyl	do.	.006
pebulate	do.	.004
pendimethalin	do.	.004
phorate	do.	.002
prometon	do.	.018
propachlor	do.	.007
propanil	do.	.004
propargite	do.	.013
propyzamide	do.	.003
simazine	do.	.005
tebuthiuron	do.	.010
terbacil	do.	.007
terbufos	do.	.013
thiobencarb	do.	.002
tri-allate	do.	.001
trifluralin	do.	.002
alpha-HCH	do.	.002
cis-permethrin	do.	.005
p,p'-DDE	do.	.006

Property or compound	Method of analysis	Reporting limit
Other pest	icides and degradates	Method detection limit (μg/L)
acetochlor	gas chromatography/mass spectrometry following solid phase extraction (GC/MS)	0.05
acetochlor ESA	high-performance liquid chromatography/mass spectrometry following solid phase extraction (HPLC/MS)	.20
acetochlor OA	do.	.20
alachlor	GC/MS	.05
alachlor ESA	HPLC/MS	.20
alachlor OA	do.	.20
ametryn	GC/MS	.05
atrazine	do.	.05
deethylatrazine	do.	.05
deisopropylatrazine	do.	.05
hydroxy-atrazine	HPLC/MS	.20
cyanazine	GC/MS	.05
cyanazine-amide	do.	.05

22 Concentration of Selected Sulfonylurea, Sulfonamide, and Imidazolinone Herbicides, Other Pesticides, and Nutrients in 71 Streams, 5 Reservoir Outflows, and 25 Wells in the Midwestern United States, 1998
 Table 5.
 Method of determination or analysis and reporting limits for physical properties and chemical compounds in water samples—Continued

Property or compound	Method of analysis	Reporting limit
Other pesticide	es and degradates	Method detection limit (μg/L)
metolachlor	do.	0.05
metolachlor ESA	HPLC/MS	.20
metolachlor OA	do.	.20
metribuzin	GC/MS	.05
prometon	do.	.05
prometryn	do.	.05
propachlor	do.	.05
propazine	do.	.05
simazine	do.	.05
tebutryn	do.	.05

[µg/L, micrograms per liter; µS/cm, microsiemens per centimeter at 25 degrees Celsius; mg/L, milligrams per liter; ft³/s, cubic feet per second]

Property or compound	Method of analysis	Reporting limit
Nutrients, physical prop	erties, and discharge	Method reporting limit
water temperature (degrees Celsius)	thermometer	0.10 degree
specific conductance	conductance meter	1.0 µS/cm
pH	pH meter	.10 units
ammonia as N	colorimetric methods	.02 mg/L
ammonia plus organic N	do.	.10 mg/L
nitrite as N (mg/L)	do.	.01 mg/L
nitrite plus nitrate as N	do.	.05 mg/L
dissolved phosphorus as P	do.	.006 mg/L
orthophosphate as P	do.	.01 mg/L
dissolved organic carbon as C	do.	.33 mg/L
daily mean discharge	current meter or rating curve	.01 ft ³ /s

Analytical Methods

Full-scan electrospray ionization mass spectra were collected for each SU, SA, and IMI compound using a Hewlett Packard Series 1100 LC/MSD. Fragmentation conditions were optimized so a minimum of two, and typically three, ions were formed for each analyte. The presence of all three ions and their relative abundances were used to confirm identification. The sum of the three signals was used for maximum detectability and quantitation. Two criteria were used to verify compound detections. The chromatographic retention time for a peak observed in a sample chromatograph was compared to the retention times of the target analytes observed in a standard chromatograph. After this initial criterion was met, identification was confirmed by comparing the relative abundances of the three ions measured in the sample chromatograph to known relative abundances of a user-generated library reference spectrum produced from a pure standard. If the library spectra and the sample spectra did not match within 20 percent, then the presence of the compound was not confirmed. In some instances, qualified identification and concentration estimates were made, reflecting the effect of matrix interference on the ability of the analyst to identify SU, SA, and IMI herbicides at the low end of the concentration range. For example, if an unknown sample peak retention time matched that of one of the target analytes, two of the three ions were present, and the relative abundances of the two ions were within 20 percent of the average response for standards, the detection was flagged with an "E" to indicate it was a qualified

identification and concentration estimate. This qualification was required in those cases where the second confirming ion was produced in low (less than 10 percent) relative abundances under normal HPLC/MS conditions.

These criteria are equivalent to those used in an EPA-approved HPLC/MS method (Method 8321A; U.S. Environmental Protection Agency, 1996a), where the relative abundances of two to four ions, at the appropriate retention time, are used to qualitatively identify targeted analytes. Although the ionization technique (thermospray ionization) used in this EPA-approved method differs from that used in this study, the ionization techniques are similar in that simpler spectra are produced than those typically produced by the more common electron-impact ionization-gas chromatography/mass spectrometry (EI-GC/MS), necessitating a minimum of two, rather than three, ions for qualitative identification. Some researchers have successfully used the detection of a single ion, typically a protonated parent molecule, at the appropriate retention time to identify pesticides and other polar contaminants (Ferrer and others, 1997a, 1997b; LaCorte and Barcelo, 1996). This is often the result of the inability of a molecule to be fragmented under electrospray ionization conditions and the desire to improve sensitivity. Tandem mass spectrometry follow-up is typical. In this study, the large number of samples precluded routine reanalysis, so controlled in-source fragmentation was used (Crescenzi and others, 1997; Rodriguez and Orescan, 1998; Vollmer and Wilkes, 1996). In practice, the capillary exit voltage is varied during the chromatographic separation, fragmenting different SU, SA, and IMI herbicides at optimal voltages, producing a minimum of two, and typically three, characteristic fragments for each compound. However, since several of the herbicides studied elute closely to each other, the voltage applied to the capillary exit was a compromise value for several compounds. The net result is that for some compounds, a tertiary ion would be produced at low relative abundance (5 to 10 percent) and occasionally would not be detected in the presence of background ion signal. In these cases, an estimated ("E") flag also was used.

The quality control of the analytical methods used by the USGS NWQL are given in Zaugg and others (1995). The quality control of the analytical methods used by the USGS OGRL for this study are given in Zimmerman and Thurman (1999) and Hostetler and Thurman (1999).

Quality-Assurance Samples for Sulfonylurea, Sulfonamide, and Imidazolinone Herbicides

Samples were analyzed in 27 sets, and instrumental and method QA samples were analyzed with each set. Long-term instrument stability was indicated in analysis of 75 calibration verification samples analyzed over the course of the study. Verification sample concentrations for each compound were set at 0.10 μ g/L. The average measured concentration for individual target analytes ranged from 0.093 to 0.101 μ g/L. The average standard deviation for the 16 target analytes in 75 calibration verification samples was 0.006 μ g/L.

The quality of method performance is indicated by the recovery calculated from the results of 27 set spikes, one analyzed with each set during the study. The recoveries for the 16 target analytes are shown in figure 7. The medians of the recoveries range from 39 to 92 percent, and the average of the medians is 73 percent. The standard deviations of recoveries range from 14 to 26 percent and average 20 percent. Some of this variability is the result of multiple instruments and operators and the use of automated and manual sample preparation. The lowest and most variable recoveries were chlorsulfuron, halosulfuron methyl, prosulfuron, triflusulfuron methyl, and primisulfuron methyl, compounds that were not frequently detected in this study.

Twenty-eight unspiked laboratory duplicate samples were analyzed to estimate method precision at ambient herbicide concentrations and in the presence of interferences. The duplicate samples were made from the second of two 1-liter bottles of water that were collected for SU, SA, and IMI herbicide analysis at each site. Some duplicates were analyzed within a single sample set and others in two separate sets. Differences for each pair are calculated as the concentration in the sample minus

Figure 7. Recoveries of 16 sulfonylurea, sulfonamide, and imidazolinone herbicides from 27 reagent water samples spiked at 0.050 or 0.10 microgram per liter (from Furlong and others, 2000, fig. 3).

the concentration in the duplicate sample. For this analysis, concentrations that are reported as less than the MRL were set to $0.005 \ \mu g/L$, which allows computation of a difference value when only one of the sample pair has a reported concentration. The number (n) of sample pairs with at least one reported concentration for each herbicide is shown in figure 8. Forty-five of the 112 concentration pairs have only one reported concentration; in 11 of those pairs, the reported concentration is less than the MRL. Most differences are less than 0.050 $\mu g/L$, and only a few differences are greater that 0.10 $\mu g/L$ (fig. 8).

In addition to unspiked duplicates, 28 randomly selected samples were spiked at $0.10 \ \mu g/L$ and analyzed to help determine the magnitude of possible matrix enhancement. The results (fig. 9) indicate that there was apparent matrix enhancement of recovery that varied by compound. This effect was isolated as a matrix effect by spiking sample extracts after processing and observing the same enhancements

as when the sample was spiked prior to analysis. The largest enhancements were for metsulfuron methyl, thifensulfuron methyl, and triasulfuron. In most cases, compound recoveries were enhanced by a factor of 1.5 or less (Furlong and others, 2000).

There were no detections above $0.010 \ \mu g/L$ of the 16 SU, SA, and IMI herbicides in the five field blank samples. This suggests that field sample handling and processing were not likely to cause contamination of the samples.

Twenty-one unspiked concurrent field duplicate samples were analyzed to estimate method precision at ambient herbicide concentrations in the presence of sample collection and sample water interferences. Differences for each pair are calculated as the concentrations in the sample minus the concentration in the duplicate sample. Again, concentrations that are reported as less than the MRL are set to 0.005 μ g/L. The number of sample pairs with at least one reported concentration is

Figure 8. Differences between herbicide concentrations in 28 pairs of unspiked laboratory duplicate natural-water samples (n is number of concentration pairs).

shown in figure 10. Sixteen of the 62 concentration pairs had only one reported concentration; in 8 of those pairs, the one reported concentration was less than the MRL. Most differences were less than 0.020 μ g/L (twice the MRL), and only one difference was greater that 0.040 μ g/L (fig. 10), which indicates that the reproducibility of analytical results is quite good and that sample-collection procedures did not introduce a large amount of error into the results.

Quality-Assurance Samples for Other Herbicides

Twenty-eight unspiked laboratory duplicate (LD) samples were analyzed by the USGS OGRL to estimate method precision at ambient herbicide concentrations and in the presence of interferences for results from their laboratory. These duplicate samples were made from extra 125-milliliter bottles of water that were collected at each site. These data are not analyzed here, but results from these LD samples and from six concurrent field duplicate samples and one field blank sample are included in the tables of OGRL results (tables 15, 16, 24, and 25).

Duplicate Analysis of Selected Herbicides

Nearly every sample was analyzed for eight herbicides by both the NWQL and the OGRL. This allows for a unique opportunity to compare results from these two laboratories. Percent differences (PD) were calculated for each pair of concentrations as the difference between the values (NWQL – OGRL) divided by the mean of the two values, expressed as a percentage. For this calculation, concentrations reported by the NWQL that are less than 0.05 μ g/L, including those that are less than the MDL, are set equal to 0.05 μ g/L, the MRL of results from the OGRL, and concentrations reported by the OGRL as less than 0.05 μ g/L (not detected) also are set equal to 0.05 μ g/L.

Analysis of the PD's of sample pairs where one or both have a reported concentration greater than or equal to $0.05 \,\mu g/L$ (not an assigned value of $0.05 \,\mu g/L$) indicate that the concentrations reported by the NWQL for acetochlor, alachlor, atrazine, cyanazine, metolachlor, prometon, and simazine all tend to be higher than those reported by the OGRL (fig. 11). The median of the percent differences for metribuzin were not significantly different from zero. The majority of the percent differences were between -25 and +50 percent. These differences may result from the different methodologies used by the two laboratories. The laboratories use different sample size: 1,000-milliliter nominal for the NWOL and 125 milliliter nominal for the OGRL. Also, the OGRL processes its calibration standards through the sample extraction and isolation procedure, resulting in an inherent processing correction in the calibration curves. The NWQL develops its calibration curves from standards that have not been processed through the extraction and isolation procedure. The NWQL dilutes sample

Figure 9. Recoveries of 16 sulfonylurea, sulfonamide, and imidazolinone herbicides from 28 surface- and ground-water samples spiked at 0.10 microgram per liter. The recoveries are corrected for the ambient water herbicide concentration (from Furlong and others, 2000, fig. 5).

extracts for calculating concentrations that are greater than 4 μ g/L, which may result in greater analytical error, particularly for concentrations that are greater than 20 μ g/L.

Differences for each concentration pair were calculated as the concentration in the NWQL sample minus the concentration in the OGRL sample. The same sample pairs used in the above calculation of PDs are used for this calculation. The number (n) of sample pairs with one or more reported concentrations (equal to or greater than 0.05 μ g/L) and differences between laboratory results are shown in figure 12. Fifty percent of the 697 differences are $0.12 \,\mu g/L$ or less, and only 5 percent of the differences are larger than $3.2 \,\mu g/L$. Paired difference tests were used to determine if the observed differences between herbicide concentrations are statistically significant. Because the distributions of herbicide concentrations are positively

skewed, the non-parametric Wilcoxon signed-rank test (Helsel and Hirsch, 1992) was used. The following hypothesis is tested:

Null Hypothesis. Concentrations reported by the NWQL are not significantly different from concentrations reported by the OGRL (median of differences = 0).

Alternate Hypothesis. Concentrations reported by the NWQL are significantly different from concentrations reported by the OGRL (median of differences not equal to 0).

Results indicate that the null hypothesis can be rejected (p < 0.05) for acetochlor, atrazine, alachlor, cyanazine, metolachlor, prometon, and simazine. For these seven herbicides, the NWQL concentrations all tended to be larger than the OGRL concentrations. The largest median difference is for metolachlor (0.25 µg/L), followed by atrazine (0.19 µg/L) and acetochlor (0.08 µg/L).

Figure 10. Differences between herbicide concentrations in 21 pairs of unspiked field duplicate natural-water samples (n is the number of concentration pairs).

The number of comparisons that can be made between results from the two laboratories is to some degree limited by the higher MRL of results from the OGRL. For compounds that tend to occur at higher concentrations, the limitation is small. For example, the NWQL reported 158 concentrations in 167 analyses for atrazine at or above the MDL of 0.001 μ g/L, whereas the OGRL reported 156 concentrations in 176 analyses at or above the MRL of 0.05 μ g/L. The effects of the reporting limit difference is more pronounced for compounds that occur frequently at low concentrations, such as prometon. The NWQL reported 68 concentrations at or above the MDL of 0.018 μ g/L in 169 analyses for prometon, whereas the OGRL reported only 12 concentrations in 176 analyses at or above the MRL of 0.05 µg/L.

OCCURRENCE OF SULFONYLUREA, SULFONAMIDE, AND IMIDAZOLINONE HERBICIDES

Streams

Stream sample collection began in May and was completed in August 1998. Results from 133 stream samples are given in table 6. A statistical summary of these results is given in table 7. At least one of the 16 SU, SA, or IMI herbicides was detected in 111 (83 percent) of stream samples. The detection frequencies reported are for samples with concentrations at or above the method reporting limit (MRL), currently 0.010 µg/L. Imazethapyr was the most frequently detected compound. It was detected in 92 or 69 percent of these samples. Flumetsulam was detected in 87 (65 percent) of the samples. Nicosulfuron was detected in 70 (53 percent) of the samples. Imazaguin was detected in 44 (33 percent) of samples and chlorimuron ethyl was detected in 41 (31 percent) of samples. Chlorsulfuron, halosulfuron methyl, imazapyr, prosulfuron, sulfometuron methyl, and thifensulfuron methyl were detected at concentrations at or above the MRL in 7 (5 percent) or fewer of the samples. Bensulfuron methyl, metsulfuron methyl, primisulfuron methyl, triasulfuron, and triflusulfuron methyl were not detected at or above the MRL in any stream sample.

The distributions of concentrations of the target analytes in 133 samples are summarized in figure 13. In some cases, estimated concentrations are reported that are below the MRL. These concentrations are not counted as detections at or above the MRL in table 7 but are used in the calculation of summary statistics (the boxplots themselves and percentile values in table 7). All non-detects are treated as zeros in the calculation of percentile values. The sum of SU, SA, and IMI concentrations exceeded 0.50 μ g/L in less than 10 percent of stream samples.

The spatial distribution of concentrations for three compounds, imazethapyr, flumetsulam, and nicosulfuron, are shown in figures 14, 15, and 16, respectively. In these figures, the drainage basins

Figure 11. Percent differences between herbicide concentrations reported by the National Water Quality Laboratory and concentrations reported by the Organic Geochemistry Research Laboratory for 177 surface- and ground-water samples (n is the number of concentration pairs).

Figure 12. Differences between herbicide concentrations reported by the National Water Quality Laboratory and concentrations reported by the Organic Geochemistry Research Laboratory for 177 surface- and ground-water samples (n is the number of concentration pairs).
Table 6. Sulfonylurea, sulfonamide, and imidazolinone herbicide concentrations in water samples from 71 midwestern streams

[[]S1, pre-emergence stream sample; S2, post-emergence stream sample; R1, first reservoir outflow sample; R2, second reservoir outflow sample;

Site		Date of	. .		Concentration, in micrograms per liter					
no. (figs. 3, 4)	Site name	collection (month/ day/year)	type	Sample no.	Bensul- furon methyl	Chlori- muron ethyl	Chlor- sulfuron	Flumet- sulam	Halosul- furon methyl	lmaza- pyr
			Illi	inois						
1	Vermillion River below Lake	06/10/98	R1	SU-98	< 0.010	< 0.010	< 0.010	0.054	< 0.010	< 0.010
	Vermillion dam, IL	06/10/98	RD	SU-103	Sample	not anal	yzed (dupl	icate bott	le for SU-	98)
		07/16/98	R2	SU-177	Sample	not anal	yzed (both	bottles b	roken)	
2	Bonpas Creek at Browns, IL	05/23/98	S 1	SU-43	Sample	ruined in	n laborator	у		
		07/07/98	S2	SU-166	<.010	.014	<.010	.020	<.010	<.010
3	Little Wabash River at Carmi, IL	05/23/98	S 1	SU-33	<.010	.093	<.010	.074	<.010	<.010
		07/09/98	S2	SU-175	Sample	Sample not analyzed (both bottles broken)				
4	S. Branch Kishwaukee River near	05/20/98	S 1	SU-29	<.010	<.010	<.010	<.010	<.010	<.010
	Fairdale, IL	07/29/98	S2	SU-195	<.010	<.010	<.010	<.010	<.010	<.010
5	Iroquois River near Chebanse, IL	06/10/98	S 1	SU-99	<.010	E.005	<.010	E.020	<.010	<.010
		06/10/98	SD	SU-101	Sample	not anal	yzed (dupl	icate bott	le for SU-	99)
		07/08/98	S 2	SU-168	<.010	.017	<.010	.065	<.010	<.010
		07/08/98	SD	SU-170	<.010	.024	<.010	.082	E.015	<.010
6	Dupage River near Shorewood, IL	06/09/98	S 1	SU-100	<.010	<.010	<.010	<.010	<.010	<.010
		06/09/98	SD	SU-102	Sample	not anal	yzed (dupl	icate bott	le for SU–	100)
		07/29/98	S 2	SU-194	<.010	<.010	<.010	<.010	<.010	<.010
		07/29/98	SD	SU-196	<.010	<.010	<.010	<.010	<.010	<.010
7	Illinois River at Marseilles, IL	06/12/98	S 1	SU-113	<.010	E.012	<.010	.039	<.010	<.010
		07/09/98	S2	SU-176	Sample	not anal	yzed (both	bottles b	roken)	
8	Spoon River at London Mills, IL	05/20/98	S 1	SU-25	<.010	.079	<.010	.030	<.010	<.010
		05/20/98	SB	SU-26	<.010	<.010	<.010	<.010	<.010	<.010
		07/01/98	S2	SU-160	<.010	.026	<.010	.029	<.010	<.010
9	Sangamon River near Monticello, IL	05/23/98	S 1	SU-35	<.010	<.010	<.010	<.010	<.010	<.010
		08/05/98	S2	SU-201	<.010	<.010	<.010	.017	<.010	<.010
10	Sangamon River at Riverton, IL	05/26/98	S 1	SU-44	<.010	.025	<.010	.067	<.010	<.010
		07/09/98	S2	SU-174	<.010	.012	<.010	.035	E.057	<.010
11	LaMoine River at Colmar, IL	05/21/98	S 1	SU-27	<.010	.268	<.010	.058	<.010	<.010
		06/29/98	S2	SU-142	<.010	.032	<.010	.038	<.010	<.010
		06/29/98	SD	SU-143	<.010	.034	<.010	.044	<.010	<.010
12	Illinois River at Valley City, IL	06/18/98	S 1	SU-120	<.010	E.019	<.010	.068	<.010	<.010
		08/12/98	S2	SU-207	<.010	<.010	<.010	.013	<.010	<.010

and 5 midwestern reservoirs

SD, duplicate stream sample; RD, duplicate reservoir sample; SB, blank stream sample; SS, spiked stream sample; <, less than; E, estimate]

Site	Concentration, in micrograms per liter												
no. (figs. 3, 4)	lmaza- quin	lmaze- thapyr	Metsul- furon methyl	Nicosul- furon	Primi- sulfuron methyl	Prosul- furon	Sulfo- meturon methyl	Thifen- sulfuron methyl	Triasul- furon	Triflu- sulfuron methyl			
				Illir	ois—Contin	ued							
1	< 0.010	0.053	< 0.010	E0.021	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010			
	Sample no	ot analyzed											
	Sample no	ot analyzed											
2	Sample no	ot analyzed											
	.053	.045	<.010	.066	<.010	.018	<.010	<.010	<.010	<.010			
3	.133	.031	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	Sample no	ot analyzed											
4	<.010	.016	<.010	E.013	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
5	<.010	.045	<.010	.013	<.010	<.010	<.010	<.010	<.010	<.010			
	Sample no	ot analyzed											
	.019	.407	<.010	.052	<.010	<.010	<.010	<.010	<.010	<.010			
	E.025	.417	<.010	.079	<.010	E.010	<.010	E.009	<.010	<.010			
6	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	Sample no	ot analyzed											
	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
7	E.010	.105	<.010	.057	<.010	<.010	.018	<.010	<.010	<.010			
	Sample no	ot anlayzed											
8	<.010	.066	<.010	.036	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	.015	.097	<.010	.066	<.010	<.010	<.010	<.010	<.010	<.010			
9	<.010	.059	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	E.014	<.010	.013	<.010	<.010	<.010	<.010	<.010	<.010			
10	E.007	.099	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	.018	.130	<.010	.020	<.010	<.010	<.010	<.010	<.010	<.010			
11	.109	.106	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	.014	.034	<.010	.095	<.010	<.010	<.010	E.007	<.010	<.010			
	.017	.037	<.010	.096	<.010	<.010	<.010	<.010	<.010	<.010			
12	<.010	.089	<.010	.054	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	E.020	<.010	.010	<.010	<.010	<.010	<.010	<.010	<.010			

Table 6. Sulfonylurea, sulfonamide, and imidazolinone herbicide concentrations in water samples from 71 midwestern streams

[S1, pre-emergence stream sample; S2, post-emergence stream sample; R1, first reservoir outflow sample; R2, second reservoir outflow sample;

Site		Date of				Concentration, in micrograms per liter					
no. (figs. 3, 4)	Site name	collection (month/ day/year)	Sample - type	Sample no.	Bensul- furon methyl	Chlori- muron ethyl	Chlor- sulfuron	Flumet- sulam	Halosul- furon methyl	lmaza- pyr	
			Illinois-	Continued					-		
13	Mississippi River below Grafton, IL	06/02/98	S 1	SU-60	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	
		06/15/98	S2	SU-116	<.010	<.010	<.010	.049	<.010	<.010	
14	Kaskaskia River near Cowden, IL	05/20/98	S 1	SU-30	<.010	<.010	<.010	<.010	<.010	<.010	
		07/08/98	S2	SU-169	<.010	<.010	<.010	.033	<.010	<.010	
15	Shoal Creek near Breese, IL	05/22/98	S 1	SU-32	<.010	.141	<.010	.070	<.010	<.010	
		05/22/98	SD	SU-34	<.010	.135	<.010	.072	<.010	<.010	
		07/08/98	S2	SU-167	<.010	.176	<.010	.084	<.010	<.010	
			Ισ	wa							
16	Turkey River at Spillville, IA	06/02/98	S 1	SU64	<.010	<.010	<.010	.025	E.008	<.010	
		06/12/98	S2	SU-109	<.010	<.010	<.010	.036	E.017	<.010	
17	Mississippi River at Clinton, IA	05/27/98	S 1	SU-55	<.010	<.010	<.010	<.010	<.010	<.010	
		07/01/98	S2	SU-155	<.010	<.010	<.010	.025	<.010	<.010	
18	Wapsipinicon River near Tripoli, IA	05/27/98	S 1	SU-54	<.010	<.010	<.010	.019	<.010	<.010	
		06/20/98	SB	SU-125	<.010	<.010	<.010	<.010	<.010	<.010	
		06/20/98	S 2	SU-126	<.010	.010	<.010	.060	<.010	<.010	
19	Wapsipinicon River at	05/29/98	S 1	SU-56	<.010	<.010	<.010	.019	<.010	<.010	
	Independence, IA	06/12/98	S2	SU-110	<.010	<.010	<.010	.100	E.009	<.010	
20	Iowa River near Rowan, IA	06/02/98	S 1	SU-65	<.010	<.010	<.010	E.014	<.010	<.010	
		06/23/98	S 2	SU-129	<.010	<.010	<.010	E.084	<.010	<.010	
21	Old Mans Creek near Iowa City, IA	06/10/98	S 1	SU-93	<.010	<.010	<.010	E.026	E.013	<.010	
		06/30/98	S 2	SU-147	<.010	E.008	<.010	.021	<.010	<.010	
22	Wolf Creek near Dysart, IA	06/10/98	S 1	SU-87	<.010	<.010	<.010	.122	<.010	<.010	
		06/10/98	SD	SU-88	<.010	<.010	<.010	E.024	<.010	E.004	
		06/22/98	S2	SU-128	<.010	<.010	<.010	E.220	<.010	E.004	
23	Iowa River at Wapello, IA	05/27/98	S 1	SU-53	<.010	<.010	<.010	E.012	<.010	<.010	
		06/19/98	S2	SU-127	<.010	<.010	<.010	E.085	<.010	<.010	
		06/19/98	SD	SU-132	<.010	<.010	<.010	.090	<.010	<.010	
24	N. Skunk River near Sigourney, IA	05/21/98	S 1	SU-21	<.010	<.010	<.010	E.360	<.010	<.010	
		06/10/98	S 2	SU-95	<.010	<.010	<.010	.187	<.010	<.010	
25	Skunk River at Augusta, IA	05/26/98	S 1	SU-45	<.010	<.010	<.010	.127	<.010	<.010	
		06/18/98	S2	SU-122	<.010	<.010	<.010	.184	<.010	<.010	

and 5 midwestern reservoirs-Continued

Site	Concentration, in micrograms per liter												
no. (figs. 3, 4)	lmaza- quin	lmaze- thapyr	Metsul- furon methyl	Nicosul- furon	Primi- sulfuron methyl	Prosul- furon	Sulfo- meturon methyl	Thifen- sulfuron methyl	Triasul- furon	Triflu- sulfuron methyl			
				Ι	llinois—Conti	nued							
13	< 0.010	0.027	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010			
	.052	.049	<.010	.028	<.010	<.010	<.010	<.010	<.010	<.010			
14	<.010	.059	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	.017	.084	<.010	.021	<.010	<.010	<.010	<.010	<.010	<.010			
15	<.010	.011	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	.034	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	.013	.016	<.010	.034	<.010	<.010	<.010	<.010	<.010	<.010			
					Iowa—Contin	ued							
16	<.010	.024	<.010	.043	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	.061	<.010	.044	<.010	<.010	<.010	<.010	<.010	<.010			
17	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	.018	<.010	.022	<.010	<.010	<.010	<.010	<.010	<.010			
18	<.010	.035	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	.369	<.010	.119	<.010	<.010	<.010	E.010	<.010	<.010			
19	<.010	<.010	<.010	.021	<.010	<.010	<.010	<.010	<.010	<.010			
	E.004	.236	<.010	.096	<.010	<.010	<.010	<.010	<.010	<.010			
20	E.003	.018	<.010	E.010	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	E.130	<.010	E.110	<.010	<.010	<.010	<.010	<.010	<.010			
21	<.010	.019	<.010	.027	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	.070	<.010	.132	<.010	<.010	<.010	<.010	<.010	<.010			
22	<.010	E.073	<.010	.103	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	E.058	<.010	.064	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	E.180	<.010	E.160	<.010	<.010	<.010	<.010	<.010	<.010			
23	<.010	E.007	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	E.063	<.010	E.073	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	.079	<.010	.082	<.010	<.010	<.010	<.010	E.005	<.010			
24	<.010	E.025	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	.183	<.010	.062	<.010	<.010	<.010	<.010	<.010	<.010			
25	.010	.060	<.010	E.013	<.010	<.010	<.010	<.010	<.010	<.010			
	E.008	.119	<.010	.097	<.010	<.010	<.010	<.010	<.010	<.010			

SD, duplicate stream sample; RD, duplicate reservoir sample; SB, blank stream sample; SS, spiked stream sample; <, less than; E, estimate]

Table 6. Sulfonylurea, sulfonamide, and imidazolinone herbicide concentrations in water samples from 71 midwestern streams

[S1, pre-emergence stream sample; S2, post-emergence stream sample; R1, first reservoir outflow sample; R2, second reservoir outflow sample;

Sito		Date of			Concentration, in micrograms per liter					
no. (figs. 3, 4)	Site name	collection (month/ day/year)	Sample - type	Sample no.	Bensul- furon methyl	Chlori- muron ethyl	Chlor- sulfuron	Flumet- sulam	Halosul- furon methyl	lmaza- pyr
			Iowa—C	Continued						
26	Des Moines River at Fort Dodge, IA	05/16/98	S 1	SU-8	< 0.010	< 0.010	< 0.010	0.096	< 0.010	< 0.010
		06/12/98	S2	SU-108	<.010	<.010	<.010	.062	<.010	<.010
		06/12/98	SD	SU-114	<.010	<.010	<.010	.060	<.010	<.010
27	Raccoon River at Van Meter, IA	05/17/98	S 1	SU–9	<.010	<.010	<.010	<.010	<.010	<.010
		06/10/98	S2	SU-89	<.010	<.010	<.010	E.015	<.010	<.010
28	Little Sioux River at	05/27/98	S 1	SU-42	<.010	<.010	<.010	<.010	<.010	<.010
	Correctionville, IA	06/18/98	S2	SU-123	<.010	<.010	<.010	E.011	<.010	<.010
29	Maple River at Mapleton, IA	05/29/98	S 1	SU–59	<.010	<.010	<.010	.062	<.010	<.010
		06/09/98	S 2	SU-90	<.010	<.010	<.010	<.010	<.010	<.010
		06/09/98	SS	SU–97	Sample	ruined ir	1 laborator	y		
30	Boyer River at Logan, IA	05/22/98	S 1	SU-31	<.010	<.010	<.010	<.010	<.010	<.010
		06/09/98	S2	SU-96	<.010	<.010	<.010	<.010	<.010	<.010
31	Chariton River below Rathbun	06/04/98	R1	SU–69	<.010	<.010	<.010	E.006	<.010	<.010
	Lake Dam, IA	06/29/98	R2	SU-148	<.010	<.010	<.010	<.010	<.010	<.010
32	Nishnabotna River above Hamburg, IA	06/17/98	S2	SU-124	<.010	E.009	<.010	.032	<.010	<.010
			Ind	liana						
33	Whitewater River near Alpine, IN	05/26/98	S 1	SU-47	<.010	.084	<.010	.020	<.010	<.010
		07/08/98	S 2	SU-162	<.010	.037	<.010	.069	<.010	<.010
		07/08/98	SD	SU-213	<.010	.053	<.010	.070	<.010	<.010
34	Blue River at Fredericksburg, IN	05/27/98	S 1	SU-50	<.010	<.010	<.010	<.010	<.010	<.010
		07/08/98	S2	SU-163	Sample	not analy	yzed (both	bottles b	roken)	
35	Mississinewa River below	06/09/98	R1	SU-83	<.010	<.010	<.010	.054	<.010	<.010
	Mississinewa Lake Dam, IN	07/09/98	R2	SU-164	<.010	.080	<.010	.116	<.010	<.010
36	Eel River near Logansport, IN	05/21/98	S 1	SU-18	<.010	E.300	<.010	<.010	<.010	<.010
		05/21/98	SB	SU-20	<.010	<.010	<.010	<.010	<.010	<.010
		06/30/98	S2	SU-152	<.010	.011	<.010	.034	<.010	<.010
37	Wildcat Creek near Jerome, IN	05/21/98	S 1	SU-19	<.010	E.050	<.010	E.071	<.010	<.010
		06/30/98	S2	SU-151	<.010	.028	<.010	.169	<.010	<.010
38	Wildcat Creek near Lafayette, IN	05/20/98	S 1	SU-22	<.010	<.010	<.010	E.010	<.010	<.010
		07/01/98	S2	SU-150	<.010	.018	<.010	.117	<.010	<.010

and 5 midwestern reservoirs-Continued

Site	Concentration, in micrograms per liter												
no. (figs. 3, 4)	lmaza- quin	lmaze- thapyr	Metsul- furon methyl	Nicosul- furon	Primi- sulfuron methyl	Prosul- furon	Sulfo- meturon methyl	Thifen- sulfuron methyl	Triasul- furon	Triflu- sulfuron methyl			
]	lowa—Contin	ued							
26	< 0.010	0.134	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010			
	<.010	.044	<.010	.015	<.010	<.010	<.010	<.010	<.010	<.010			
	E.002	.039	<.010	.012	<.010	<.010	<.010	<.010	<.010	<.010			
27	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	E.063	<.010	E.018	<.010	<.010	<.010	<.010	<.010	<.010			
28	<.010	E.011	<.010	E.010	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	.080	<.010	.019	<.010	<.010	<.010	<.010	<.010	<.010			
29	<.010	.077	<.010	.266	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	.034	<.010	.047	<.010	<.010	<.010	<.010	<.010	<.010			
	Sample no	ot analyzed											
30	<.010	.083	<.010	.094	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	.033	E.007	.021	<.010	<.010	<.010	<.010	<.010	<.010			
31	<.010	<.010	<.010	E.006	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
32	E.007	.105	<.010	.093	<.010	<.010	<.010	<.010	<.010	<.010			
				In	diana—Conti	nued							
33	.217	.038	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	.018	.073	<.010	.025	<.010	<.010	<.010	<.010	<.010	<.010			
	.019	.068	<.010	.033	<.010	<.010	<.010	E.007	<.010	<.010			
34	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	Sample no	ot analyzed											
35	.072	.050	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	.126	.099	<.010	.043	<.010	<.010	<.010	<.010	<.010	<.010			
36	E1.100	E.690	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	.021	.061	<.010	.041	<.010	<.010	<.010	<.010	<.010	<.010			
37	E.160	E.088	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	.034	.046	<.010	.015	<.010	<.010	<.010	<.010	<.010	<.010			
38	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	.046	.101	<.010	.023	<.010	<.010	<.010	<.010	<.010	<.010			

SD, duplicate stream sample; RD, duplicate reservoir sample; SB, blank stream sample; SS, spiked stream sample; <, less than; E, estimate]

Table 6. Sulfonylurea, sulfonamide, and imidazolinone herbicide concentrations in water samples from 71 midwestern streams

[S1, pre-emergence stream sample; S2, post-emergence stream sample; R1, first reservoir outflow sample; R2, second reservoir outflow sample;

Site Date of Concentration, Site collection Complex in micrograms per liter										
no. (figs. 3, 4)	Site name	(month/ day/year)	type	Sample no.	Bensul- furon methyl	Chlori- muron ethyl	Chlor- sulfuron	Flumet- sulam	Halosul- furon methyl	lmaza- pyr
			Indiana-	-Continued						
39	White River near Nora, IN	05/28/98	S 1	SU-51	< 0.010	0.062	< 0.010	0.059	< 0.010	< 0.010
		07/01/98	S2	SU-149	<.010	.043	<.010	.109	<.010	<.010
40	Sugar Creek near Edinburgh, IN	05/26/98	S 1	SU-46	<.010	.070	<.010	<.010	<.010	<.010
		07/20/98	S2	SU-178	Sample	not anal	yzed (both	bottles b	roken)	
41	E. Fork White River near	05/28/98	S 1	SU–52	<.010	.081	<.010	.118	<.010	<.010
	Bedford, IN	07/6/98	S2	SU-161	<.010	.035	<.010	.025	<.010	<.010
42	Wabash River at New Harmony, IN	05/27/98	S 1	SU–57	<.010	.040	<.010	<.010	<.010	<.010
		05/27/98	SD	SU-58	<.010	.033	<.010	<.010	<.010	<.010
		06/23/98	S2	SU-136	<.010	<.010	<.010	.116	<.010	<.010
			Min	nesota						
43	Cottonwood River near	05/26/98	S1	SU-49	<.010	<.010	<.010	<.010	<.010	<.010
	New Unit, Mix	07/21/98	S2	SU–180	<.010	<.010	<.010	.032	<.010	<.010
		07/21/98	SD	SU–181	<.010	<.010	<.010	E.035	<.010	<.010
44	Little Cobb River near	05/18/98	S 1	SU-12	<.010	<.010	<.010	<.010	<.010	<.010
	Beauford, MN	08/17/98	S2	SU-208	<.010	<.010	<.010	.016	<.010	<.010
45	Minnesota River near Jordan, MN	05/19/98	S1	SU-13	<.010	<.010	<.010	.013	<.010	<.010
		06/26/98	S2	SU-135	<.010	<.010	<.010	.057	<.010	<.010
46	Mississippi River at Hastings, MN	05/20/98	S 1	SU-14	<.010	<.010	<.010	<.010	<.010	<.010
		05/20/98	SD	SU-15	<.010	<.010	<.010	<.010	<.010	<.010
		05/20/98	S2	SU-206	<.010	<.010	<.010	E.009	<.010	<.010
47	Des Moines River at Jackson, MN	05/26/98	S 1	SU–48	<.010	<.010	<.010	<.010	<.010	<.010
		08/24/98	S2	SU-210	<.010	<.010	<.010	.345	<.010	<.010
48	Rock River at Luverne, MN	06/24/98	S 1	SU-130	<.010	<.010	<.010	E.008	<.010	<.010
		06/25/98	S2	SU-131	<.010	<.010	<.010	.022	<.010	<.010
			Ka	nsas						
49	Black Vermillion River at Frankfort KS	05/05/98	S1	SU–1	<.010	<.010	<.010	<.010	<.010	<.010
		06/09/98	S2	SU–107	<.010	<.010	<.010	.014	E.011	<.010
50	Big Blue River below Tuttle	06/03/98	R1	SU-74	<.010	<.010	E.023	<.010	<.010	<.010
	Creek Lake Dam, KS	07/29/98	R2	SU-197	<.010	E.004	<.010	E.021	<.010	<.010
51	Delaware River near Muscotah, KS	05/05/98	S 1	SU–2	<.010	<.010	<.010	<.010	<.010	<.010
		06/10/98	S2	SU-105	<.010	E.007	<.010	<.010	<.010	<.010
		06/10/98	SB	SU-106	<.010	<.010	<.010	<.010	<.010	<.010

and 5 midwestern reservoirs—Continued

SD, d	luplicate stream sample; Rl	D, duplicate reservoir	sample; SB, bla	ink stream sample; SS,	spiked stream sample; «	<, less than; E, es	timate]

Concentration, Site in micrograms per liter										
no. (figs. 3, 4)	lmaza- quin	lmaze- thapyr	Metsul- furon methyl	Nicosul- furon	Primi- sulfuron methyl	Prosul- furon	Sulfo- meturon methyl	Thifen- sulfuron methyl	Triasul- furon	Triflu- sulfuron methyl
				In	diana—Cont	inued				
39	0.120	0.027	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
	.045	.035	<.010	.017	<.010	<.010	<.010	<.010	<.010	<.010
40	.136	.031	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
	Sample no	ot analyzed								
41	.161	.073	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
	.055	.047	<.010	.026	<.010	.022	<.010	<.010	<.010	<.010
42	.051	.046	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
	.041	.030	<.010	<.010	<.010	<.010	.012	<.010	<.010	<.010
	<.010	.082	<.010	.045	<.010	<.010	<.010	<.010	E.005	<.010
				Mir	nnesota—Cor	ntinued				
43	<.010	.018	<.010	E.010	<.010	<.010	<.010	<.010	<.010	<.010
	<.010	.026	<.010	.034	<.010	<.010	<.010	<.010	<.010	<.010
	<.010	E.028	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
44	<.010	.015	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
	<.010	.021	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
45	<.010	.017	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
	<.010	.114	<.010	.059	<.010	<.010	<.010	<.010	<.010	<.010
46	<.010	E.005	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
	<.010	E.003	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
	<.010	<.010	<.010	.010	<.010	<.010	<.010	<.010	<.010	<.010
47	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
	<.010	E.025	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
48	<.010	E.100	<.010	E.006	<.010	<.010	<.010	<.010	<.010	<.010
	<.010	.117	<.010	.042	<.010	<.010	<.010	<.010	<.010	<.010
				K	ansas—Conti	inued				
49	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
	.774	E.006	<.010	<.010	<.010	E.008	<.010	<.010	<.010	<.010
50	E.011	<.010	<.010	.011	<.010	<.010	<.010	<.010	<.010	<.010
	E.021	E.013	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
51	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
	.049	.043	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010

Table 6. Sulfonylurea, sulfonamide, and imidazolinone herbicide concentrations in water samples from 71 midwestern streams

[S1, pre-emergence stream sample; S2, post-emergence stream sample; R1, first reservoir outflow sample; R2, second reservoir outflow sample;

Site Date of Concentration, in micrograms per liter										
no. (figs. 3, 4)	Site name	(month/ day/year)	type	Sample no.	Bensul- furon methyl	Chlori- muron ethyl	Chlor- sulfuron	Flumet- sulam	Halosul- furon methyl	lmaza- pyr
			Ken	tucky						
52	Ohio River at Cannelton Dam, KY	06/04/98	S 1	SU-75	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
		06/04/98	SD	SU-214	<.010	.014	<.010	<.010	<.010	<.010
		07/07/98	S2	SU-173	<.010	<.010	<.010	E.010	<.010	<.010
			Mis	souri						
53	Nodaway River near Graham, MO	06/18/98	S 1	SU-119	<.010	<.010	<.010	.020	<.010	<.010
		08/19/98	S2	SU-209	<.010	<.010	<.010	<.010	<.010	<.010
			Neb	raska						
54	North Dry Creek near Kearney, NE	05/22/98	S 1	SU-28	<.010	<.010	<.010	.045	<.010	<.010
		06/08/98	S2	SU-76	<.010	<.010	<.010	.035	<.010	E.006
55	Maple Creek near Nickerson, NE	05/21/98	S 1	SU-37	<.010	<.010	<.010	.055	<.010	<.010
		05/21/98	SD	SU-38	<.010	<.010	<.010	.051	<.010	<.010
		06/08/98	S2	SU-79	<.010	<.010	<.010	.112	<.010	.016
56	Salt Creek at Roca, NE	05/15/98	S 1	SU–6	<.010	<.010	<.010	.019	<.010	<.010
		06/10/98	S2	SU-94	<.010	.054	<.010	<.010	E.013	<.010
57	Wahoo Creek at Ithaca, NE	05/15/98	S 1	SU–5	<.010	<.010	<.010	<.010	<.010	<.010
		06/08/98	S2	SU-78	<.010	.010	<.010	.025	<.010	.072
58	Platte River at Louisville, NE	05/22/98	S 1	SU-39	<.010	<.010	<.010	<.010	<.010	<.010
		05/22/98	SD	SU-40	<.010	<.010	<.010	<.010	<.010	<.010
		06/09/98	S2	SU-77	<.010	<.010	<.010	<.010	<.010	<.010
59	Big Nemaha River at Falls City, NE	05/26/98	S 1	SU-41	<.010	<.010	<.010	<.010	<.010	<.010
		06/08/98	S2	SU-80	<.010	<.010	<.010	.052	<.010	<.010
60	W. Fork Big Blue River,	05/23/98	S 1	SU-36	<.010	<.010	<.010	.128	<.010	<.010
	Dorchester, NE	06/10/98	S2	SU-82	Sample	ruined in	n laborato	ry		
61	Big Blue River at Barneston, NE	05/15/98	S 1	SU-4	<.010	<.010	<.010	<.010	<.010	<.010
		06/9/98	S2	SU-104	<.010	.036	<.010	.033	.053	.022
62	Little Blue River near Fairbury, NE	05/12/98	S 1	SU-3	<.010	<.010	<.010	<.010	<.010	<.010
		06/08/98	S2	SU-81	<.010	.012	<.010	.064	<.010	<.010
			0	hio						
63	Clear Creek near Rockbridge, OH	06/10/98	S 1	SU-86	Sample	ruined in	n laborato	ry		
		06/30/98	S2	SU-145	<.010	.013	<.010	.018	<.010	<.010
64	Scioto River near Prospect, OH	06/02/98	S 1	SU-63	<.010	.081	<.010	<.010	<.010	.010
		06/29/98	S2	SU-141	<.010	.044	<.010	.030	<.010	E.018

and 5 midwestern reservoirs—Continued

SD, duplicate stream sample; RD, duplicate reservoir sample; SB, blank stream sample; SS, spiked stream sample; <, less than; E, estimate

Site					Concen in microgra	tration, ms per liter				
no. (figs. 3, 4)	lmaza- quin	lmaze- thapyr	Metsul- furon methyl	Nicosul- furon	Primi- sulfuron methyl	Prosul- furon	Sulfo- meturon methyl	Thifen- sulfuron methyl	Triasul- furon	Triflu- sulfuron methyl
				Ke	ntucky—Cont	inued				
52	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
	.013	<.010	<.010	.012	<.010	<.010	<.010	<.010	<.010	<.010
				Mi	ssouri—Cont	inued				
53	<.010	.052	<.010	.065	<.010	<.010	<.010	<.010	<.010	<.010
	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
				Ne	braska—Cont	inued				
54	<.010	.144	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
	.028	.078	<.010	.037	<.010	E.011	<.010	<.010	<.010	<.010
55	.071	.051	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
	E.061	.040	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
	.234	.161	<.010	.025	<.010	<.010	<.010	<.010	<.010	<.010
56	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
	.033	E.022	<.010	E.039	<.010	E.027	<.010	<.010	<.010	<.010
57	< 010	212	< 010	< 010	< 010	< 010	< 010	< 010	< 010	< 010
57	<.010	.215	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
	<.010	.028	<.010	.050	<.010	<.010	<.010	<.010	<.010	<.010
58	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
	E.021	.030	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
	<.010	<.010	<.010	.150	<.010	E.010	<.010	<.010	<.010	<.010
59	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
	E.066	.122	<.010	.161	<.010	<.010	<.010	<.010	<.010	<.010
60	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
	Sample no	ot analyzed								
61	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
	.045	.021	<.010	.030	<.010	E.036	.014	<.010	<.010	<.010
62	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
	.063	<.010	<.010	<.010	<.010	E.009	<.010	<.010	<.010	<.010
				(Ohio—Contin	ued				
63	Sample no	ot analyzed								
	E.009	<.010	<.010	.017	<.010	E.008	<.010	<.010	<.010	<.010
64	.512	.026	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
	.266	.314	<.010	.075	<.010	<.010	<.010	<.010	<.010	<.010

Table 6. Sulfonylurea, sulfonamide, and imidazolinone herbicide concentrations in water samples from 71 midwestern streams

[S1, pre-emergence stream sample; S2, post-emergence stream sample; R1, first reservoir outflow sample; R2, second reservoir outflow sample;

Site		Date of	Sample	Concentration, in micrograms per liter								
no. (figs. 3, 4)	Site name	(month/ day/year)	type	Sample no.	Bensul- furon methyl	Chlori- muron ethyl	Chlor- sulfuron	Flumet- sulam	Halosul- furon methyl	lmaza- pyr		
			Ohio—0	Continued								
65	Olentangy River at Claridon, OH	06/09/98	S1	SU-85	< 0.010	< 0.010	< 0.010	< 0.010	E0.005	E0.005		
		06/29/98	S2	SU-157	<.010	.023	<.010	.013	<.010	<.010		
		06/29/98	SB	SU-156	<.010	<.010	<.010	<.010	<.010	<.010		
66	Olentangy River below Delaware,	06/09/98	R1	SU-84	Sample	ruined ir	1 laborator	y				
	Lake Dam, OH	06/29/98	R2	SU-153	<.010	.048	<.010	.023	<.010	<.010		
		07/01/98	RD	SU-154	<.010	.044	<.010	.022	<.010	<.010		
67	Big Darby Creek at Darbyville, OH	06/03/98	S 1	SU62	<.010	E.006	<.010	.021	<.010	<.010		
		06/29/98	S2	SU-140	<.010	.013	<.010	.048	<.010	<.010		
68	Scioto River at Higby, OH	06/04/98	S 1	SU-73	<.010	.022	<.010	.014	<.010	<.010		
		07/08/98	S2	SU-165	<.010	.041	<.010	.030	<.010	E.004		
69	L. Miami River near Oldtown, OH	06/10/98	S 1	SU-92	<.010	<.010	<.010	E.007	<.010	<.010		
		06/30/98	S2	SU-144	<.010	.015	<.010	.033	<.010	<.010		
70	Mad River at Eagle City, OH	06/10/98	S 1	SU-91	<.010	<.010	E.013	<.010	<.010	<.010		
		06/30/98	S2	SU-146	<.010	.021	<.010	<.010	<.010	<.010		
71	Tiffin River at Stryker, OH	06/01/98	S 1	SU-66	<.010	E.006	<.010	.020	<.010	<.010		
		06/01/98	SD	SU-67	<.010	E.006	<.010	.021	<.010	<.010		
		07/07/98	S2	SU-172	Sample	not analy	yzed (both	bottles b	roken)			
72	Auglaize River at Fort Jennings, OH	06/17/98	S 1	SU-117	<.010	<.010	<.010	E.290	<.010	<.010		
		07/08/98	S2	SU–171	<.010	.067	<.010	.110	E.067	<.010		
72	De et Disser et De sine WI	06/01/09	W1S	consin	< 010	< 010	< 010	< 010	< 010	E 009		
15	Root River at Racine, w1	00/01/98	51	SU-01	<.010	<.010	<.010	<.010	<.010	E.008		
		08/03/98	52	50-204	<.010	<.010	<.010	<.010	<.010	<.010		
74	St. Croix River at	06/03/98	S1	SU–68	<.010	<.010	<.010	<.010	<.010	<.010		
	St. Cloix Fails, WI	08/05/98	S2	SU-205	<.010	<.010	<.010	<.010	<.010	<.010		
75	Wisconsin River at Muscoda, WI	06/16/98	S 1	SU-133	<.010	<.010	<.010	E.009	<.010	<.010		
		08/07/98	S2	SU-202	<.010	<.010	<.010	<.010	<.010	<.010		
		08/07/98	SD	SU-203	<.010	<.010	<.010	<.010	<.010	<.010		
76	Rock River at Afton, WI	06/17/98	S 1	SU-134	<.010	<.010	<.010	.020	<.010	<.010		
		07/21/98	S 2	SU-179	<.010	<.010	<.010	.041	<.010	<.010		

and 5 midwestern reservoirs-Continued

Site	Concentration, in micrograms per liter												
no. (figs. 3, 4)	lmaza- quin	lmaze- thapyr	Metsul- furon methyl	Nicosul- furon	Primi- sulfuron methyl	Prosul- furon	Sulfo- meturon methyl	Thifen- sulfuron methyl	Triasul- furon	Triflu- sulfuron methyl			
					Ohio—Contin	ued							
65	< 0.010	E0.014	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010			
	.032	.072	<.010	.049	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
66	Sample no	ot analyzed											
	.103	.158	<.010	.091	<.010	<.010	<.010	<.010	<.010	<.010			
	.098	.167	<.010	.089	<.010	<.010	<.010	<.010	<.010	<.010			
67	.068	<.010	<.010	E.012	<.010	<.010	<.010	<.010	<.010	<.010			
	.025	<.010	<.010	.022	<.010	<.010	<.010	<.010	<.010	<.010			
68	.030	<.010	<.010	E.009	<.010	<.010	<.010	<.010	<.010	<.010			
	E.084	.083	<.010	.060	<.010	<.010	<.010	<.010	<.010	<.010			
69	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	E.008	<.010	<.010	E.008	<.010	<.010	<.010	<.010	<.010	<.010			
70	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	E.007	<.010	.012	<.010	<.010	<.010	<.010	<.010	<.010			
71	<.010	E.007	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	E.006	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	Sample no	ot analyzed											
72	E.410	.044	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	.206	.062	<.010	.040	<.010	E.009	<.010	.015	<.010	<.010			
				Wi	sconsin—Con	tinued							
73	<.010	E.024	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
74	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
75	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	<.010	<.010	E.007	<.010	<.010	<.010	<.010	<.010	<.010			
76	<.010	E.008	<.010	E.009	<.010	<.010	<.010	<.010	<.010	<.010			
	<.010	.020	<.010	.029	<.010	<.010	<.010	<.010	<.010	<.010			

SD, duplicate stream sample; RD, duplicate reservoir sample; SB, blank stream sample; SS, spiked stream sample; <, less than; E, estimate]

Table 7. Statistical summary of sulfonylurea, sulfonamide, and imidazolinone herbicide concentrations in 133 water samples from 71 midwestern streams (concentrations in micrograms per liter)

[<, less than; E, estimate]

Herbicide	Method reporting limit (MRL)	Number at or above MRL	25th percentile	Median	75th percentile	95th percentile	Maximum
bensulfuron methyl	0.010	0	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
chlorimuron ethyl	.010	41	<.010	<.010	.013	.081	E.300
chlorsulfuron	.010	1	<.010	<.010	<.010	<.010	E.013
flumetsulam	.010	87	<.010	.020	.057	.128	E.360
halosulfuron methyl	.010	7	<.010	<.010	<.010	E.011	E.067
imazapyr	.010	5	<.010	<.010	<.010	E.006	.072
imazaquin	.010	44	<.010	<.010	.021	.217	E1.11
imazethapyr	.010	92	E.005	.028	.073	.183	E.690
metsulfuron methyl	.010	0	<.010	<.010	<.010	<.010	E.007
nicosulfuron	.010	70	<.010	.010	.039	.110	.266
primisulfuron methyl	.010	0	<.010	<.010	<.010	<.010	<.010
prosulfuron	.010	6	<.010	<.010	<.010	E.009	.036
sulfometuron methyl	.010	2	<.010	<.010	<.010	<.010	.018
thifensulfuron methyl	.010	2	<.010	<.010	<.010	<.010	.015
triasulfuron	.010	0	<.010	<.010	<.010	<.010	E.005
triflusulfuron methyl	.010	0	<.010	<.010	<.010	<.010	<.010
Sum of all 16 analytes	.010	111	.027	.128	.237	.560	2.10

Figure 13. Sulfonylurea, sulfonamide, and imidazolinone herbicide concentrations and percent detections at or above the method reporting limit of 0.01 microgram per liter in 133 stream samples.

associated with the stream (and reservoir outflow) sampling sites are shaded according to the herbicide concentrations in the associated samples. The difference in concentration between pre- and postemergence samples is notable for all three of these compounds. In general, the occurrence of imazethapyr at concentrations greater than $0.10 \,\mu$ g/L appears to be more widespread than flumetsulam or nicosulfuron. Nicosulfuron concentrations tend to be lower than flumetsulam or imazethapyr except in the postemergence samples from the large stream sites (fig. 16D). The difference between pre- and postemergence concentrations for these three compounds is not as distinct as the difference between pre- and post-application concentrations of alachlor, atrazine, or cyanazine observed in previous investigations (Goolsby and others, 1994; Goolsby and Battaglin, 1995). The difference in concentrations between smaller agricultural watersheds and larger watersheds that have more diverse land use also is evident in figures 14, 15, and 16. The concentration of one of these three herbicides exceeds $0.10 \,\mu\text{g/L}$ in 43 of 369 values (11.7 percent) in samples from stream or reservoir outflow sites in smaller watersheds but only in 3 of 54 values (5.5 percent) in samples from the nine sites on streams of larger watersheds.

Pre-emergence samples

Post-emergence samples

Figure 14. Spatial distributions of imazethapyr concentrations in: (*A*) pre-emergence samples from small stream and reservoir outflow sites, (*B*) pre-emergence samples from large river sites, (*C*) post-emergence samples from small stream and reservoir outflow sites, and (*D*) post-emergence samples from large river sites.

Pre-emergence samples

Post-emergence samples

Figure 15. Spatial distributions of flumetsulam concentrations in: (*A*) pre-emergence samples from small stream and reservoir outflow sites, (*B*) pre-emergence samples from large river sites, (*C*) post-emergence samples from small stream and reservoir outflow sites, and (*D*) post-emergence samples from large river sites.

Pre-emergence samples

Post-emergence samples

Figure 16. Spatial distributions of nicosulfuron concentrations in: (*A*) pre-emergence samples from small stream and reservoir outflow sites, (*B*) pre-emergence samples from large river sites, (*C*) post-emergence samples from small stream and reservoir outflow sites, and (*D*) post-emergence samples from large river sites.

Reservoir Outflows

Results from eight reservoir outflow samples are given in table 6. A statistical summary of these results is given in table 8. At least one of the 16 SU, SA, or IMI herbicides was detected at or above the MRL in six of eight (75 percent) reservoir outflow samples. Flumetsulam, imazethapyr, and imazaquin were each detected in five samples. Nicosulfuron was detected in four samples. Chlorimuron ethyl was detected in two samples, and chlorsulfuron was detected in one sample. Bensulfuron methyl, halosulfuron methyl, imazapyr, metsulfuron methyl, primisulfuron methyl, prosulfuron, sulfometuron methyl, thifensulfuron methyl, triasulfuron, and triflusulfuron methyl were not detected at or above the MRL.

The distributions of concentrations of the target analytes in eight reservoir outflow samples are summarized in figure 17. In some cases, estimated concentrations are reported that are below the MRL. These concentrations are not counted as detections at or above the MRL in table 8 but are plotted in figure 17 and used to calculate the percentiles shown in table 8. The sum of SU, SA, and IMI concentrations did not exceeded 0.50 μ g/L in any of the reservoir outflow samples.

Ground Water

Results from 25 ground-water samples are given in table 9. A statistical summary of these results is given in table 10. At least one of the 16 SU, SA, or IMI herbicides was detected at or above the MRL in 5 of 25 (20 percent) ground-water samples. Imazethapyr was detected in four samples, flumetsulam and imazaquin were each detected in three samples, and nicosulfuron was detected in two samples. Bensulfuron methyl, chlorimuron ethyl, chlorsulfuron, halosulfuron methyl, imazapyr, metsulfuron methyl, primisulfuron methyl, prosulfuron, sulfometuron methyl, thifensulfuron methyl, triasulfuron, and triflusulfuron methyl were not detected at or above the MRL.

Table 8. Statistical summary of sulfonylurea, sulfonamide, and imidazolinone herbicide concentrations in eight water samples from the outflow of five midwestern reservoirs (concentrations in micrograms per liter, the 95th percentile is not given as it is the same as the maximum)

Herbicide	Number at or above MRL	25th percentile	Median	75th percentile	Maximum
bensulfuron methyl	0	< 0.010	< 0.010	< 0.010	< 0.010
chlorimuron ethyl	2	<.010	<.010	.026	.080
chlorsulfuron	1	<.010	<.010	<.010	E.023
flumetsulam	5	<.010	.022	.054	.116
halosulfuron methyl	0	<.010	<.010	<.010	<.010
imazapyr	0	<.010	<.010	<.010	<.010
imazaquin	5	<.010	.016	.087	.126
imazethapyr	5	<.010	.032	.076	.158
metsulfuron methyl	0	<.010	<.010	<.010	<.010
nicosulfuron	4	<.010	E.009	.032	.091
primisulfuron methyl	0	<.010	<.010	<.010	<.010
prosulfuron	0	<.010	<.010	<.010	<.010
sulfometuron methyl	0	<.010	<.010	<.010	<.010
thifensulfuron methyl	0	<.010	<.010	<.010	<.010
triasulfuron	0	<.010	<.010	<.010	<.010
triflusulfuron methyl	0	<.010	<.010	<.010	<.010
sum of 16 SUs, SAs, and IMIs	6	.029	.094	.299	.464

[MRL, method reporting limit; <, less than; E, estimate]

Figure 17. Sulfonylurea, sulfonamide, and imidazolinone herbicide concentrations in eight reservoir outflow samples.

The distributions of concentrations of the target analytes in 25 ground-water samples are summarized in figure 18. In some samples, estimated concentrations are reported that are below the MRL. These concentrations are not counted as detections at or above the MRL in table 10, but are plotted in figure 18 and used to calculate the percentiles shown in table 10. All non-detects are treated as zeros in the calculation of percentiles. The sum of SU, SA, and IMI concentrations exceeded 0.10 μ g/L in only one ground-water sample.

OCCURRENCE OF OTHER PESTICIDES

Results of analysis for 46 pesticides or pesticide degradates performed at the NWQL and 13 herbicides and 10 herbicide degradates performed at the OGRL are presented below. Although there is some overlap between these two data sets, the analytical methods used are not identical and, in particular, the MRL for the analyses from the OGRL is generally 10 times higher than the MDLs for analyses from the NWQL. However, the OGRL analyzes for several herbicide metabolites that the NWQL does not quantify.

Streams

The results of analysis by the NWOL for 46 pesticides and pesticide degradates in 134 stream samples are given in tables 11-13. A statistical summary of these results is given in table 14. At least 1 of the 46 compounds was detected at or above the MDL in every sample. Some estimated concentrations are reported that are below the MDL. These concentrations are not counted as detections at or above the MDL in table 14 but are plotted in figures 19 and 20 and used to calculate the percentiles in table 14. All non-detects are treated as zeros in the calculation of percentile values. Acetochlor, atrazine, deethylatrazine, cyanazine, and metolachlor were all detected in 90 percent (121) or more of the stream samples. Alachlor, metribuzin, simazine, and trifluralin were all detected in more than 50 percent (67) of stream samples. Twelve other pesticides or degradates were detected in 5 percent (7) or more of stream samples.

Atrazine had the highest median concentration (3.77 μ g/L) in the NWQL results, followed by metolachlor (1.67 μ g/L), acetochlor (0.400 μ g/L), and cyanazine (0.322 μ g/L). The distributions of concentrations of the analytes that were detected more than twice in 134 samples are summarized in figures 19 and 20. The sum of the concentrations of the 46 pesticide and degradates listed in tables 11–14 exceeded 15 μ g/L in more than 25 percent of the stream samples.

The results of analysis by the OGRL for 13 herbicides and 10 herbicide degradates in 141 stream samples and 10 reservoir outflow samples are given in tables 15 and 16. A statistical summary of the stream results is given in table 17. One or more of the 13 herbicides was detected at or above the MRL in 140 (99 percent) of the 141 stream samples. One or more of the 10 herbicide degradates was detected in 139 (99 percent) of the samples. Alachlor ESA, Table 9. Sulfonylurea, sulfonamide, and imidazolinone herbicide concentrations in water samples collected from 25 midwestern wells

[W1, well sa	mple from round	1; WD, d	uplicate well sam	ple; <, less	than; E, estimate]
--------------	-----------------	----------	-------------------	--------------	--------------------

Site no.	Site	Date of collection	Sample	Concentration, in micrograms per liter								
(fig. 5)	name	(month/ day/year)	type	Sample no.	Bensul- furon	Chlori- muron	Chlor- sulfuron	Flumet- sulam	Halosul- furon	lmaza- pyr		
				Illin	ois							
1	LUS1–4	05/19/98	W1	SU-11	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010		
2	LUS1-14	05/18/98	W1	SU-7	<.010	<.010	<.010	<.010	<.010	<.010		
		05/18/98	WD	SU-10	<.010	<.010	<.010	<.010	<.010	<.010		
3	LUS1-26	06/18/98	W1	SU-118	<.010	<.010	<.010	<.010	<.010	<.010		
4	LUS2–9	06/15/98	W1	SU-111	<.010	<.010	<.010	<.010	<.010	<.010		
5	LUS2–22	06/18/98	W1	SU-121	<.010	<.010	<.010	<.010	<.010	<.010		
<i>r</i>		07/22/00	XX 7.1		va	010	010	010	010	010		
6	Blockton I	07/23/98	W1	SU-184	<.010	<.010	<.010	<.010	<.010	<.010		
7	Fort Madison 4	07/22/98	W1	SU–182	<.010	<.010	<.010	<.010	<.010	<.010		
8	Shambaugh 3	07/24/98	W1	SU–186	<.010	<.010	<.010	<.010	<.010	E.002		
9	Nodaway 4	07/23/98	W1	SU-185	<.010	<.010	<.010	<.010	<.010	<.010		
10	Silver City 3	07/31/98	W1	SU-198	<.010	<.010	<.010	<.010	<.010	<.010		
		07/31/98	WD	SU-199	<.010	<.010	<.010	<.010	<.010	<.010		
11	Carson (5), 3	07/31/98	W1	SU-200	<.010	<.010	<.010	<.010	<.010	<.010		
12	Cumberland 1	07/27/98	W1	SU-188	<.010	<.010	<.010	<.010	<.010	<.010		
13	Fontanelle 5	07/23/98	W1	SU-183	<.010	<.010	<.010	<.010	<.010	<.010		
14	Menlo 3	07/29/98	W1	SU-193	<.010	<.010	<.010	.016	<.010	<.010		
15	Carlisle 5	07/27/98	W1	SU-187	<.010	<.010	<.010	<.010	<.010	E.005		
16	Newton 13	06/03/98	W1	SU-71	<.010	<.010	<.010	<.010	<.010	<.010		
17	Belle Plaine 4	06/02/98	W1	SU-70	<.010	<.010	<.010	<.010	<.010	<.010		
18	Cedar Rapids S6	08/25/98	W1	SU–211	<.010	<.010	<.010	.023	<.010	<.010		
		08/25/98	WD	SU-212	<.010	<.010	<.010	.023	<.010	<.010		
19	Vail 1	06/23/98	W1	SU-137	<.010	<.010	<.010	<.010	<.010	<.010		
20	Marshalltown 8	06/02/98	W1	SU-72	<.010	<.010	<.010	<.010	<.010	<.010		
21	Boone 20	07/28/98	W1	SU-190	<.010	<.010	<.010	.035	<.010	<.010		
22	Boxholm 2	07/25/98	W1	SU–189	<.010	<.010	<.010	<.010	<.010	<.010		
		07/25/98	WD	SU-191	<.010	<.010	<.010	<.010	<.010	E.001		
23	Holstein 3	06/25/98	W1	SU-139	<.010	<.010	E.009	<.010	<.010	<.010		
24	Kingsley 1	06/25/98	W1	SU-138	<.010	<.010	<.010	E.007	<.010	<.010		
25	Sheffield 2	07/29/98	W1	SU–192	<.010	<.010	<.010	<.010	<.010	<.010		

48 Concentration of Selected Sulfonylurea, Sulfonamide, and Imidazolinone Herbicides, Other Pesticides, and Nutrients in 71 Streams, 5 Reservoir Outflows, and 25 Wells in the Midwestern United States, 1998

Site no.					Concen in microgra	tration, ms per liter				
(fig. 5)	lmaza- quin	lmaze- thapyr	Metsul- furon	Nicosul- furon	Primisul- furon	Prosul- furon	Sulfo- meturon	Thifensul- furon	Triasul- furon	Triflusul- furon
				I	llinois—Conti	nued				
1	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
2	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
3	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
4	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
5	.024	E.012	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
					Iowa—Contin	ued				
6	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
7	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
8	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
9	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
10	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
11	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
12	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
13	<.010	E.002	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
14	E.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
15	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
16	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
17	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
18	<.010	.025	<.010	.016	<.010	<.010	<.010	<.010	<.010	<.010
	<.010	.025	<.010	.015	<.010	<.010	<.010	<.010	<.010	<.010
19	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
20	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
21	E.007	.059	<.010	E.010	<.010	<.010	<.010	<.010	<.010	<.010
22	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
23	.012	.013	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
24	<.010	E.004	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
25	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010

 Table 10.
 Statistical summary of sulfonylurea, sulfonamide, and imidazolinone herbicide concentrations in 25 water samples

 from 25 midwestern wells (concentrations in micrograms per liter)

[MRL, method reporting limit; <, less than; E, estimate]

Herbicide	Number at or above MRL	25th percentile	Median	75th percentile	95th percentile	Maximum
bensulfuron methyl	0	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
chlorimuron ethyl	0	<.010	<.010	<.010	<.010	<.010
chlorsulfuron	0	<.010	<.010	<.010	<.010	E.009
flumetsulam	3	<.010	<.010	<.010	.023	.035
halosulfuron methyl	0	<.010	<.010	<.010	<.010	<.010
imazapyr	0	<.010	<.010	<.010	E.002	E.005
imazaquin	2	<.010	<.010	<.010	.012	.024
imazethapyr	4	<.010	<.010	<.010	.025	.059
metsulfuron methyl	0	<.010	<.010	<.010	<.010	<.010
nicosulfuron	2	<.010	<.010	<.010	.010	.016
primisulfuron methyl	0	<.010	<.010	<.010	<.010	<.010
prosulfuron	0	<.010	<.010	<.010	<.010	<.010
sulfometuron methyl	0	<.010	<.010	<.010	<.010	<.010
thifensulfuron methyl	0	<.010	<.010	<.010	<.010	<.010
triasulfuron	0	<.010	<.010	<.010	<.010	<.010
triflusulfuron methyl	0	<.010	<.010	<.010	<.010	<.010
Sum of all 16 analytes	5	<.010	<.010	E.005	.064	.110

atrazine, deethylatrazine, metolachlor, and metolachlor ESA were all detected in 127 (90 percent) or more of the samples. Acetochlor, acetochlor ESA, acetochlor OA, deisopropylatrazine, cyanazine, cyanazine-amide, and metolachlor OA were detected in 71 (50 percent) or more of stream samples. Eight other herbicides or degradates were detected in seven (5 percent) or more of stream samples.

Atrazine had the highest median concentration $(3.27 \,\mu g/L)$ in the OGRL results, followed by metolachlor ESA (1.55 μ g/L), metolachlor (1.15 μ g/L), and acetochlor ESA (0.88 μ g/L). The median of the sums of the concentrations of the 13 herbicides $(5.96 \,\mu\text{g/L})$ was smaller than the median of the sums of the concentrations of the 10 herbicide degradates $(7.53 \mu g/L)$. The distributions of concentrations of the selected analytes in 141 samples from midwestern streams are summarized in figure 21. The concentrations of several herbicide metabolites such as acetochlor ESA and alachlor ESA tended to be higher than the concentrations of the parent compounds. These findings are consistent with results from several recent studies which found higher concentrations of herbicide metabolites relative to the parent herbicides

in streams, tile drains, and ground water (Kolpin and others, 1998; Kalkhoff and others, 1998; Phillips and others, 1999).

Reservoir Outflows

The results of analysis by the NWQL for 46 pesticides and pesticide degradates in 10 samples of reservoir outflow are given in tables 11–13. A statistical summary of these results is given in table 18. At least one of the 46 compounds was detected at or above the MDL in every sample. Acetochlor, alachlor, atrazine, deethylatrazine, cyanazine, metolachlor, metribuzin, and simazine were all detected at or above their MDL in nine (90 percent) or more of the reservoir outflow samples. Prometon was the only other pesticide detected at or above the MDL in more than five (50 percent) of reservoir outflow samples. Five other pesticides or degradates were detected at or above the MDL in two or more samples.

Atrazine had the highest median concentration (2.01 μ g/L) in NWQL results, followed by metolachlor (1.36 μ g/L), cyanazine (0.325 μ g/L), acetochlor (0.294 μ g/L), deethylatrazine (0.219 μ g/L), and simazine (0.051 μ g/L). The sum of the concentrations of the 46 pesticide and degradates listed in tables 11–13 exceeded 10 μ g/L in 3 of 10 reservoir outflow samples.

The results of analysis by the OGRL for 13 herbicides and 10 herbicide degradates in 10 reservoir outflow samples are given in tables 15 and 16. A statistical summary of these results is given in table 19. One or more of the 13 herbicides was detected at or above the MRL in every sample. One or more of the 10 herbicide degradates also was detected at or above the MRL in every sample. Acetochlor, alachlor ESA, atrazine, deethylatrazine, deisopropylatrazine, hydroxy-atrazine, cyanazine, cyanazineamide, metolachlor, metolachlor ESA, and metolachlor OA were all detected in 9 (90 percent) or more of the 10 reservoir outflow samples. Acetochlor ESA and acetochlor OA were detected in 6 (60 percent) or more of 10 samples. Five other herbicides or degradates were detected in one (10 percent) or more of reservoir samples.

Figure 18. Sulfonylurea, sulfonamide, and imidazolinone herbicide concentrations in 25 groundwater samples.

Atrazine had the highest median concentration (2.15 μ g/L) in OGRL results, followed by metolachlor ESA (2.11 μ g/L), metolachlor OA (1.17 μ g/L), metolachlor (1.06), hydroxy-atrazine (0.68 μ g/L), and alachlor ESA (0.63 μ g/L). The median of the sum of the concentrations of the 13 herbicides in the 10 reservoir outflow samples (4.33 μ g/L) was smaller than the median of the sum of the concentrations of the 10 herbicide degradates (7.58 μ g/L) (table 19).

Ground Water

The results of analysis by the NWQL for 46 other pesticides and pesticide degradates in 23 ground-water samples are given in tables 20–22. A statistical summary of these results is given in table 23. At least 1 of the 46 compounds was detected at or above the MDL in 15 of the 23 samples. Atrazine, deethylatrazine, and metolachlor were detected in 13 (57 percent) or more of the samples. 2,6-Diethylaniline, acetochlor, alachlor, butylate, cyanazine, metribuzin, prometon, and simazine were the only other pesticides or degradates that were detected at a concentration at or above their MDL.

Atrazine had the highest median concentration $(0.039 \ \mu g/L)$ in NWQL results, followed by deethylatrazine $(0.029 \ \mu g/L)$, and metolachlor $(0.013 \ \mu g/L)$. The highest concentration for any pesticide or degradate was for metolachlor $(0.557 \ \mu g/L)$.

The results of analysis by the OGRL for 13 herbicides and 10 herbicide degradates in 25 ground-water samples are given in tables 24 and 25. A statistical summary of these results is given in table 26. One or more of the 13 herbicides was detected at or above the MRL in seven (28 percent) of the samples. One or more of the 10 herbicide degradates was detected at or above the MRL in 18 (72 percent) of the samples. Metolachlor ESA was detected most frequently (15 of 25 samples), followed by alachlor ESA (8 of 25 samples), and deethylatrazine and metolachlor OA (7 of 25 samples). Atrazine was the most frequently detected parent herbicide (6 of 25 samples). Acetochlor ESA, acetochlor OA, alachlor OA, deisopropylatrazine, cyanazine-amide, and metolachlor were all detected in two or more samples.

Metolachlor ESA had the highest median concentration (0.66 μ g/L) in OGRL results and the highest concentration for any herbicide or degradate in a ground-water sample (3.77 μ g/L).

Table 11. Pesticide and pesticide degradate (2,6-diethylaniline through fonofos) concentrations in water samples from

[S1, pre-emergence stream sample; S2, post-emergence stream sample; RI, first reservoir outflow sample; R2, second reservoir outflow sample;

Cito no		Date of	Sample	Concentration, in micrograms per liter								
(figs. 3, 4)	Site name	(month/ day/year)	Sample type	Sample no.	2,6- Diethyl- aniline	Aceto- chlor	Ala- chlor	Atra- zine	Azin- phos- methyl	Benflu- ralin	Butyl- ate	
				Illinois								
1	Vermillion River below Lake	06/10/98	R1	SU-98	< 0.0030	0.324	0.009	6.34	< 0.0010	< 0.0020	< 0.0020	
	Vermillion Dam, IL	07/16/98	R2	SU-177	<.0030	.0330	<.002	1.52	<.0010	<.0020	<.0150	
2	Bonpas Creek at Browns, IL	05/23/98	S 1	SU-43	<.0030	15.6	.584	E127	<.0010	<.0020	.0061	
		07/07/98	S2	SU-166	<.0030	.103	.016	1.72	<.0010	<.0020	<.0020	
3	Little Wabash River at Carmi, IL	05/23/98	S 1	SU-33	<.0030	4.33	4.26	E75.4	<.0010	<.0020	.0208	
		07/09/98	S2	SU-175	<.0030	.123	.319	7.57	<.0010	<.0020	<.0020	
4	S. Branch Kishwaukee River near	05/20/98	S 1	SU-29	<.0030	17.7	.525	18.5	<.0010	<.0020	<.0020	
	Fairdale, IL	07/29/98	S2	SU-195	<.0030	.0140	<.002	.223	<.0010	<.0020	<.0020	
5	Iroquois River near Chebanse, IL	06/10/98	S 1	SU-99	<.0030	.220	.011	2.22	<.0010	<.0020	<.0020	
		07/08/98	S2	SU-168	<.0030	.117	.010	2.87	<.0010	<.0020	<.0020	
6	Dupage River near Shorewood, IL	06/09/98	S 1	SU-100	<.0030	.0328	.005	.085	<.0010	<.0020	<.0020	
		07/29/98	S2	SU-194	<.0030	<.0020	<.002	.029	<.0010	<.0020	<.0020	
7	Illinois River at Marseilles, IL	06/12/98	S 1	SU-113	<.0030	.934	.048	3.73	<.0010	<.0020	<.0020	
		07/09/98	S2	SU-176	<.0030	.197	.017	1.95	<.0010	<.0020	<.0020	
8	Spoon River at London Mills, IL	05/20/98	S 1	SU-25	<.0030	3.56	.286	E30.0	<.0010	<.0020	<.0020	
		07/01/98	S2	SU-160	<.0030	.151	.017	3.07	<.0010	<.0020	<.0020	
9	Sangamon River near Monticello, IL	05/23/98	S 1	SU-35	<.0030	.622	.021	3.30	<.0010	<.0020	.0372	
		08/05/98	S2	SU-201	<.0030	.0180	<.002	.440	<.0010	<.0020	<.0020	
10	Sangamon River at Riverton, IL	05/26/98	S 1	SU-44	<.0030	1.99	.180	15.1	<.0010	<.0020	E.0014	
		07/09/98	S2	SU-174	<.0030	.0901	.025	1.90	<.0010	<.0020	<.0020	
11	LaMoine River at Colmar, IL	05/21/98	S 1	SU-27	<.0030	11.6	.045	E27.7	<.0010	<.0020	<.0020	
		06/29/98	S2	SU-142	<.0030	.263	.028	4.25	<.0010	<.0020	<.0020	
12	Illinois River at Valley City, IL	06/18/98	S 1	SU-120	<.0030	1.16	.063	8.18	<.0010	<.0020	<.0020	
		08/12/98	S2	SU-207	<.0030	.0199	<.002	.326	<.0010	<.0020	<.0020	
13	Mississippi River below Grafton, IL	06/02/98	S 1	SU-60	<.0030	.879	.029	3.16	<.0010	<.0020	<.0020	
		06/15/98	S2	SU–116	<.0030	.901	.069	5.96	<.0010	<.0020	<.0020	
14	Kaskaskia River near Cowden, IL	05/20/98	S 1	SU-30	<.0030	.478	.027	1.73	<.0010	<.0020	<.0020	
		07/08/98	S2	SU-169	<.0030	1.01	.045	4.60	<.0010	<.0020	<.0020	
15	Shoal Creek near Breese, IL	05/22/98	S 1	SU-32	<.0030	11.4	.405	E34.7	<.0010	<.0020	.270	
		07/08/98	S2	SU–167	<.0030	1.14	.015	7.65	<.0010	<.0020	<.0020	
		0.000	<i>~</i> ·	lowa			···-					
16	Turkey River at Spillville, IA	06/02/98	S1	SU-64	<.0030	.298	.018	4.20	<.0010	<.0020	<.0020	
		06/12/98	S 2	SU-109	<.0030	1.45	.284	4.39	<.0010	<.0020	<.0020	

70 midwestern streams and 5 midwestern reservoirs

SD, stream duplicate sample; RD, duplicate reservoir sample; SB, blank stream sample; SS, spiked stream sample; <, less than; E, estimate]

Site ne	Concentration, in micrograms per liter												
(figs. 3, 4)	Carbaryl	Carbo- furan	Chlor- pyrifos	Cyana- zine	Dacthal	Deethyl- atrazine	Diazinon	Dieldrin	Disul- foton	EPTC	Ethal- fluralin	Etho- prophos	Fonofos
						Illinois—C	Continued						
1	< 0.0030	E0.0665	E0.0311	0.557	< 0.0020	E0.238	E0.004	E0.003	< 0.0170	< 0.0020	< 0.0040	< 0.0030	< 0.0030
	<.0030	<.0030	<.0200	.188	<.0020	E.287	<.002	<.001	<.0170	<.0200	<.0040	<.0030	<.0030
2	E.0230	<.0030	.0742	1.63	<.0020	E1.10	.005	<.001	<.0170	.0076	<.0040	<.0030	<.0030
	E.0100	<.0030	E.0325	.0159	<.0020	E.431	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
3	<.0030	<.0030	.102	1.98	<.0020	E.597	<.002	<.001	<.0170	E.0027	<.0040	<.0030	<.0030
	<.0030	<.0030	E.0165	.386	E.0011	E.786	.007	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
4	<.0030	<.0030	<.0040	2.41	<.0020	E.235	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	<.0030	<.0030	<.0040	<.0040	<.0020	E.0653	.021	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
5	E.0138	E.0694	E.0160	.473	<.0020	E.143	<.002	E.002	<.0170	<.0020	<.0040	<.0030	<.0030
	E.0089	E.0310	E.0288	.630	<.0020	E.344	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
6	E.106	<.0030	.0054	.0438	<.0020	E.0286	.020	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	<.0030	<.0030	<.0040	<.0040	<.0020	E.0105	.022	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
7	<.0030	E.191	.0323	.827	<.0020	E.184	.029	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	E.0184	<.0030	E.0191	.355	<.0020	E.251	.051	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
8	<.0030	<.0030	.858	E20.0	<.0020	E.377	<.002	.008	<.0170	.0073	<.0040	<.0030	<.0030
	E.195	E.0694	.0157	.409	<.0020	E.234	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
9	<.0030	<.0030	<.0500	.316	<.0020	E.245	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	E.124	<.0030	<.0040	.0652	<.0020	E.114	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
10	E.0096	E.0061	.0370	.643	E.0011	E.329	.005	.007	<.0170	.0075	<.0040	<.0030	<.0030
	<.0030	<.0030	.0088	.110	<.0020	E.294	.006	.008	<.0170	<.0020	<.0040	<.0030	<.0030
11	<.0030	<.0030	<.300	9.40	<.0020	E.585	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	E.0259	<.0030	<.0400	1.24	<.0020	E.767	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
12	<.0030	E.0872	<.0600	1.70	<.0020	E.828	<.002	<.001	<.0170	E.0018	<.0040	<.0030	<.0030
	<.0030	<.0030	<.0040	.106	<.0020	E.0806	.071	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
13	<.0030	<.0030	<.0040	.284	<.0020	E.0355	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	<.0030	E.0244	<.0200	.318	<.0020	E.0824	E.004	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
14	<.0030	<.0030	<.0040	.0290	<.0020	E.0581	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	<.0030	<.0030	E.0157	.408	<.0020	E.359	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
15	E.0096	<.0030	.366	2.09	<.0020	E.562	.023	<.001	<.0170	.0061	<.0040	<.0030	<.0030
	<.0030	<.0030	E.0201	.326	<.0020	E.640	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
						Iowa—Co	ontinued						
16	<.0030	E.0707	<.0400	.957	<.0020	E.290	<.002	<.001	<.0170	E.0020	<.0040	<.0030	<.0030
	<.0030	E.653	<.0400	1.56	<.0020	E.461	<.002	<.001	<.0170	E.0030	<.0040	.0454	<.0030

Table 11. Pesticide and pesticide degradate (2,6-diethylaniline through fonofos) concentrations in water samples from

[S1, pre-emergence stream sample; S2, post-emergence stream sample; RI, first reservoir outflow sample; R2, second reservoir outflow sample;

Citerre		Date of	Comula	Concentration, in micrograms per liter								
(figs. 3, 4)	Site name	(month/ day/year)	type	Sample no.	2,6- Diethyl- aniline	Aceto- chlor	Ala- chlor	Atra- zine	Azin- phos- methyl	Benflu- ralin	Butyl- ate	
			Io	wa—Conti	nued							
17	Mississippi River at Clinton, IA	05/27/98	S 1	SU-55	< 0.0030	0.252	0.029	0.400	< 0.0010	< 0.0020	< 0.0020	
		07/01/98	S2	SU-155	<.0030	.138	.028	.847	<.0010	<.0020	<.0020	
18	Wapsipinicon River near Tripoli, IA	05/27/98	S 1	SU-54	<.0030	.392	.123	1.47	<.0010	<.0020	<.0020	
		06/20/98	S2	SU-126	<.0030	.403	.160	8.56	<.0010	<.0020	<.0020	
19	Wapsipinicon River at	05/29/98	S 1	SU-56	<.0030	1.71	.480	11.4	<.0010	<.0020	<.0020	
	Independence, IA	06/12/98	S2	SU-110	<.0030	1.42	.102	11.1	<.0010	<.0020	<.0020	
20	Iowa River near Rowan, IA	06/02/98	S 1	SU-65	<.0030	.055	.008	.467	<.0010	<.0020	<.0020	
		06/23/98	S2	SU-129	<.0030	.921	.064	3.97	<.0010	<.0020	<.0020	
21	Old Mans Creek near Iowa City, IA	06/10/98	S 1	SU-93	<.0030	.849	.296	4.17	<.0010	<.0020	<.0020	
		06/30/98	S2	SU-147	<.0030	.451	.045	4.04	<.0010	<.0020	<.0020	
22	Wolf Creek near Dysart, IA	06/10/98	S 1	SU-87	<.0030	.744	.023	6.22	<.0010	<.0020	<.0020	
		06/22/98	S2	SU-128	<.0030	1.00	.066	4.50	<.0010	<.0020	<.0020	
23	Iowa River at Wapello, IA	05/27/98	S1	SU-53	Sample 1	not analyze	d (ruined	in laborator	y)			
	-	06/19/98	S2	SU-127	<.0030	.417	.050	5.16	<.0010	<.0020	<.0020	
24	N. Skunk River near Sigourney, IA	05/21/98	S 1	SU-21	<.0030	15.6	.012	E23.4	<.0010	<.0020	<.0020	
		06/10/98	S2	SU-95	<.0030	.511	.138	8.00	<.0010	<.0020	<.0020	
25	Skunk River at Augusta, IA	05/26/98	S 1	SU-45	<.0030	10.6	.120	E48.1	<.0010	<.0020	.0045	
		06/18/98	S2	SU-122	<.0030	.983	.079	9.84	<.0010	<.0020	<.0020	
26	Des Moines River at Fort Dodge, IA	05/16/98	S 1	SU-8	<.0030	16.1	.027	.732	<.0010	<.0020	<.0020	
		06/12/98	S2	SU-108	<.0030	.117	<.002	.480	<.0010	<.0020	<.0020	
27	Raccoon River at Van Meter, IA	05/17/98	S 1	SU–9	<.0030	1.16	.020	2.38	<.0010	<.0020	<.0020	
		06/10/98	S2	SU-89	<.0030	.416	.014	3.08	<.0010	<.0020	<.0020	
28	Little Sioux River at	05/27/98	S 1	SU-42	<.0030	.543	.012	1.78	<.0010	<.0020	<.0020	
	Correctionville, IA	06/18/98	S2	SU-123	<.0030	.313	.007	1.23	<.0010	<.0020	<.0020	
29	Maple River at Mapleton, IA	05/29/98	S 1	SU-59	<.0030	3.03	.026	10.0	<.0010	<.0020	<.0020	
		06/09/98	S2	SU-90	<.0030	.194	<.002	4.11	<.0010	<.0020	<.0020	
30	Boyer River at Logan, IA	05/22/98	S 1	SU-31	<.0030	3.26	.458	16.0	<.0010	<.0020	<.0020	
		06/09/98	S2	SU-96	<.0030	.714	.017	5.54	<.0010	<.0020	<.0020	
31	Chariton River below Rathbun	06/04/98	R1	SU-69	<.0030	.164	.005	1.05	<.0010	<.0020	<.0020	
	Lake Dalli, IA	06/29/98	R2	SU-148	<.0030	.308	.006	1.91	<.0010	<.0020	<.0020	
				Indiana								
33	Whitewater River near Alpine, IN	05/26/98	S1	SU-47	E.0016	2.80	1.79	24.2	<.0010	<.0020	.0238	
		07/08/98	S2	SU-162	<.0030	.118	.048	1.62	<.0010	<.0020	<.0020	

70 midwestern streams and 5 midwestern reservoirs-Continued

Sito no	Concentration, in micrograms per liter												
(figs. 3, 4)	Carbaryl	Carbo- furan	Chlor- pyrifos	Cyana- zine	Dacthal	Deethyl- atrazine	Diazinon	Dieldrin	Disul- foton	EPTC	Ethal- fluralin	Etho- prophos	Fonofos
						Iowa—Co	ontinued						
17	< 0.0030	< 0.0030	0.0047	0.0707	< 0.0020	E0.0276	< 0.002	< 0.001	< 0.0170	E0.0037	< 0.0040	< 0.0030	< 0.0030
	<.0030	E.0248	<.0040	.110	<.0020	E.130	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
18	<.0030	E.0575	<.0080	.180	<.0020	E.162	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	<.0030	E.302	.0222	.653	<.0020	E.600	<.002	<.001	<.0170	E.0019	<.0040	<.0030	<.0030
19	<.0030	E1.03	<.0040	.430	<.0020	E.415	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	E.0085	E1.01	E.0194	.681	E.0014	E.754	<.002	<.001	<.0170	<.0020	<.0040	<.0030	E.0022
20	<.0030	E.0119	<.0040	.0109	<.0020	E.0568	<.002	<.001	<.0170	E.0023	<.0040	<.0030	<.0030
	<.0030	E.0894	<.0040	.0988	<.0020	E.283	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
21	<.0030	E.0320	<.0040	.916	<.0020	E.291	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	<.0030	E.0392	.0176	.721	<.0020	E.571	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
22	<.0030	E.0865	<.0040	.570	<.0020	E.359	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	<.0030	E.0494	<.0040	.874	<.0020	E.415	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
23	Sample not	analyzed											
	<.0030	E.0937	E.0261	.788	E.0014	E.514	<.002	E.004	<.0170	<.0020	<.0040	<.0030	<.0030
24	<.0030	<.0030	E.0864	2.51	<.0020	E.297	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	E.0200	E.112	<.0040	2.06	<.0020	E.477	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
25	<.0030	E.0258	<.300	14.0	<.0020	E.539	.005	.006	<.0170	<.0020	<.0040	<.0030	E.0022
	<.0030	E.122	E.0594	1.51	<.0020	E.631	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
26	<.0030	<.0030	.0356	.154	<.0020	E.0339	<.002	<.001	<.0170	.0230	<.0040	<.0030	<.0030
	<.0030	<.0030	<.0040	.0353	<.0020	E.0479	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
27	<.0030	E.0063	<.0040	.442	<.0020	E.0480	<.002	<.001	<.0170	.0759	<.0040	<.0030	<.0030
	<.0030	E.0601	<.0040	.333	<.0020	E.156	<.002	<.001	<.0170	.0045	<.0040	<.0030	<.0030
28	<.0030	<.0030	<.0040	.0416	<.0020	E.0686	.005	<.001	<.0170	.0041	<.0040	<.0030	<.0030
	<.0030	E.0500	<.0040	.0319	<.0020	E.147	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
29	<.0030	<.0030	<.0800	2.24	<.0020	E.228	<.002	<.001	<.0170	E.0032	<.0040	<.0030	.0063
	<.0030	<.0200	<.0040	.310	<.0020	E.135	<.002	<.001	<.0170	.0047	<.0040	<.0030	<.0030
30	<.0030	<.0030	<.0040	8.07	<.0020	E.308	<.002	<.001	<.0170	.0308	<.0040	<.0030	<.0030
	<.0030	E.222	.0341	1.01	<.0020	E.180	.035	<.001	<.0170	.0107	<.0040	<.0030	<.0030
31	<.0030	<.0030	<.0040	.328	<.0020	E.101	<.002	<.001	<.0170	E.0019	<.0040	<.0030	<.0030
	<.0030	<.0030	<.0040	.321	<.0020	E.179	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
						Indiana—0	Continued						
33	<.0030	E.0387	<.190	6.75	E.0012	E.364	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	<.0030	<.0030	<.0040	.415	<.0020	E.216	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030

SD, stream duplicate sample; RD, duplicate reservoir sample; SB, blank stream sample; SS, spiked stream sample; <, less than; E, estimate]

Table 11. Pesticide and pesticide degradate (2,6-diethylaniline through fonofos) concentrations in water samples from

[S1, pre-emergence stream sample; S2, post-emergence stream sample; RI, first reservoir outflow sample; R2, second reservoir outflow sample;

Citerre		Date of	Comula			in m	Concen icrogra	tration, ms per lite	er		
(figs. 3, 4)	Site name	(month/ day/year)	type	Sample no.	2,6- Diethyl- aniline	Aceto- chlor	Ala- chlor	Atra- zine	Azin- phos- methyl	Benflu- ralin	Butyl- ate
			Ind	iana—Cont	inued						
34	Blue River at Fredericksburg, IN	05/27/98	S1	SU-50	< 0.0030	0.481	0.049	7.22	< 0.0010	< 0.0020	< 0.0020
		07/08/98	S 2	SU-163	<.0030	.0474	.016	1.09	<.0010	<.0020	<.0020
35	Mississinewa River below	06/09/98	R1	SU-83	<.0030	.545	.019	5.70	<.0010	<.0020	<.0020
	Mississinewa Lake Dam, IN	07/09/98	R2	SU-164	<.0030	.821	.099	6.90	<.0010	<.0020	<.0020
36	Eel River near Logansport, IN	05/21/98	S 1	SU-18	Sample r	not analyzed	l (broker	bottle)			
		06/30/98	S2	SU-152	<.0030	.245	1.12	3.14	<.0010	<.0020	<.0020
37	Wildcat Creek near Jerome, IN	05/21/98	S 1	SU-19	<.0030	1.76	.054	12.3	<.0010	<.0020	<.0020
		06/30/98	S 2	SU-151	<.0030	E.312	.306	6.27	<.0010	<.0020	<.0020
38	Wildcat Creek near Lafayette, IN	05/20/98	S 1	SU-22	<.0030	1.09	.029	4.56	<.0010	<.0020	<.0020
		07/01/98	S 2	SU-150	<.0030	E.198	.038	2.87	<.0010	<.0020	<.0020
39	White River near Nora, IN	05/28/98	S 1	SU-51	<.0030	1.56	.039	10.2	<.0010	<.0020	<.0020
		07/01/98	S2	SU-149	<.0030	E.445	.104	5.06	<.0010	<.0020	<.0020
40	Sugar Creek near Edinburgh, IN	05/26/98	S 1	SU-46	<.0030	4.16	.148	E28.7	<.0010	<.0020	<.0020
		07/20/98	S2	SU-178	<.0030	.127	.047	.715	<.0010	<.0020	<.0020
41	E. Fork White River near	05/28/98	S 1	SU-52	<.0030	4.44	.913	E27.9	<.0010	<.0020	<.0020
	Bedford, IN	07/06/98	S2	SU-161	<.0030	.166	.194	1.89	<.0010	<.0020	<.0020
42	Wabash River at New Harmony, IN	05/27/98	S 1	SU-57	Sample r	not analyzed	l (ruined	in laborator	y)		
		06/23/98	S2	SU-136	<.0030	1.04	.176	10.4	<.0010	<.0020	<.0020
43	Cottonwood River near	05/26/98	S 1	SU_49	a < 0030	0937	008	145	< 0010	< 0020	< 0020
-15	New Ulm, MN	07/21/98	S1 S2	SU-180	<.0030	.0605	.003	.145	<.0010	<.0020	<.0020
44	Little Cobb River near Beauford MN	05/18/98	S 1	SU-12	< 0030	2.08	154	102	< 0010	< 0020	< 0020
	Line coor ratio new Downord, int	08/17/98	S2	SU-208	<.0030	<.0020	<.002	.062	<.0010	<.0020	<.0020
45	Minnesota River near Jordan, MN	05/19/98	S 1	SU-13	<.0030	1.32	.086	.122	<.0010	<.0020	<.0020
	,	06/26/98	S2	SU-135	<.0030	.320	.112	1.09	<.0010	<.0020	<.0020
46	Mississippi River at Hastings, MN	05/20/98	S1	SU-14	<.0030	.411	.063	.175	<.0010	<.0020	<.0020
		05/20/98	S 2	SU-206	<.0030	<.0020	<.002	.088	<.0010	<.0020	<.0020
47	Des Moines River at Jackson, MN	05/26/98	S 1	SU-48	<.0030	.530	.012	.536	<.0010	<.0020	<.0020
		08/24/98	S 2	SU-210	<.0030	.0494	<.002	.159	<.0010	<.0020	<.0020
48	Rock River at Luverne, MN	06/24/98	S 1	SU-130	<.0030	.0455	<.002	.103	<.0010	<.0020	<.0020
		06/25/98	S 2	SU-131	<.0030	.0757	<.002	.147	<.0010	<.0020	<.0020
				Kansas							
49	Black Vermillion River at	05/05/98	S 1	SU-1	<.0030	.0197	.038	.381	<.0010	<.0020	<.0020
	Frankfort, KS	06/09/98	S 2	SU-107	<.0030	.0278	1.17	8.71	<.0010	<.0020	<.0020

70 midwestern streams and 5 midwestern reservoirs-Continued

SD, stream duplicate sample; RD, duplicate reservoir sample; SB, blank stream sample; SS, spiked stream sample; <, less than; E, estimate]

Cite ne						Con in micro	centration grams per	, liter					
(figs. 3, 4)	Carbaryl	Carbo- furan	Chlor- pyrifos	Cyana- zine	Dacthal	Deethyl- atrazine	Diazinon	Dieldrin	Disul- foton	EPTC	Ethal- fluralin	Etho- prophos	Fonofos
]	Indiana—C	Continued						
34	< 0.0030	< 0.0030	< 0.0100	0.232	< 0.0020	E0.325	< 0.002	< 0.001	< 0.0170	< 0.0020	< 0.0040	< 0.0030	< 0.0030
	E.0107	<.0030	<.0040	.0384	<.0020	E.277	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
35	<.0030	<.0030	<.0040	2.00	<.0020	E.200	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	E.0282	E.232	<.100	2.90	<.0020	E.729	.012	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
36	Sample n	ot analyzed	l										
	<.0030	<.0030	<.0040	.288	<.0020	E.398	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
37	<.0030	<.0030	<.0040	14.0	<.0020	E.332	<.002	<.008	<.0170	<.0020	<.0040	<.0030	<.0030
	<.0030	E.150	.0136	.879	<.0020	E.608	<.002	E.015	<.0170	<.0020	<.0040	<.0030	<.0030
38	<.0030	<.0030	E.0323	.304	<.0020	E.155	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	E.0060	E.0153	.0065	.376	<.0020	E.419	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
39	<.0030	E.0246	E.0447	1.13	<.0020	E.304	.007	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	<.0030	E.0488	<.0040	.578	<.0020	E.652	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
40	E.0060	E.0696	E.0720	2.18	<.0020	E.381	.009	E.003	<.0170	<.0020	<.0040	<.0030	<.0030
	E.0381	<.0030	.0408	<.0500	<.0020	E.140	.022	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
41	<.0030	E.0309	E.0903	2.59	<.0020	E.597	E.004	<.001	<.0170	<.0020	<.0040	<.0030	E.0015
	E.0074	<.0030	<.0100	.130	<.0020	E.296	.006	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
42	Sample n	ot analyzed	l										
	<.0030	E.157	<.0040	1.78	<.0020	E.875	.012	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
					Μ	linnesota—	-Continued						
43	<.0030	E.0656	<.0040	.0493	<.0020	E.0166	<.002	<.001	<.0170	.0047	<.0040	<.0030	<.0030
	<.0030	<.0030	<.0040	.0290	<.0020	E.0342	.018	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
44	<.0030	<.0030	<.0040	.0132	<.0020	E.0354	<.002	<.001	<.0170	<.0600	<.0040	<.0030	<.0030
	<.0030	<.0030	<.0040	<.0040	<.0020	E.0106	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
45	<.0030	<.0030	<.0040	.0277	<.0020	E.0208	<.002	<.001	<.0170	.0160	<.0040	<.0030	<.0030
	<.0030	E.0174	<.0040	.0864	<.0020	E.111	E.002	<.001	<.0170	E.0033	<.0040	<.0030	<.0030
46	<.0030	<.0030	<.0040	.0638	<.0020	E.0185	<.002	<.001	<.0170	.0232	<.0040	<.0030	<.0030
	<.0030	<.0030	<.0040	.0176	<.0020	E.0258	.005	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
47	<.0030	<.0030	<.0040	.0206	<.0020	E.0287	<.002	<.001	<.0170	.0066	<.0040	<.0030	<.0030
	<.0030	<.0030	<.0040	<.0040	<.0020	E.0636	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
48	<.0030	<.0030	<.0040	<.0040	<.0020	E.0425	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	<.0030	E.0260	<.0040	<.0040	<.0020	E.0444	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
						Kansas—C	Continued						
49	<.0030	<.0030	<.0040	.0060	<.0020	E.0167	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	<.0030	E.645	<.0040	E.0176	<.0020	E.405	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030

Table 11. Pesticide and pesticide degradate (2,6-diethylaniline through fonofos) concentrations in water samples from

[S1, pre-emergence stream sample; S2, post-emergence stream sample; RI, first reservoir outflow sample; R2, second reservoir outflow sample;

		Date of				in m	Concen	tration, ms per lite	er		
Site no. (figs. 3, 4)	Site name	collection (month/ day/year)	Sample type	Sample no.	2,6- Diethyl- aniline	Aceto- chlor	Ala- chlor	Atra- zine	Azin- phos- methyl	Benflu- ralin	Butyl- ate
			Ka	nsas—Cont	inued						
50	Big Blue River below Tuttle	06/03/98	R1	SU-74	< 0.0030	0.194	0.388	1.85	< 0.0010	< 0.0020	< 0.0020
	Creek Lake Dam, KS	07/29/98	R2	SU-197	<.0030	.279	.815	1.09	<.0010	<.0020	<.0020
51	Delaware River near Muscotah, KS	05/05/98	S 1	SU–2	<.0030	.0340	.007	.377	<.0010	<.0020	<.0020
		06/10/98	S2	SU-105	<.0030	.0992	.557	4.12	<.0010	<.0020	<.0020
				Kentucky	7						
52	Ohio River at Cannelton Dam, KY	06/04/98	S 1	SU-75	<.0030	.186	.055	1.49	<.0010	<.0020	<.0020
		07/07/98	S2	SU-173	<.0030	.0506	.014	.696	<.0010	<.0020	<.0020
				Missour	i						
53	Nodaway River near Graham, MO	06/18/98	S1	SU–119	Sample	not analyze	ed (ruined	l in laborato	ry)		
		08/19/98	S2	SU–209	<.0030	.0047	.005	.254	<.0010	<.0020	<.0020
- 1		05/22/00	61	Nebraska	0020	5.00	1.5.1		0010	0000	0000
54	North Dry Creek near Kearney, NE	05/22/98	SI GO	SU-28	<.0030	5.29	.151	7.95	<.0010	<.0020	<.0020
		06/08/98	S 2	SU-/6	<.0030	.223	.069	8.78	<.0010	<.0020	<.0020
55	Maple Creek near Nickerson, NE	05/21/98	S 1	SU-37	<.0030	E25.1	10.9	E30.0	<.0010	<.0020	<.0020
		06/08/98	S2	SU-79	<.0030	2.26	.106	12.6	<.0010	<.0020	<.0020
56	Salt Creek at Roca, NE	05/15/98	S 1	SU–6	<.0030	.398	17.2	E224	<.0010	<.0020	<.0020
		06/10/98	S2	SU-94	<.0030	.930	1.84	E37.3	<.0010	<.0020	<.0020
57	Wahoo Creek at Ithaca, NE	05/15/98	S 1	SU–5	<.0030	1.58	3.80	E38.1	<.0010	<.0020	<.0020
		06/08/98	S2	SU-78	<.0030	.490	.380	7.73	<.0010	<.0020	<.0020
58	Platte River at Louisville, NE	05/22/98	S 1	SU-39	<.0030	3.08	2.70	E25.1	<.0010	<.0020	<.0020
		06/09/98	S2	SU-77	<.0030	.729	.839	8.80	<.0010	<.0020	<.0020
59	Big Nemaha River at Falls City, NE	05/26/98	S 1	SU-41	<.0030	.396	.251	4.43	<.0010	<.0020	<.0020
		06/08/98	S2	SU-80	<.0030	1.42	.908	E37.6	<.0010	<.0020	<.0020
60	W. Fork Big Blue River,	05/23/98	S 1	SU-36	<.0030	3.89	8.58	E46.5	<.0010	<.0020	<.0020
	Dorchester, NE	06/10/98	S2	SU-82	<.0030	1.04	.722	9.54	<.0010	<.0020	<.0020
61	Big Blue River at Barneston, NE	05/15/98	S 1	SU-4	<.0030	1.15	2.94	7.06	<.0010	<.0020	<.0020
		06/09/98	S2	SU-104	E.0035	.781	8.19	E24.4	<.0010	<.0020	<.0020
62	Little Blue River near Fairbury, NE	05/12/98	S 1	SU–3	Sample	not analyze	d (broker	n bottle)			
		06/08/98	S2	SU-81	Sample	not analyze	d (mislal	bled bottle)			
				Ohio							
63	Clear Creek near Rockbridge, OH	06/10/98	S1	SU-86	<.0030	.0321	.017	.290	<.0010	<.0020	<.0020
		06/30/98	S2	SU-145	<.0030	.210	.017	1.60	<.0010	<.0020	<.0020
64	Scioto River near Prospect, OH	06/02/98	S 1	SU-63	<.0030	.896	.025	4.94	<.0010	E.0039	<.0020
		06/29/98	S2	SU-141	<.0030	.172	.029	4.01	<.0010	<.0020	<.0020
65	Olentangy River at Claridon, OH	06/09/98	S 1	SU-85	<.0030	.0437	.009	.897	<.0010	<.0020	<.0020
		06/29/98	S 2	SU-157	< 0030	401	055	4.32	< 0010	< 0020	< 0020

70 midwestern streams and 5 midwestern reservoirs-Continued

SD, stream duplicate sample; RD, duplicate reservoir sample; SB, blank stream sample; SS, spiked stream sample; <, less than; E, estimate]

Site no						Con in micro	centration grams per	, liter					
(figs. 3, 4)	Carbaryl	Carbo- furan	Chlor- pyrifos	Cyana- zine	Dacthal	Deethyl- atrazine	Diazinon	Dieldrin	Disul- foton	EPTC	Ethal- fluralin	Etho- prophos	Fonofos
						Kansas—C	Continued						
50	< 0.0030	< 0.0030	< 0.0040	0.150	< 0.0020	E0.0785	< 0.002	< 0.001	< 0.0170	< 0.0020	< 0.0040	< 0.0030	< 0.0030
	<.0030	<.0030	<.0040	.0331	<.0020	E.349	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
51	<.0030	<.0030	<.0040	.0291	<.0020	E.0243	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	<.0030	<.0030	<.0040	.0520	<.0020	E.170	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
					ŀ	Kentucky—	Continued						
52	E.0202	<.0030	.0122	.280	<.0020	E.0525	.008	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	<.0030	<.0030	.0050	.0735	<.0020	E.0705	.007	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
					I	Missouri—(Continued						
53	Sample n	ot analyzed	ł										
	<.0030	<.0030	<.0040	.0387	<.0020	E.0557	.008	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
					N	lebraska—	Continued						
54	<.0030	<.0030	.0089	.127	<.0020	E.578	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	E.0185	<.0030	<.0040	.0685	<.0020	E.692	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
55	<.0030	<.0030	<.0040	3.57	<.0020	E.465	<.002	<.001	<.0170	<.0020	<.0040	<.0030	.0629
	<.0030	E.0156	<.0040	3.67	<.0020	E.441	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
56	<.0030	<.0030	<.0040	.246	<.0020	E.989	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	<.0030	E.0587	<.0040	1.80	<.0020	E1.26	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
57	<.0030	<.0030	<.0040	4.42	<.0020	E.318	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	E.0588	E.149	<.0040	1.41	E.0015	E.252	.011	<.001	<.0170	.0148	<.0040	<.0030	<.0030
58	<.0030	E.0111	<.0040	4.67	<.0020	E.610	<.002	<.001	<.0170	E.0036	<.0040	<.0030	<.0030
	<.0030	E.0713	<.0200	1.49	<.0020	E.327	.007	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
59	<.0030	<.0030	<.0040	.592	<.0020	E.102	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	<.0030	<.0220	<.0040	9.52	<.0020	E.568	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
60	<.0030	<.0030	<.0040	.992	<.0020	E.820	.011	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	<.0030	<.0200	.0143	.0628	<.0020	E.501	.033	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
61	<.0030	<.0030	.0405	.0337	<.0020	E.101	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	<.0030	E.0412	<.0400	.427	<.0020	E.734	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
62	Sample n	ot analyzed	1										
	Sample n	ot analyzed	1										
						Ohio-Co	ontinued						
63	<.0030	<.0030	<.0040	.0247	<.0020	E.0329	.025	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	E.0087	<.0030	.0072	.149	<.0020	E.284	.004	.006	<.0170	<.0020	<.0040	<.0030	<.0030
64	E.117	<.0030	<.0600	1.31	<.0020	E.286	.028	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	E.0304	<.0030	E.0177	.390	E.0011	E.644	.008	.007	<.0170	<.0020	<.0040	<.0030	<.0030
65	<.0030	<.0030	<.0040	.0363	<.0020	E.0773	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	E.0334	<.0030	E.0141	.402	E.0011	E.570	.011	<.001	<.0170	<.0020	<.0040	<.0030	<.0030

Table 11. Pesticide and pesticide degradate (2,6-diethylaniline through fonofos) concentrations in water samples from

[S1, pre-emergence stream sample; S2, post-emergence stream sample; RI, first reservoir outflow sample; R2, second reservoir outflow sample;

Site no		Date of	Sampla			(in m	Concentra icrogram	ation, s per lite	r		
(figs. 3, 4)	Site name	(month/ day/year)	type	Sample no.	2,6- Diethyl- aniline	Aceto- chlor	Ala- chlor	Atra- zine	Azin- phos- methyl	Benflu- ralin	Butyl- ate
			Ol	nio—Contin	nued						
66	Olentangy River below	06/09/98	R1	SU-84	< 0.0030	0.257	0.009	2.11	< 0.0010	< 0.0020	< 0.0020
	Delaware, Lake Dam, OH	06/29/98	R2	SU-153	<.0030	.478	.046	5.16	<.0010	<.0020	<.0020
67	Big Darby Creek at Darbyville, OH	06/03/98	S 1	SU-62	<.0030	.688	.122	9.18	<.0010	<.0020	<.0020
		06/29/98	S2	SU-140	<.0030	.178	.022	2.55	<.0010	<.0020	<.0020
68	Scioto River at Higby, OH	06/04/98	S 1	SU-73	<.0030	1.08	.069	6.97	<.0010	<.0020	<.0020
		07/08/98	S2	SU-165	<.0030	.290	.024	3.80	<.0010	<.0020	<.0020
69	L. Miami River near Oldtown, OH	06/10/98	S 1	SU-92	<.0030	.0539	.015	.445	<.0010	<.0020	<.0020
		06/30/98	S2	SU-144	<.0030	.0278	.007	.510	<.0010	<.0020	<.0020
70	Mad River at Eagle City, OH	06/10/98	S 1	SU-91	<.0030	<.0020	<.002	.048	<.0010	<.0020	<.0020
		06/30/98	S2	SU-146	<.0030	.0289	.008	.536	<.0010	<.0020	<.0020
71	Tiffin River at Stryker, OH	06/01/98	S 1	SU-66	<.0030	.262	.150	1.63	<.0010	<.0020	<.0020
		07/07/98	S2	SU-172	<.0030	.0365	.010	.581	<.0010	<.0020	<.0020
72	Auglaize River at Fort Jennings, OH	06/17/98	S 1	SU-117	<.0030	1.45	.188	9.96	<.0010	<.0020	<.0020
		07/08/98	S2	SU-171	<.0030	.297	.030	2.21	<.0010	<.0020	<.0020
				Wisconsi	ı						
73	Root River at Racine, WI	06/01/98	S 1	SU-61	<.0030	.193	.040	.351	<.0010	<.0020	<.0020
		08/03/98	S2	SU-204	<.0030	<.0020	<.002	.106	<.0010	<.0020	<.0020
74	St. Croix River at St. Croix Falls, WI	06/03/98	S 1	SU-68	<.0030	.0259	.011	.104	<.0010	<.0020	<.0020
		08/05/98	S2	SU-205	<.0030	<.0020	<.002	.013	<.0010	<.0020	<.0020
75	Wisconsin River at Muscoda, WI	06/16/98	S 1	SU-133	<.0030	.0479	.027	.264	<.0010	<.0020	<.0020
		08/07/98	S2	SU-202	<.0030	E.0084	.009	.134	<.0010	<.0020	<.0020
76	Rock River at Afton, WI	06/17/98	S 1	SU-134	<.0030	.127	.010	.346	<.0010	<.0020	<.0020
		07/21/98	S2	SU-179	<.0030	.0106	<.002	.526	<.0010	<.0020	<.0020

70 midwestern streams and 5 midwestern reservoirs-Continued

Site no						Con in micro	centration grams per	, liter					
(figs. 3, 4)	Carbaryl	Carbo- furan	Chlor- pyrifos	Cyana- zine	Dacthal	Deethyl- atrazine	Diazinon	Dieldrin	Disul- foton	EPTC	Ethal- fluralin	Etho- prophos	Fonofos
						Ohio-Co	ontinued						
66	< 0.0030	< 0.0030	< 0.0040	0.0678	< 0.0020	E0.113	< 0.002	< 0.001	< 0.0170	< 0.0020	< 0.0040	< 0.0030	< 0.0030
	E.0085	<.0030	<.0040	.624	<.0020	E.712	<.002	<.001	<.0170	E.0027	<.0040	<.0030	<.0030
67	E.0043	<.0030	<.0700	1.93	<.0020	E.415	.005	E.002	<.0170	<.0020	<.0040	<.0030	<.0030
	E.119	<.0030	.0159	.224	E.0011	E.260	.030	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
68	<.0030	<.0030	<.0040	1.79	<.0020	E.269	.016	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	E.0120	<.0030	.0247	.623	<.0020	E.450	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
69	<.0030	<.0030	<.0040	.0536	<.0020	E.0673	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	E.0067	<.0030	.0045	.0620	<.0020	E.0796	E.004	E.001	<.0170	<.0020	<.0040	<.0030	<.0030
70	<.0030	<.0030	E.0035	<.0040	<.0020	E.0089	.008	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	E.0490	<.0030	E.0037	.0298	<.0020	E.108	.005	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
71	E.0108	<.0030	<.0300	.407	<.0020	E.107	.008	<.001	<.0170	E.0019	<.0040	<.0030	E.0033
	<.0030	<.0030	<.0040	.167	<.0020	E.0820	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
72	<.0030	<.0030	<.0040	1.87	<.0020	E.870	E.004	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	<.0030	<.0030	.0192	.385	<.0020	E.395	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
					V	Visconsin—	Continued						
73	E.0655	E.0122	<.0080	.167	E.0018	E.109	.016	<.001	<.0170	.0083	<.0040	<.0030	<.0030
	<.0030	<.0030	<.0040	.0213	<.0020	E.0152	.010	<.001	<.0170	.0200	<.0040	<.0030	<.0030
74	<.0030	<.0030	<.0040	.0071	<.0020	E.0172	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
	<.0030	<.0030	<.0040	<.0040	<.0020	E.0081	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
75	<.0030	<.0030	<.0040	.0671	<.0020	E.0381	.006	<.001	<.0170	.0047	<.0040	<.0030	<.0030
	<.0030	<.0030	<.0040	.0166	<.0020	E.0364	<.002	<.001	<.0170	<.0020	<.0040	<.0030	<.0030
76	<.0030	<.0030	<.0040	.144	<.0020	E.0624	<.002	<.001	<.0170	.0092	<.0040	<.0030	<.0030
	<.0030	<.0030	<.0040	.349	<.0020	E.101	.011	<.001	<.0170	<.0020	<.0040	<.0030	<.0030

SD, stream duplicate sample; RD, duplicate reservoir sample; SB, blank stream sample; SS, spiked stream sample; <, less than; E, estimate]

Table 12. Pesticide and pesticide degradate (lindane through terbacil) concentrations in water samples from 70 midwestern

[S1, pre-emergence stream sample; S2, post-emergence stream sample; R1, first reservoir outflow sample; R2, second reservoir outflow sample; S2, post-emergence stream sample; S
--

Site no	Site	Date of collection	Sample	Sample			Co in mic	oncentra	tion, per lite	r	
(figs. 3, 4)	name	(month/ day/year)	type	no.	Lin- dane	Lin- uron	Mala- thion	Metol- achlor	Metri- buzin	Molin- ate	Napro- pamide
				Illinois							· ·
1	Vermillion River below Lake	06/10/98	R1	SU-98	< 0.004	< 0.0020	< 0.005	1.33	0.014	< 0.0040	< 0.0030
	Vermillion Dam, IL	07/16/98	R2	SU-177	<.004	<.0020	<.005	.619	.009	<.0040	<.0030
2	Bonpas Creek at Browns, IL	05/23/98	S 1	SU-43	<.004	.0246	<.005	23.8	.198	.0182	<.0030
		07/07/98	S2	SU-166	<.004	<.0020	<.005	1.32	<.015	<.0040	<.0030
3	Little Wabash River at Carmi, IL	05/23/98	S 1	SU-33	<.004	.0336	.009	15.0	.344	.0486	<.0030
		07/09/98	S 2	SU-175	<.004	.0253	<.005	2.86	1.76	<.0040	<.0030
4	S. Branch Kishwaukee River near	05/20/98	S 1	SU-29	<.004	<.0020	<.005	13.0	.007	<.0040	<.0030
	Fairdale, IL	07/29/98	S 2	SU-195	<.004	<.0020	<.005	.070	<.004	<.0040	<.0030
5	Iroquois River near Chebanse, IL	06/10/98	S 1	SU-99	<.004	<.0020	<.005	1.06	.015	<.0040	<.0030
		07/08/98	S2	SU-168	<.004	<.0020	<.005	1.32	.014	<.0040	<.0030
6	Dupage River near Shorewood, IL	06/09/98	S1	SU-100	.004	<.0020	.009	.029	<.004	<.0040	<.0030
		07/29/98	S2	SU-194	<.004	<.0020	<.005	.006	<.004	<.0040	<.0030
7	Illinois River at Marseilles, IL	06/12/98	S 1	SU-113	<.004	<.0020	<.005	1.31	.103	<.0040	<.0030
		07/09/98	S2	SU-176	<.004	<.0020	<.005	.796	.016	<.0040	<.0030
8	Spoon River at London Mills, IL	05/20/98	S 1	SU-25	<.004	<.0020	<.005	6.81	.274	<.0040	<.0030
		07/01/98	S2	SU-160	<.004	<.0020	<.005	.907	.018	<.0040	<.0030
9	Sangamon River near Monticello, IL	05/23/98	S1	SU-35	<.004	<.0020	<.005	2.57	<.004	<.0040	<.0030
		08/05/98	S2	SU-201	<.004	<.0020	<.005	.147	<.004	<.0040	<.0030
10	Sangamon River at Riverton, IL	05/26/98	S 1	SU-44	.005	<.0020	<.005	2.61	.089	<.0040	<.0030
		07/09/98	S2	SU-174	<.004	<.0020	<.005	.553	<.004	<.0040	<.0030
11	LaMoine River at Colmar, IL	05/21/98	S 1	SU-27	<.004	<.0020	<.005	1.81	<.600	<.0040	<.0030
		06/29/98	S2	SU-142	<.004	<.0020	<.005	.775	.046	<.0040	<.0030
12	Illinois River at Valley City, IL	06/18/98	S 1	SU-120	<.004	<.0020	.009	2.13	.061	<.0040	<.0030
		08/12/98	S2	SU-207	<.004	<.0020	<.005	.112	<.004	<.0040	<.0030
13	Mississippi River below Grafton, IL	06/02/98	S 1	SU-60	<.004	<.0020	<.005	1.36	<.004	<.0040	<.0030
		06/15/98	S2	SU-116	<.004	<.0020	<.005	1.75	.021	<.0040	<.0030
14	Kaskaskia River near Cowden, IL	05/20/98	S 1	SU-30	<.004	<.0020	<.005	.622	<.004	<.0040	<.0030
		07/08/98	S2	SU-169	<.004	<.0020	.007	1.82	.010	<.0040	<.0030
15	Shoal Creek near Breese, IL	05/22/98	S 1	SU-32	<.012	<.0020	<.005	7.30	.190	.0289	<.0030
		07/08/98	S2	SU-167	<.004	.129	<.005	1.98	.162	<.0040	<.0030
16		06/02/02	01	Iowa	. 00 1	. 0020	E 004	120	010	. 00 10	. 0020
16	Turkey River at Spillville, IA	06/02/98	51	SU-64 SU-100	<.004	<.0020	E.004	.139 184	.018	<.0040	<.0030
		00/12/98	52	30-109	<.004	<.0020	<.005	.104	.073	<.0040	<.0050
17	Mississippi River at Clinton, IA	05/27/98	S1	SU-55	<.004	<.0020	<.005	.161	<.004	<.0040	<.0030
		07/01/98	S 2	SU-155	<.004	<.0020	<.005	.368	<.004	<.0040	<.0030

streams and 5 midwestern reservoirs

[SD, stream duplicate sample; RD, duplicate reservoir sample; SB, blank stream sample; SS, spiked stream sample; <, less than; E, estimate]

Site no.						Conc in micro	centratior grams pe	n, r liter					
(figs. 3, 4)	Parathion	Parathion- methyl	Pebu- late	Pendi- methalin	Phorate	Prom- eton	Propa- chlor	Propanil	Propar- gite	Propyz- amide	Sima- zine	Tebu- thiuron	Terbacil
					II	linois—Co	ontinued						
1	< 0.004	< 0.0060	< 0.0040	0.0140	< 0.0020	0.0388	$<\!0.0070$	< 0.0040	< 0.0130	< 0.0030	0.0255	< 0.0100	< 0.0070
	<.004	<.0060	<.0040	.0194	<.0020	.0250	<.0070	<.0040	<.0130	<.0030	.0141	<.0100	<.0070
2	<.004	<.0060	<.0040	.0724	<.0020	.0213	<.0070	<.0040	<.0130	<.0030	E1.10	<.0100	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	E.0080	<.0070	<.0040	<.0130	<.0030	.0821	<.0100	<.0070
3	<.004	<.0060	<.0040	<.0040	<.0020	.0378	<.0070	<.0040	<.0130	<.0030	7.91	E.0097	<.0070
	<.004	<.0060	<.0040	.0169	<.0020	.0388	<.0070	<.0040	<.0130	<.0030	.370	.0100	<.0070
4	<.004	<.0060	<.0040	.176	<.0020	.0283	<.0070	<.0040	<.0130	<.0030	.0538	.0757	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	<.0180	<.0070	<.0040	<.0130	<.0030	<.0050	<.0100	<.0070
5	<.004	<.0060	<.0040	.0106	<.0020	.0320	<.0070	<.0040	<.0130	<.0030	.0111	<.0100	<.0070
	<.004	<.0060	<.0040	.0172	<.0020	E.0102	<.0070	<.0040	<.0130	<.0030	.0159	.0113	<.0070
6	<.004	<.0060	<.0040	.0097	<.0020	E.0160	<.0070	<.0040	<.0130	<.0030	.0088	.0104	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	<.0180	<.0070	<.0040	<.0130	<.0030	<.0050	E.0083	<.0070
7	<.004	<.0060	<.0040	.0398	<.0020	.0400	<.0070	<.0040	<.0130	<.0030	.0293	.0156	<.0070
	<.004	<.0060	<.0040	.0145	<.0020	.0419	<.0070	<.0040	<.0130	<.0030	.0266	.0171	E.0123
8	<.004	<.0060	<.0040	.320	<.0020	E.0051	E.0060	<.0040	<.0130	<.0030	.184	<.0100	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	E.0169	<.0070	<.0040	<.0130	<.0030	.0223	<.0100	<.0070
9	<.004	<.0060	<.0040	.103	<.0020	E.0107	<.0070	<.0040	<.0130	<.0030	.0212	<.0100	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	.0277	<.0070	<.0040	<.0130	<.0030	<.0050	<.0100	<.0070
10	<.004	<.0060	<.0040	.0487	<.0020	.0719	<.0070	<.0040	<.0130	<.0030	.0670	.0231	<.0070
	<.004	<.0060	<.0040	.0178	<.0020	.0420	<.0070	<.0040	<.0130	<.0030	.0224	.0135	<.0070
11	<.004	<.0060	<.0040	.230	<.0020	E.0086	<.0070	<.0040	<.0130	<.0030	<.0050	<.0100	<.0070
	<.004	<.0060	<.0040	.0418	<.0020	E.0074	<.0070	<.0040	<.0130	<.0030	.0205	<.0100	<.0070
12	<.004	<.0060	<.0040	.0370	<.0020	.0283	<.0070	<.0040	<.0130	<.0030	.0631	.0100	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	.0357	<.0070	<.0040	<.0130	<.0030	<.0050	<.0100	<.0070
13	<.004	<.0060	<.0040	<.0040	<.0020	E.0159	<.0070	<.0040	<.0130	<.0030	.0261	<.0100	<.0070
	<.004	<.0060	<.0040	.0227	<.0020	E.0105	<.0070	<.0040	<.0130	<.0030	.0364	<.0100	<.0070
14	<.004	<.0060	<.0040	<.0040	<.0020	E.0117	<.0070	<.0040	<.0130	<.0030	.169	E.0048	<.0070
	<.004	<.0060	<.0040	.0147	<.0020	.0228	<.0070	<.0040	<.0130	<.0030	.0754	.0117	<.0070
15	<.004	<.0060	<.0040	<.0040	<.0020	E.0114	<.0070	<.0040	<.0130	<.0030	.218	E.0100	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	E.0099	.125	<.0040	<.0130	<.0030	.0550	.0290	<.0070
					I	owa—Co	ntinued						
16	<.004	<.0060	<.0040	.0084	<.0020	E.0043	<.0070	<.0040	<.0130	<.0030	.0176	<.0100	<.0070
	<.004	<.0060	<.0040	.0111	<.0020	E.0067	<.0070	<.0040	<.0130	<.0030	.0202	<.0100	<.0070
17	<.004	<.0060	<.0040	<.0040	<.0020	E.0049	<.0070	<.0040	<.0130	<.0030	.0126	<.0100	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	<.0180	<.0070	<.0040	<.0130	<.0030	.0162	E.0051	<.0070

Table 12. Pesticide and pesticide degradate (lindane through terbacil) concentrations in water samples from 70 midwestern

		[S1]	pre-emergence stream sample	: S2. post-emer	gence stream sample	e: R1, firs	t reservoir outflow	sample: F	R2. second reserv	oir outflow sam	ple
--	--	------	-----------------------------	-----------------	---------------------	-------------	---------------------	-----------	-------------------	-----------------	-----

		Date of					C	oncentra	tion,								
Site no.	Site	collection	Sample	Sample			in mic	rograms	tration, ns per liter I- Metri- Molin- Nap or buzin ate parr								
(figs. 3, 4)	name	(month/ day/year)	type	no.	Lin- dane	Lin- uron	Mala- thion	Metol- achlor	Metri- buzin	Molin- ate	Napro- pamide						
			Iowa-	Continu	ed						<u> </u>						
18	Wapsipinicon River near Tripoli, IA	05/27/98	S 1	SU-54	< 0.004	< 0.0020	< 0.005	0.938	0.021	< 0.0040	< 0.0030						
		06/20/98	S2	SU-126	<.004	<.0020	<.005	2.46	.029	<.0040	<.0030						
19	Wapsipinicon River at	05/29/98	S 1	SU-56	<.004	<.0020	<.005	2.18	.015	<.0040	<.0030						
	Independence, IA	06/12/98	S2	SU-110	<.004	<.0020	<.005	3.86	.037	<.0040	<.0030						
20	Iowa River near Rowan, IA	06/02/98	S 1	SU-65	<.004	<.0020	<.005	.230	<.004	<.0040	<.0030						
		06/23/98	S2	SU-129	<.004	<.0020	<.005	2.31	.026	<.0040	<.0030						
21	Old Mans Creek near Iowa City, IA	06/10/98	S 1	SU-93	<.004	<.0020	<.005	1.73	.014	<.0040	<.0030						
		06/30/98	S2	SU-147	<.004	<.0020	<.005	1.67	.022	<.0040	<.0030						
22	Wolf Creek near Dysart, IA	06/10/98	S 1	SU-87	<.004	<.0020	<.005	1.99	.154	<.0040	<.0030						
		06/22/98	S2	SU-128	<.004	<.0020	<.005	3.11	.059	<.0040	<.0030						
23	Iowa River at Wapello, IA	05/27/98	S 1	SU-53	Sample	e not analy	zed (ruin	ed in labor	atory)								
		06/19/98	S2	SU-127	<.004	<.0020	<.005	1.96	.030	<.0040	<.0030						
24	N. Skunk River near Sigourney, IA	05/21/98	S 1	SU-21	<.004	<.0020	<.005	2.73	.284	<.0040	<.0030						
		06/10/98	S2	SU-95	<.004	<.0020	<.005	3.26	.216	<.0040	<.0030						
25	Skunk River at Augusta, IA	05/26/98	S 1	SU-45	.005	<.0020	<.005	9.61	.071	<.0040	<.0030						
		06/18/98	S2	SU-122	<.004	<.0020	<.005	3.46	.035	<.0040	<.0030						
26	Des Moines River at Fort Dodge, IA	05/16/98	S 1	SU-8	<.004	<.0020	<.005	5.60	.033	<.0040	<.0030						
		06/12/98	S2	SU-108	<.004	<.0020	<.005	.281	.016	<.0040	<.0030						
27	Raccoon River at Van Meter, IA	05/17/98	S 1	SU–9	.008	<.0020	<.005	3.12	.012	<.0040	<.0030						
		06/10/98	S2	SU-89	<.004	<.0020	<.005	1.34	.056	<.0040	<.0030						
28	Little Sioux River at	05/27/98	S 1	SU-42	<.004	<.0020	<.005	.562	<.004	<.0040	<.0030						
	Correctionville, IA	06/18/98	S2	SU-123	<.004	<.0020	<.005	.399	<.004	<.0040	<.0030						
29	Maple River at Mapleton, IA	05/29/98	S 1	SU-59	.005	<.0020	<.005	6.73	.225	<.0040	<.0030						
		06/09/98	S2	SU-90	<.004	<.0020	<.005	2.13	.035	<.0040	<.0030						
30	Boyer River at Logan, IA	05/22/98	S 1	SU-31	<.004	<.0020	<.005	10.3	.071	<.0040	<.0030						
		06/09/98	S2	SU-96	<.004	<.0020	<.005	2.38	.079	<.0040	<.0030						
31	Chariton River below Rathbun	06/04/98	R1	SU-69	<.004	<.0020	<.005	.196	<.004	<.0040	<.0030						
	Lake Dam, IA	06/29/98	R2	SU-148	<.004	<.0020	<.005	.461	.007	<.0040	<.0030						
			1	Indiana													
33	Whitewater River near Alpine, IN	05/26/98	S 1	SU-47	<.004	<.0020	<.005	2.48	.268	<.0040	<.0030						
		07/08/98	S2	SU-162	<.004	<.0020	<.005	.868	.030	<.0040	<.0030						
34	Blue River at Fredericksburg, IN	05/27/98	S 1	SU-50	<.004	<.0020	<.005	1.38	<.004	<.0040	<.0030						
		07/08/98	S2	SU-163	<.004	<.0020	<.005	.187	<.004	<.0040	<.0030						

streams and 5 midwestern reservoirs-Continued

[SD, stream duplicate sample; RD, duplicate reservoir sample; SB, blank stream sample; SS, spiked stream sample; <, less than; E, estimate]

Sito no						Con in micro	centration	1, r liter					
(figs. 3,	4) Parathion	Parathion-	Pebu-	Pendi-	Phorate	Prom-	Propa-	Propanil	Propar-	Propyz-	Sima-	Tebu-	Terbacil
		moury	lato			Iowa—Co	ntinued		9.10	united	20		
18	< 0.004	< 0.0060	< 0.0040	0.0103	< 0.0020	E0.0052	< 0.0070	< 0.0040	< 0.0130	< 0.0030	0.0179	< 0.0100	< 0.0070
	<.004	<.0060	<.0040	.0385	<.0020	.0219	<.0070	<.0040	<.0130	<.0030	.0324	E.0100	<.0070
19	<.004	<.0060	<.0040	.0611	<.0020	E.0064	<.0070	<.0040	<.0130	<.0030	.0341	E.0038	<.0070
	<.004	<.0060	<.0040	.0585	<.0020	E.0103	<.0070	<.0040	<.0130	<.0030	.0342	.0122	<.0070
20	<.004	<.0060	<.0040	<.0040	<.0020	E.0066	<.0070	<.0040	<.0130	<.0030	E.0042	<.0100	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	E.0126	<.0070	<.0040	<.0130	<.0030	.0158	<.0100	<.0070
21	<.004	<.0060	<.0040	<.0040	<.0020	<.0180	<.0070	<.0040	<.0130	<.0030	.0136	<.0100	<.0070
	<.004	<.0060	<.0040	.0058	<.0020	<.0180	<.0070	<.0040	<.0130	<.0030	.0210	<.0100	<.0070
22	<.004	<.0060	<.0040	.0262	<.0020	<.0180	<.0070	<.0040	<.0130	<.0030	.0284	<.0100	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	.0442	<.0070	<.0040	<.0130	<.0030	.0285	<.0100	<.0070
23	Sample no	ot analyzed											
	<.004	<.0060	<.0040	.0153	<.0020	E.0117	<.0070	<.0040	<.0130	<.0030	.0282	<.0100	<.0070
24	<.004	<.0060	<.0040	<.0200	<.0020	<.0180	E.0033	<.0040	<.0130	<.0030	.0785	.0127	<.0070
	<.004	<.0060	<.0040	.0200	<.0020	E.0114	<.0070	<.0040	<.0130	<.0030	.0321	E.0054	<.0070
25	<.004	<.0060	<.0040	.0452	<.0020	.0181	.0211	<.0040	<.0130	<.0030	<.0050	<.0100	<.0070
	<.004	<.0060	<.0040	.0211	<.0020	E.0096	<.0070	<.0040	<.0130	<.0030	.0283	<.0100	<.0070
26	<.004	<.0060	<.0040	.148	<.0020	E.0114	.175	<.0040	<.0130	<.0030	<.0050	E.0029	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	E.0102	<.0070	<.0040	<.0130	<.0030	<.0050	<.0100	<.0070
27	<.004	<.0060	<.0040	.0309	<.0020	.0873	E.0038	<.0040	<.0130	<.0030	.0098	E.0021	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	.0296	<.0070	<.0040	<.0130	<.0030	.0137	<.0100	<.0070
28	<.004	<.0060	<.0040	<.0040	<.0020	.0224	<.0070	<.0040	<.0130	<.0030	.0171	<.0100	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	.0308	<.0070	<.0040	<.0130	<.0030	.0092	<.0100	<.0070
29	<.004	<.0060	<.0040	.176	<.0020	E.0053	.0139	<.0040	<.0130	<.0030	.0331	<.0100	<.0070
	<.004	<.0060	<.0040	<.0400	<.0020	<.0180	<.0070	<.0040	<.0130	<.0030	.0139	<.0100	<.0070
30	<.004	<.0060	<.0040	.187	<.0020	.0375	<.0070	<.0040	<.0130	<.0030	.0808	.0247	<.0070
	<.004	<.0060	<.0040	.0637	<.0020	.0268	E.0021	<.0040	<.0130	<.0030	.0259	.0129	<.0070
31	<.004	<.0060	<.0040	<.0040	<.0020	E.0067	<.0070	<.0040	<.0130	<.0030	.0426	E.0080	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	<.0180	<.0070	<.0040	<.0130	<.0030	.0585	E.0089	<.0070
					In	ndiana—C	ontinued						
33	<.004	<.0060	<.0040	.0226	<.0020	.0195	<.0070	<.0040	<.0130	<.0030	.971	E.0071	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	E.0155	<.0070	<.0040	<.0130	<.0030	.138	<.0100	<.0070
34	<.004	<.0060	<.0040	<.0040	<.0020	E.0133	<.0070	<.0040	<.0130	<.0030	2.39	E.0061	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	.0725	<.0070	<.0040	<.0130	<.0030	.370	<.0100	<.0070
Table 12. Pesticide and pesticide degradate (lindane through terbacil) concentrations in water samples from 70 midwestern

1 0 1		1 00		1 D1 C	· · · · · · · · · · · · · · · · · · ·	1 0.0		. 0 1
N 1	nra amarganca straam	n complet VI not	t amarganca straam san	nnlo VI ti	iret recervoir outflow	ample P	cocond recording	uttow complet
	DIE-EIDEIVEILLE SILEAD	1.841111115. (177. 110)	-emergence sneam san			$\mathbf{N}_{\mathbf{M}}$		annow samme
~ ~ ,	pre emergenee bulean	1 oumpre, 0 =, po.	e ennergenee stream san		not reber ton outnott	Junpie, it.	, beecha reber ton o	action bampies

		Date of					C	oncentra	tion.		
Site no.	Site	collection	Sample	Sample			in mic	rograms	per liter		
(figs. 3, 4)	name	(month/	type	no.	Lin-	Lin-	Mala-	Metol-	Metri-	Molin-	Napro-
		day/year)			dane	uron	thion	achlor	buzin	ate	pamide
			Indian	a—Contin	ued						
35	Mississinewa River below	06/09/98	R1	SU-83	< 0.004	< 0.0020	< 0.005	1.38	0.225	< 0.0040	< 0.0030
	Mississinewa Lake Dam, IN	07/09/98	R2	SU-164	<.004	<.0020	<.005	3.08	.188	<.0040	<.0030
36	Fel River near Logansport IN	05/21/98	\$1	SU_18	Sampl	e not analy	zed (brok	ren hottle)			
50	Lei River neur Logansport, nv	06/30/98	S1 S2	SU-152	<.004	<.0020	<.005	.727	.012	<.0040	<.0030
25		07/01/00		GT T 10	004				201	00.40	0000
37	Wildcat Creek near Jerome, IN	05/21/98	SI	SU-19	<.004	<.0020	<.005	1.67	.204	<.0040	<.0030
		06/30/98	S 2	SU-151	<.004	<.0020	<.005	2.80	.104	<.0040	<.0030
38	Wildcat Creek near Lafayette, IN	05/20/98	S 1	SU-22	<.004	<.0020	<.005	2.97	.067	<.0040	<.0030
		07/01/98	S2	SU-150	<.004	<.0020	<.005	1.74	.025	<.0040	<.0030
39	White River near Nora, IN	05/28/98	S 1	SU-51	<.004	<.0020	<.005	3.84	.099	<.0040	<.0030
		07/01/98	S2	SU-149	<.004	<.0020	<.005	2.62	.056	<.0040	<.0030
40	Sugar Creek near Edinburgh IN	05/26/98	\$1	SU_46	E 003	< 0020	< 005	6 56	237	< 0040	< 0030
40	Sugar Creek near Lumburgh, ny	07/20/98	S2	SU-40	< .004	< 0020	< .005	4.53	.237	<.0040	<.0030
		01120190	52	50 170		(10020		1100		40010	40020
41	E. Fork White River near	05/28/98	S1	SU-52	<.004	<.0020	<.005	7.34	.148	<.0040	<.0030
	Bedford, IN	07/06/98	S2	SU-161	<.004	.0277	<.005	.959	.035	<.0040	<.0030
42	Wabash River at New Harmony, IN	05/27/98	S 1	SU-57	Sampl	e not analy	zed (ruin	ed in labor	atory)		
		06/23/98	S2	SU-136	<.004	<.0020	<.005	5.10	.096	<.0040	<.0030
			Μ	linnesota							
43	Cottonwood River near	05/26/98	S 1	SU-49	<.004	<.0020	<.005	.075	<.004	<.0040	<.0030
	New Ulm, MN	07/21/98	S2	SU-180	<.004	<.0020	<.005	.359	<.004	<.0040	<.0030
44	Little Cobb River near Beauford, MN	05/18/98	S 1	SU-12	<.004	<.0020	<.005	.575	<.004	<.0040	<.0030
	,	08/17/98	S2	SU-208	<.004	<.0020	<.005	.026	<.004	<.0040	<.0030
45	Minnesota River near Iordan, MN	05/19/98	\$1	SU_13	< 004	< 0020	< 005	403	< 004	< 0040	< 0030
45	Winnesota Kiver near Jordan, Will	06/26/08	51	SU 135	< 004	<.0020	< 005	.403	<.004 014	< 0040	< 0030
		00/20/98	32	30-133	<.004	<.0020	<.005	.540	.014	<.0040	<.0030
46	Mississippi River at Hastings, MN	05/20/98	S1	SU-14	<.004	<.0020	<.005	.199	<.004	<.0040	<.0030
		05/20/98	S2	SU-206	<.004	<.0020	<.005	.018	<.004	<.0040	<.0030
47	Des Moines River at Jackson, MN	05/26/98	S 1	SU-48	<.004	<.0020	<.005	.104	<.004	<.0040	<.0030
	······································	08/24/98	S2	SU-210	<.004	<.0020	<.005	.189	<.004	<.0040	<.0030
40	Deal Discount Lance MAL	06/24/08	61	GU 120	- 004	< 0020	- 005	0.62	- 004	< 00.40	< 0020
48	Rock River at Luverne, Min	06/24/98	51	SU-130	<.004	<.0020	<.005	.062	<.004	<.0040	<.0030
		06/25/98	52	SU-131	<.004	<.0020	<.005	.408	<.004	<.0040	<.0030
10		05/05/00	C1	Kansas	004	0000	005	107	004	00.40	0020
49	Frankfort, KS	05/05/98	51	SU-1	<.004	<.0020	<.005	.137	<.004	<.0040	<.0030
	- minion, inc	06/09/98	82	SU-107	<.004	<.0020	<.005	10.1	.116	<.0040	<.0030
50	Big Blue River below Tuttle	06/03/98	R1	SU-74	<.004	<.0020	<.005	.830	.026	<.0040	<.0030
	Creek Lake Dam, KS	07/29/98	R2	SU-197	<.004	<.0020	<.005	3.17	.026	<.0040	<.0030
51	Delaware River near Muscotah. KS	05/05/98	S 1	SU–2	<.004	<.0020	<.005	.191	<.004	<.0040	<.0030
		06/10/98	S2	SU-105	<.004	<.0020	<.005	2.07	.030	<.0040	<.0030

66 Concentration of Selected Sulfonylurea, Sulfonamide, and Imidazolinone Herbicides, Other Pesticides, and Nutrients in 71 Streams, 5 Reservoir Outflows, and 25 Wells in the Midwestern United States, 1998

streams and 5 midwestern reservoirs-Continued

[SD, stream duplicate sample; RD, duplicate reservoir sample; SB, blank stream sample; SS, spiked stream sample; <, less than; E, estimate]

Site no.						Con in micro	centratior grams pe	n, r liter					
(figs. 3, 4)	Parathion	Parathion- methyl	Pebu- late	Pendi- methalin	Phorate	Prom- eton	Propa- chlor	Propanil	Propar- gite	Propyz- amide	Sima- zine	Tebu- thiuron	Terbacil
					In	diana—C	ontinued						
35	< 0.004	< 0.0060	< 0.0040	< 0.0040	< 0.0020	0.0324	< 0.0070	< 0.0040	< 0.0130	< 0.0030	0.493	0.0146	< 0.0070
	<.004	<.0060	<.0040	.0229	<.0020	.0292	<.0070	<.0040	<.0130	<.0030	.358	<.0200	<.0070
36	Sample no	ot analyzed											
	<.004	<.0060	<.0040	<.0040	<.0020	.0143	<.0070	<.0040	<.0130	<.0030	.126	.0045	<.0070
37	<.004	<.0060	<.0040	<.0040	<.0020	<.0180	<.0070	<.0040	<.0130	<.0030	.0888	<.0100	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	.0144	<.0070	<.0040	<.0130	<.0030	.0840	<.0100	<.0070
38	<.004	<.0060	<.0040	<.0150	<.0020	.0275	<.0070	<.0040	<.0130	<.0030	.0291	<.0100	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	.0222	<.0070	<.0040	<.0200	<.0030	.0675	E.0088	<.0070
39	<.004	<.0060	<.0040	<.0100	<.0020	.0302	E.0034	<.0040	<.0130	<.0030	.536	E.0061	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	.0491	<.0070	<.0040	<.0130	<.0030	.196	E.0085	<.0070
40	<.004	<.0060	<.0040	.0129	<.0020	.0261	<.0070	<.0040	<.0130	<.0030	.509	E.0090	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	.218	<.0070	<.0040	<.0130	<.0030	.0325	<.0100	<.0070
41	<.004	<.0060	<.0040	<.0200	<.0020	.0297	<.0070	<.0040	<.0130	<.0030	1.17	E.0076	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	.0203	<.0070	<.0040	<.0130	<.0030	.0610	<.0100	<.0070
42	Sample no	ot analyzed											
	<.004	<.0060	<.0040	.0223	<.0020	.0351	<.0070	<.0040	<.0130	<.0030	.395	.0119	<.0070
					Min	nnesota—	Continued						
43	<.004	<.0060	<.0040	<.0040	<.0020	E.0055	<.0070	<.0040	<.0130	<.0030	<.0050	<.0100	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	.0522	<.0070	<.0040	<.0130	<.0030	<.0050	<.0100	<.0070
44	<.004	<.0060	<.0400	<.0040	<.0020	<.0180	.173	<.0040	<.0130	<.0030	<.0050	<.0100	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	.0867	<.0070	<.0040	<.0130	<.0030	<.0050	<.0100	<.0070
45	<.004	<.0060	<.0040	<.0040	<.0020	E.0077	.0163	<.0040	<.0130	<.0030	.0083	<.0100	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	E.0145	<.0070	<.0040	<.0130	<.0030	E.0042	<.0100	<.0070
46	<.004	<.0060	<.0040	<.0040	<.0020	E.0101	<.0070	<.0040	<.0130	<.0030	<.0050	<.0100	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	E.0154	<.0070	<.0040	<.0130	<.0030	.0070	<.0100	<.0070
47	<.004	<.0060	<.0040	<.0040	<.0020	.0365	<.0070	<.0040	<.0130	<.0030	<.0050	<.0100	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	<.0180	<.0070	<.0040	<.0960	<.0030	<.0050	<.0100	<.0070
48	<.004	<.0060	<.0040	<.0040	<.0020	E.0108	<.0070	<.0040	<.0130	<.0030	<.0050	<.0100	<.0070
	<.004	<.0060	<.0040	.0393	<.0020	E.0115	<.0070	<.0040	<.0130	<.0030	<.0050	<.0100	<.0070
					K	ansas—C	ontinued						
49	<.004	<.0060	<.0040	<.0040	<.0020	<.0180	<.0070	<.0040	<.0130	<.0030	<.0050	<.0100	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	<.0180	.0228	<.0040	<.0130	<.0030	.0225	<.0100	<.0070
50	<.004	<.0060	<.0040	<.0040	<.0020	E.0094	.0170	<.0040	<.0130	<.0030	.0161	E.0061	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	E.0140	.0104	<.0040	<.0130	<.0030	<.0050	<.0100	<.0070
51	<.004	<.0060	<.0040	<.0040	<.0020	E.0050	<.0070	<.0040	<.0130	<.0030	<.0050	<.0100	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	.346	<.0070	<.0040	<.0130	<.0030	.0568	<.0100	<.0070

Table 12. Pesticide and pesticide degradate (lindane through terbacil) concentrations in water samples from 70 midwestern

1	S1.	pre-emergence stream samp	e: S2.	post-emerge	ence stream sami	ole: R1	. first reservoir	outflow sam	ple: R2	. second	reservoir o	utflow sam	nple:
	~	pre entergenee stream samp		poor ennerge	nee ou eun oun		,	ournow built	P10, 11-	,	reservon o	action bailt	1010,

		Date of					С	oncentra	tion,		
Site no.	Site	collection	Sample	Sample			in mio	rograms	per liter		
(figs. 3, 4)	name	(month/ day/year)	type	no.	Lin- dane	Lin- uron	Mala- thion	Metol- achlor	Metri- buzin	Molin- ate	Napro- pamide
			K	Kentucky							-
52	Ohio River at Cannelton Dam, KY	06/04/98	S 1	SU-75	< 0.004	< 0.0020	< 0.005	0.365	0.016	< 0.0040	< 0.0030
		07/07/98	S 2	SU-173	<.004	<.0020	<.005	.373	<.004	<.0040	<.0030
			I	Missouri							
53	Nodaway River near Graham, MO	06/18/98	S 1	SU-119	Sampl	e not analy	yzed (rui	ned in labo	ratory)		
		08/19/98	S 2	SU-209	<.004	<.0020	<.005	.049	<.043	<.0040	<.0030
			Ν	lebraska							
54	North Dry Creek near Kearney, NE	05/22/98	S 1	SU-28	E.002	<.0020	<.005	3.23	<.004	<.0040	<.0030
		06/08/98	S2	SU-76	<.004	<.0020	<.005	1.10	<.004	<.0040	<.0030
55	Maple Creek near Nickerson, NE	05/21/98	S 1	SU-37	<.004	<.0020	<.005	17.9	.200	<.0040	<.0030
		06/08/98	S2	SU-79	<.004	<.0020	<.005	7.16	.243	<.0040	<.0030
56	Salt Creek at Roca, NE	05/15/98	S 1	SU–6	<.004	<.0020	<.005	E143	.329	<.0040	<.0030
		06/10/98	S2	SU-94	.005	<.0020	.008	14.7	.646	<.0040	<.0030
57	Wahoo Creek at Ithaca, NE	05/15/98	S 1	SU–5	<.004	<.0020	<.005	17.3	.020	<.0040	<.0030
		06/08/98	S2	SU-78	<.004	<.0020	<.005	1.24	.033	<.0040	<.0030
58	Platte River at Louisville, NE	05/22/98	S 1	SU-39	<.004	<.0020	<.005	6.26	.310	<.0040	<.0030
		06/09/98	S2	SU-77	<.004	<.0020	<.005	2.97	.143	<.0040	<.0030
59	Big Nemaha River at Falls City, NE	05/26/98	S 1	SU-41	<.004	<.0020	<.005	2.32	.017	<.0040	<.0030
		06/08/98	S2	SU-80	<.004	<.0020	<.005	3.21	.011	<.0040	<.0030
60	W. Fork Big Blue River,	05/23/98	S 1	SU-36	<.004	<.0020	<.005	17.7	.358	<.0040	<.0030
	Dorchester, NE	06/10/98	S2	SU-82	<.004	<.0020	<.005	3.44	.143	<.0040	<.0030
61	Big Blue River at Barneston, NE	05/15/98	S 1	SU-4	.0042	<.0020	<.005	4.05	.256	<.0040	<.0030
		06/09/98	S2	SU-104	<.004	<.0020	<.005	10.2	.242	<.0040	<.0030
62	Little Blue River near Fairbury, NE	05/12/98	S 1	SU-3	Sample	e not analy	zed (brol	ken bottle)			
		06/08/98	S 2	SU-81	Sample	e not analy	zed (mis	labled bott	le)		
				Ohio							
63	Clear Creek near Rockbridge, OH	06/10/98	S 1	SU-86	.042	<.0020	<.005	.291	<.004	<.0040	<.0030
		06/30/98	S2	SU-145	<.004	.0852	<.005	1.34	.099	<.0040	<.0030
64	Scioto River near Prospect, OH	06/02/98	S 1	SU-63	.009	<.0020	<.005	3.71	.223	<.0040	<.0030
		06/29/98	S2	SU-141	<.004	<.0020	<.005	5.75	.105	<.0040	<.0030
65	Olentangy River at Claridon, OH	06/09/98	S 1	SU-85	<.004	<.0020	<.005	.831	<.004	<.0040	<.0030
		06/29/98	S2	SU-157	<.004	<.0020	<.005	5.45	.065	<.0040	<.0030
66	Olentangy River below	06/09/98	R1	SU84	<.004	<.0020	<.005	1.65	.048	<.0040	<.0030
	Delaware, Lake Dam, OH	06/29/98	R2	SU-153	<.004	<.0020	<.005	4.36	.087	<.0040	<.0030
67	Big Darby Creek at Darbyville, OH	06/03/98	S 1	SU-62	<.004	<.0020	<.005	3.04	.078	<.0040	<.0030
		06/29/98	S2	SU-140	.005	<.0020	< 005	2.89	.018	<.0040	<.0030

streams and 5 midwestern reservoirs-Continued

[SD, stream duplicate sample; RD, duplicate reservoir sample; SB, blank stream sample; SS, spiked stream sample; <, less than; E, estimate]

Site no.						Cond in micro	centratior grams pe	ı, r liter					
(figs. 3, 4)	Parathion	Parathion- methyl	Pebu- late	Pendi- methalin	Phorate	Prom- eton	Propa- chlor	Propanil	Propar- gite	Propyz- amide	Sima- zine	Tebu- thiuron	Terbacil
					Ke	ntucky—(Continued						
52	< 0.004	< 0.0060	< 0.0040	< 0.0040	< 0.0020	E0.0160	< 0.0070	< 0.0040	< 0.0130	< 0.0030	0.151	E0.0097	< 0.0070
	<.004	<.0060	<.0040	<.0040	<.0020	E.0110	<.0070	<.0040	<.0130	<.0030	.112	<.0100	<.0070
					Mi	issouri—C	Continued						
53	Sample no	ot analyzed											
	<.004	<.0060	<.0040	<.0040	<.0020	E.0051	<.0070	<.0040	<.0130	<.0030	<.0050	<.0100	<.0070
					Ne	braska—(Continued						
54	<.004	<.0060	<.0040	<.0040	<.0020	.166	.0772	<.0040	<.0130	<.0030	.0505	<.0100	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	.159	.0185	<.0040	<.0130	<.0030	.0235	<.0100	<.0070
55	<.004	<.0060	<.0040	.0667	<.0020	.0520	<.0070	<.0040	<.0130	<.0030	.0510	<.0100	<.0070
	<.004	<.0060	<.0040	.0636	<.0020	E.0106	E.0022	<.0040	<.0130	<.0030	.0412	<.0100	<.0070
56	<.004	<.0060	<.0040	<.0040	<.0020	<.0180	.161	<.0040	<.0130	<.0030	<.0050	<.0100	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	.0188	.0642	<.0040	<.0130	<.0030	.188	<.0100	<.0070
57	<.004	<.0060	<.0040	<.0040	<.0020	<.0180	.334	<.0040	<.0130	<.0030	<.0050	<.0100	<.0070
	<.004	<.0060	<.0040	.0780	<.0020	.0284	<.0070	<.0040	<.0130	<.0030	.0208	<.0100	<.0070
58	<.004	<.0060	<.0040	.0359	<.0020	.0522	.0402	<.0040	<.0130	<.0030	.221	<.0100	<.0070
	<.004	<.0060	<.0040	.0347	<.0020	.0613	.0149	<.0040	<.0130	<.0030	.0289	E.0038	<.0070
59	<.004	<.0060	<.0040	<.0040	<.0020	.340	.0135	<.0040	<.0130	<.0030	.0768	<.0100	<.0070
	<.004	<.0060	<.0040	.0287	<.0020	E.0076	.557	<.0040	<.0130	<.0030	.0734	E.0042	<.0070
<i>c</i> 0	004	00.00	00.10	0040	0000	122	100	00.40	0120	0020	0.400	0100	0070
60	<.004	<.0060	<.0040	<.0040	<.0020	.132	.192	<.0040	<.0130	<.0030	.0489	<.0100	<.0070
	<.004	<.0060	<.0040	.0885	<.0020	.0531	.0218	<.0040	<.0130	<.0030	.0367	<.0100	<.0070
61	<.004	.016	<.0040	.0104	<.0020	.0389	.0134	<.0040	<.0130	<.0030	<.0050	E.0035	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	E.0148	.607	<.0040	<.0130	<.0030	.0428	E.0050	<.0070
(2)	C 1	1											
62	Sample no	ot analyzed											
	Sample no	Ji allalyzeu				Ohio Co	ntinuad						
63	< 004	< 0060	< 0040	< 0040	< 0020	< 0180	< 0070	< 0040	< 0130	< 0030	0723	< 0100	< 0070
05	< 004	< 0060	< 0040	< 0040	< 0020	0217	< 0070	< 0040	< 0130	< 0030	455	< 0100	< 0070
	1.001		0.0010	1.0010		.0217		1.0010	0150		.155		
64	<.004	<.0060	<.0040	.0170	<.0020	.0516	<.0070	<.0040	<.0130	<.0030	2.07	<.0100	<.0070
	<.004	<.0060	<.0040	.0279	<.0020	.0368	<.0070	<.0040	<.0130	<.0030	.784	E.0090	<.0070
65	< 004	< 0060	< 0040	< 0040	< 0020	F 0098	< 0070	< 0040	< 0130	< 0030	0390	< 0100	< 0070
05	< 004	< 0060	< 0040	0206	< 0020	E.0070	< 0070	< 0040	< 0130	< 0030	391	< 0100	< 0070
			1.0040	.0200		2.0172		1.00+0			.571		
66	<.004	<.0060	<.0040	<.0040	<.0020	.0232	<.0070	<.0040	<.0130	<.0030	.352	<.0100	<.0070
	<.004	<.0060	<.0040	.0121	<.0020	.0286	<.0070	<.0040	<.0130	<.0030	1.03	E.0080	<.0070
67	<.004	<.0060	<.0040	<.0040	<.0020	E.0091	<.0070	<.0040	<.0130	<.0030	.979	<.0100	<.0070
	<.004	<.0060	<.0040	.0163	<.0020	.0224	<.0070	<.0040	<.0130	<.0030	.846	<.0100	<.0070

Table 12. Pesticide and pesticide degradate (lindane through terbacil) concentrations in water samples from 70 midwestern

		Date of					Co	oncentra	tion,		
Site no.	Site	collection	Sample	Sample			in mic	rograms	per liter		
(figs. 3, 4)	name	(month/	type	no.	Lin-	Lin-	Mala-	Metol-	Metri-	Molin-	Napro-
		day/year)			dane	uron	thion	achlor	buzin	ate	pamide
			Ohio-	-Continu	ed						
68	Scioto River at Higby, OH	06/04/98	S 1	SU-73	< 0.004	< 0.0020	< 0.005	2.30	0.107	< 0.0040	< 0.0030
		07/08/98	S2	SU-165	<.004	<.0020	<.005	2.31	.043	<.0040	<.0030
69	L. Miami River near Oldtown, OH	06/10/98	S 1	SU-92	<.004	<.0020	<.005	.177	.007	<.0040	<.0030
		06/30/98	S2	SU-144	<.004	<.0020	<.005	.301	.010	<.0040	<.0030
70	Mad River at Eagle City, OH	06/10/98	S 1	SU-91	<.004	<.0020	<.005	.030	<.004	<.0040	<.0030
		06/30/98	S2	SU-146	<.004	<.0020	.008	.875	.020	<.0040	<.0030
71	Tiffin River at Stryker, OH	06/01/98	S1	SU-66	<.004	.0470	<.005	.481	.101	<.0040	<.0030
		07/07/98	S2	SU-172	<.004	<.0020	<.005	.127	.012	<.0040	<.0030
72	Auglaize River at Fort Jennings, OH	06/17/98	S1	SU-117	<.004	<.0020	<.005	6.58	.413	<.0040	<.0030
		07/08/98	S2	SU-171	<.004	<.0020	<.005	2.26	.096	<.0040	<.0030
			W	isconsin							
73	Root River at Racine, WI	06/01/98	S 1	SU-61	<.004	<.0020	<.005	.181	<.004	<.0040	<.0030
		08/03/98	S2	SU-204	<.004	<.0020	<.005	.017	<.004	<.0040	<.0030
74	St. Croix River at St. Croix Falls, WI	06/03/98	S 1	SU-68	<.004	<.0020	<.005	.016	<.004	<.0040	<.0030
		08/05/98	S2	SU-205	<.004	<.0020	<.005	<.002	<.004	<.0040	<.0030
75	Wisconsin River at Muscoda, WI	06/16/98	S 1	SU-133	<.004	<.0020	<.005	.171	<.004	<.0040	<.0030
		08/07/98	S2	SU-202	<.004	<.0020	<.005	.032	<.004	<.0040	<.0030
76	Rock River at Afton, WI	06/17/98	S 1	SU-134	<.004	<.0020	<.005	.073	<.004	<.0040	<.0030
		07/21/98	S2	SU-179	<.004	<.0020	<.005	.048	<.004	<.0040	<.0030

[S1, pre-emergence stream sample; S2, post-emergence stream sample; R1, first reservoir outflow sample; R2, second reservoir outflow sample;

streams and 5 midwestern reservoirs-Continued

[SD, stream duplicate sample; RD, duplicate reservoir sample; SB, blank stream sample; SS, spiked stream sample; <, less than; E, estimate]

						Cond	entratior	۱,					
Site no.						in microg	grams pe	r liter					
(figs. 3, 4)	Parathion	Parathion- methyl	Pebu- late	Pendi- methalin	Phorate	Prom- eton	Propa- chlor	Propanil	Propar- gite	Propyz- amide	Sima- zine	Tebu- thiuron	Terbacil
					()hio—Coi	ntinued						
68	< 0.004	< 0.0060	< 0.0040	< 0.0040	< 0.0020	0.0375	< 0.0070	< 0.0040	< 0.0130	< 0.0030	0.499	E0.0057	< 0.0070
	<.004	<.0060	<.0040	<.0040	<.0020	.0215	<.0070	<.0040	<.0130	<.0030	.442	E.0095	<.0070
69	<.004	<.0060	<.0040	<.0040	<.0020	E.0048	<.0070	<.0040	<.0130	<.0030	.330	<.0100	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	E.0078	<.0070	<.0040	<.0130	<.0030	.147	<.0100	<.0070
70	<.004	<.0060	<.0040	<.0040	<.0020	<.0180	<.0070	<.0040	<.0130	<.0030	<.0050	<.0100	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	E.0062	<.0070	<.0040	<.0130	<.0030	.0632	<.0100	<.0070
71	<.004	<.0060	<.0040	<.0040	<.0020	E.0100	<.0070	<.0040	<.0130	<.0030	.197	E.0068	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	E.0178	<.0070	<.0040	<.0130	<.0030	.0544	.0132	<.0070
72	<.004	<.0060	<.0040	<.0040	<.0020	.0392	<.0070	<.0040	<.0130	<.0030	.682	<.0100	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	.0334	<.0070	<.0040	<.0130	<.0030	.144	<.0100	<.0070
					Wis	consin—(Continued						
73	<.004	<.0060	<.0040	.0118	<.0020	.0198	<.0070	<.0040	<.0130	<.0030	.0095	.0138	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	.0314	<.0070	<.0040	<.0130	<.0030	<.0050	.0188	<.0070
74	<.004	<.0060	<.0040	<.0040	<.0020	<.0180	<.0070	<.0040	<.0130	<.0030	<.0050	<.0100	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	<.0180	<.0070	<.0040	<.0130	<.0030	<.0050	<.0100	<.0070
75	<.004	<.0060	<.0040	<.0040	<.0020	E.0061	<.0070	<.0040	<.0130	<.0030	.0154	<.0100	<.0070
	<.004	<.0060	<.0040	<.0040	<.0020	E.0082	<.0070	<.0040	<.0130	<.0030	.0104	<.0100	<.0070
76	<.004	<.0060	<.0040	<.0040	<.0020	E.0110	<.0070	<.0040	<.0130	<.0030	.0263	E.0061	E.0136
	<.004	<.0060	<.0040	<.0040	<.0020	.0294	<.0070	<.0040	<.0130	<.0030	.0229	<.0100	<.0070

Table 13. Pesticide and pesticide degradate (terbufos through p,p'-DDE) concentrations in water samples from 70 midwestern streams and 5 midwestern reservoirs

Site no	Site	Date of	Sample	Sample			Cor in micro	ncentrat ograms	ion, per liter		
Site no. (figs. 3, 4)	name	(month/ day/year)	type	no.	Terbu- fos	Thio- bencarb	Tri- allate	Triflu- ralin	alpha- HCH	cis- permeth- rin	p,p' - DDE
]	Illinois							
1	Vermillion River below Lake	06/10/98	R1	SU-98	< 0.0130	< 0.0020	$<\!0.0010$	0.0062	< 0.0020	< 0.0050	< 0.0060
	Vermillion Dam, IL	07/16/98	R2	SU-177	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	.0062
2	Bonpas Creek at Browns, IL	05/23/98	S 1	SU-43	<.0130	<.0020	<.0010	.0053	<.0020	<.0050	<.0060
		07/07/98	S 2	SU-166	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
3	Little Wabash River at Carmi, IL	05/23/98	S 1	SU-33	<.0130	.0322	<.0010	.0104	<.0020	<.0050	<.0060
		07/09/98	S2	SU-175	<.0130	<.0020	<.0010	.0070	<.0020	<.0050	<.0060
4	S. Branch Kishwaukee River near	05/20/98	S 1	SU-29	.0478	<.0020	<.0010	.0054	<.0020	<.0050	<.0060
	Fairdale, IL	07/29/98	S 2	SU-195	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
5	Iroquois River near Chebanse, IL	06/10/98	S 1	SU-99	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
	•	07/08/98	S 2	SU-168	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
6	Dupage River near Shorewood, IL	06/09/98	S 1	SU-100	<.0130	<.0020	<.0010	.0057	<.0020	<.0050	<.0060
6 7		07/29/98	S 2	SU-194	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
7	Illinois River at Marseilles, IL	06/12/98	S 1	SU-113	<.0130	<.0020	<.0010	.0069	<.0020	<.0050	<.0060
		07/09/98	S2	SU-176	<.0130	<.0020	<.0010	.0062	<.0020	<.0050	<.0060
8	Spoon River at London Mills, IL	05/20/98	S 1	SU-25	.0276	<.0020	<.0010	.0328	<.0020	<.0050	<.0060
	-	07/01/98	S2	SU-160	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
9	Sangamon River near Monticello, IL	05/23/98	S 1	SU-35	.0296	<.0020	<.0010	.0157	<.0020	<.0050	<.0060
		08/05/98	S 2	SU-201	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
10	Sangamon River at Riverton, IL	05/26/98	S 1	SU-44	<.0130	<.0020	<.0010	.0182	<.0020	<.0050	<.0060
		07/09/98	S 2	SU-174	<.0130	<.0020	<.0010	.0064	<.0020	<.0050	<.0060
11	LaMoine River at Colmar, IL	05/21/98	S 1	SU-27	<.0130	<.0020	<.0010	.0076	<.0020	<.0050	<.0060
		06/29/98	S 2	SU-142	<.0130	<.0020	<.0010	.0041	<.0020	<.0050	<.0060
12	Illinois River at Valley City, IL	06/18/98	S 1	SU-120	<.0130	<.0020	<.0010	E.0028	<.0020	<.0050	<.0060
12 I	· · · ·	08/12/98	S 2	SU-207	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
13	Mississippi River below Grafton, IL	06/02/98	S 1	SU-60	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
	r,r	06/15/98	S2	SU-116	<.0130	<.0020	<.0010	E.0020	<.0020	<.0050	<.0060

Table 13. Pesticide and pesticide degradate (terbufos through p,p'-DDE) concentrations in water samples from 70 midwestern streams and 5 midwestern reservoirs-Continued

[S1, pre-emergence stream sample; S2, post-emergence stream sample; R1, first reservoir outflow sample; R2, second reservoir outflow sample; SD, duplicate stream sample; RD, duplicate reservoir sample; SB, blank stream sample; SS, spiked stream sample; <, less than]

_

0.110	014	Date of	0	0			Cor in micre	ncentrat ograms	ion, per liter		
Site no. (figs. 3, 4) 14 15 16 17 18 19 20 21 22 23 24 25	Site name	collection (month/ day/year)	Sample type	Sample no.	Terbu- fos	Thio- bencarb	Tri- allate	Triflu- ralin	alpha- HCH	cis- permeth- rin	p,p' - DDE
			Illino	is—Contin	ued						
14	Kaskaskia River near Cowden, IL	05/20/98	S 1	SU-30	< 0.0130	< 0.0020	< 0.0010	< 0.0020	< 0.0020	< 0.0050	< 0.0060
		07/08/98	S2	SU-169	<.0130	<.0020	<.0010	.0064	<.0020	<.0050	<.0060
15	Shoal Creek near Breese, IL	05/22/98	S 1	SU-32	<.0130	.0130	<.0010	.0367	<.0020	<.0050	<.0060
		07/08/98	S2	SU-167	<.0130	<.0020	<.0010	.0342	<.0020	<.0050	<.0060
16 T 17 N				Iowa							
16	Turkey River at Spillville, IA	06/02/98	S1	SU-64	<.0130	<.0020	<.0010	.0045	<.0020	<.0050	<.0060
		06/12/98	S2	SU-109	<.0130	<.0020	<.0010	.0054	<.0020	<.0050	<.0060
17	Mississippi River at Clinton, IA	05/27/98	S 1	SU-55	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
		07/01/98	S2	SU-155	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
18	Wapsipinicon River near Tripoli, IA	05/27/98	S 1	SU-54	<.0130	<.0020	<.0010	.0048	<.0020	<.0050	<.0060
		06/20/98	S2	SU-126	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
19	Wapsipinicon River at	05/29/98	S 1	SU-56	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
	Independence, IA	06/12/98	S2	SU-110	<.0130	<.0020	<.0010	.0081	<.0020	<.0050	<.0060
20	Iowa River near Rowan, IA	06/02/98	S 1	SU-65	<.0130	<.0020	<.0010	.0055	<.0020	<.0050	<.0060
		06/23/98	S2	SU-129	<.0130	<.0020	<.0010	.0119	<.0020	<.0050	<.0060
21	Old Mans Creek near Iowa City, IA	06/10/98	S 1	SU-93	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
		06/30/98	S2	SU-147	<.0130	<.0020	<.0010	E.0024	<.0020	<.0050	<.0060
22	Wolf Creek near Dysart, IA	06/10/98	S 1	SU-87	<.0130	<.0020	<.0010	.0041	<.0020	<.0050	<.0060
		06/22/98	S2	SU-128	<.0130	<.0020	<.0010	.0150	<.0020	<.0050	<.0060
23	Iowa River at Wapello, IA	05/27/98	S 1	SU-53	Sample	not analyze	ed (ruined	in labora	tory)		
		06/19/98	S2	SU-127	<.0130	<.0020	<.0010	.0067	<.0020	<.0050	<.0060
24	N. Skunk River near Sigourney, IA	05/21/98	S 1	SU-21	<.0130	<.0020	<.0010	.0045	<.0020	<.0050	<.0060
		06/10/98	S2	SU-95	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
25	Skunk River at Augusta, IA	05/26/98	S 1	SU-45	<.0130	<.0020	<.0010	.0062	<.0020	<.0050	<.0060
		06/18/98	S2	SU-122	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060

Table 13. Pesticide and pesticide degradate (terbufos through p,p'-DDE) concentrations in water samples from 70 midwestern streams and 5 midwestern reservoirs-Continued

[S1, pre-emergence stream sample; S2, post-emergence stream sample; R1, first reservoir outflow sample; R2, second reservoir outflow sample; SD, duplicate stream sample; RD, duplicate reservoir sample; SB, blank stream sample; SS, spiked stream sample; <, less than]

Site no. (figs. 3, 4) 26 27 28 29 30 31 33 34 35	Site	Date of	Sample	Sample			Cor in micro	ncentrat ograms	ion, per liter		
(figs. 3, 4)) name	(month/ day/year)	type	no.	Terbu- fos	Thio- bencarb	Tri- allate	Triflu- ralin	alpha- HCH	cis- permeth- rin	p,p' - DDE
			Iowa	a—Continu	ed						
26	Des Moines River at Fort Dodge, IA	05/16/98	S 1	SU-8	< 0.0130	< 0.0020	< 0.0010	0.268	< 0.0020	< 0.0050	< 0.0060
		06/12/98	S2	SU-108	<.0130	<.0020	<.0010	.0047	<.0020	<.0050	E.0028
27	Raccoon River at Van Meter, IA	05/17/98	S 1	SU-9	<.0130	<.0020	<.0010	.0856	<.0020	<.0050	<.0060
		06/10/98	S2	SU-89	<.0130	<.0020	<.0010	.0297	<.0020	<.0050	<.0060
28	Little Sioux River at	05/27/98	S 1	SU-42	<.0130	<.0020	<.0010	E.0031	<.0020	<.0050	<.0060
	Correctionville, IA	06/18/98	S2	SU-123	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
29	Maple River at Mapleton, IA	05/29/98	S 1	SU-59	<.0130	<.0020	<.0010	.0514	<.0020	<.0050	<.0060
		06/09/98	S2	SU-90	<.0130	<.0020	<.0010	.0119	<.0020	<.0050	<.0060
30	Boyer River at Logan, IA	05/22/98	S 1	SU-31	<.0130	<.0020	<.0010	.0491	<.0020	<.0050	<.0060
		06/09/98	S2	SU-96	<.0130	<.0020	<.0010	.0302	<.0020	<.0050	<.0060
31	Chariton River below Rathbun	06/04/98	R1	SU-69	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
	Lake Dam, IA	06/29/98	R2	SU-148	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
				Indiana							
33	Whitewater River near Alpine, IN	05/26/98	S 1	SU-47	<.0130	<.0020	<.0010	.0059	<.0020	<.0050	<.0060
		07/08/98	S2	SU-162	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
34	Blue River at Fredericksburg, IN	05/27/98	S 1	SU-50	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
		07/08/98	S2	SU-163	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
35	Mississinewa River below	06/09/98	R1	SU-83	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
	Mississinewa Lake Dam, IN	07/09/98	R2	SU-164	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
36	Eel River near Logansport, IN	05/21/98	S 1	SU-18	Sample	e not analyz	ed (broke	n bottle)			
		06/30/98	S2	SU-152	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
37	Wildcat Creek near Jerome, IN	05/21/98	S 1	SU-19	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
		06/30/98	S2	SU-151	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
38	Wildcat Creek near Lafayette, IN	05/20/98	S 1	SU-22	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
		07/01/98	S2	SU-150	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060

Table 13. Pesticide and pesticide degradate (terbufos through p,p'-DDE) concentrations in water samples from 70 midwestern streams and 5 midwestern reservoirs—Continued

Site no. (figs. 3, 4) 39 N 39 N 40 S 41 E 42 N 43 C 44 E 45 N 46 N 47 E 48 E 49 E 50 E 51 E	Sito	Date of	Sampla	Sampla			Co in micr	ncentrat ograms	ion, per liter		
	name	(month/ day/year)	type	no.	Terbu- fos	Thio- bencarb	Tri- allate	Triflu- ralin	alpha- HCH	cis- permeth- rin	p,p' - DDE
			India	na—Contin	nued						
39	White River near Nora, IN	05/28/98	S 1	SU-51	< 0.0130	< 0.0020	< 0.0010	< 0.0020	< 0.0020	< 0.0050	< 0.0060
		07/01/98	S2	SU-149	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
40	Sugar Creek near Edinburgh, IN	05/26/98	S 1	SU-46	<.0130	<.0020	<.0010	.0047	<.0020	<.0050	<.0060
		07/20/98	S2	SU-178	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
41	E. Fork White River near	05/28/98	S 1	SU-52	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
	Bedford, IN	07/06/98	S2	SU-161	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
42	Wabash River at New Harmony, IN	05/27/98	S 1	SU–57	Sample	not analyze	ed (ruined	in labora	tory)		
		06/23/98	S2	SU-136	<.0130	<.0020	<.0010	.0070	<.0020	<.0050	<.0060
			Ν	Minnesota							
43	Cottonwood River near	05/26/98	S 1	SU-49	<.0130	<.0020	<.0010	.0050	<.0020	<.0050	<.0060
	New Ulm, MN	07/21/98	S2	SU-180	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
44	Little Cobb River near Beauford, MN	05/18/98	S 1	SU-12	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
		08/17/98	S2	SU-208	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
45	Minnesota River near Jordan, MN	05/19/98	S 1	SU-13	<.0130	<.0020	<.0010	.0051	<.0020	<.0050	<.0060
		06/26/98	S2	SU-135	<.0130	<.0020	<.0010	.0062	<.0020	<.0050	<.0060
46	Mississippi River at Hastings, MN	05/20/98	S 1	SU-14	<.0130	<.0020	<.0010	E.0036	<.0020	<.0050	<.0060
		05/20/98	S2	SU-206	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
47	Des Moines River at Jackson, MN	05/26/98	S 1	SU-48	<.0130	<.0020	<.0010	.0050	<.0020	<.0050	<.0060
		08/24/98	S2	SU-210	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
48	Rock River at Luverne, MN	06/24/98	S 1	SU-130	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
		06/25/98	S2	SU-131	<.0130	<.0020	<.0010	.0080	<.0020	<.0050	<.0060
				Kansas							
49	Black Vermillion River at	05/05/98	S 1	SU-1	<.0130	<.0020	<.0010	E.0033	<.0020	<.0050	<.0060
	Frankfort, KS	06/09/98	S2	SU-107	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
50	Big Blue River below Tuttle	06/03/98	R1	SU-73	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
50	Creek Lake Dam, KS	07/29/98	R2	SU-197	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
51	Delaware River near Muscotah, KS	05/05/98	S 1	SU-2	<.0130	<.0020	<.0010	E.0031	<.0020	<.0050	<.0060
		06/10/98	S2	SU-105	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060

Table 13. Pesticide and pesticide degradate (terbufos through p,p'-DDE) concentrations in water samples from 70 midwestern streams and 5 midwestern reservoirs—Continued

Date of Concentration, Site no. Site collection Sample Sample in micrograms per liter											
(figs. 3, 4)	name	(month/ day/year)	type	no.	Terbu- fos	Thio- bencarb	Tri- allate	Triflu- ralin	alpha- HCH	cis- permeth- rin	p,p' - DDE
				Kentucky							
52	Ohio River at Cannelton Dam, KY	06/04/98	S 1	SU-75	< 0.0130	< 0.0020	< 0.0010	< 0.0020	< 0.0020	< 0.0050	< 0.0060
		07/07/98	S2	SU-173	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	E.0019
				Missouri							
53	Nodaway River near Graham, MO	06/18/98	S1	SU-119	Sample	e not analyz	ed (ruined	d in labora	atory)		
		08/19/98	S2	SU-209	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
				Nebraska							
54	North Dry Creek near Kearney, NE	05/22/98	S 1	SU-28	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
		06/08/98	S2	SU-76	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
55	Maple Creek near Nickerson, NE	05/21/98	S1	SU-37	<.0130	<.0020	<.0010	.0188	<.0020	<.0050	<.0060
	•	06/08/98	S2	SU-79	<.0130	<.0020	<.0010	.0234	<.0020	<.0050	<.0060
56	Salt Creek at Roca, NE	05/15/98	S 1	SU–6	<.0130	<.0020	<.0010	E.0034	<.0020	<.0050	<.0060
		06/10/98	S2	SU-94	<.0130	<.0020	<.0010	.0078	<.0020	<.0050	<.0060
57	Wahoo Creek at Ithaca, NE	05/15/98	S 1	SU–5	<.0130	<.0020	<.0010	E.0026	<.0020	<.0050	<.0060
		06/08/98	S2	SU-78	<.0130	<.0020	<.0010	.0360	<.0020	<.0050	<.0060
58	Platte River at Louisville, NE	05/22/98	S 1	SU-39	<.0130	<.0020	<.0010	.0338	<.0020	<.0050	<.0060
		06/09/98	S2	SU-77	<.0130	<.0020	<.0010	.0300	<.0020	<.0050	<.0060
59	Big Nemaha River at Falls City, NE	05/26/98	S1	SU-41	<.0130	<.0020	<.0010	.0052	<.0020	<.0050	<.0060
		06/08/98	S2	SU-80	<.0130	<.0020	<.0010	.0088	<.0020	<.0050	<.0060
60	W. Fork Big Blue River,	05/23/98	S 1	SU-36	<.0130	<.0020	<.0010	.0041	<.0020	<.0050	<.0060
	Dorchester, NE	06/10/98	S2	SU-82	<.0130	<.0020	<.0010	.0057	<.0020	<.0050	<.0060
61	Big Blue River at Barneston, NE	05/15/98	S 1	SU-4	<.0130	<.0020	<.0010	.0339	<.0020	<.0050	<.0060
		06/09/98	S2	SU-104	<.0130	<.0020	<.0010	.0081	<.0020	<.0050	<.0060
62	Little Blue River near Fairbury, NE	05/12/98	S 1	SU–3	Sample	e not analyz	ed (bottle	broken)			
		06/08/98	S2	SU-81	Sample	e not analyz	ed (bottle	mislabel	ed)		
				Ohio							
63	Clear Creek near Rockbridge, OH	06/10/98	S 1	SU-86	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
		06/30/98	S2	SU-145	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060

Table 13. Pesticide and pesticide degradate (terbufos through p,p'-DDE) concentrations in water samples from 70 midwestern streams and 5 midwestern reservoirs—Continued

Sito no	Sito	Date of	Sampla	Sampla			Cor in micro	ncentrat ograms	ion, per liter		
(figs. 3, 4)	name	(month/ day/year)	type	no.	Terbu- fos	Thio- bencarb	Tri- allate	Triflu- ralin	alpha- HCH	cis- permeth- rin	p,p' - DDE
			Ohio	—Continu	ed						
64	Scioto River near Prospect, OH	06/02/98	S 1	SU-63	< 0.0130	< 0.0020	< 0.0010	0.0047	< 0.0020	< 0.0050	E0.0020
		06/29/98	S2	SU-141	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
65	Olentangy River at Claridon, OH	06/09/98	S 1	SU-85	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
		06/29/98	S2	SU-157	<.0130	<.0020	<.0010	.0061	<.0020	<.0050	<.0060
66	Olentangy River below	06/09/98	R1	SU-84	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
	Delaware, Lake Dam, OH	06/29/98	R2	SU-153	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
67	Big Darby Creek at Darbyville, OH	06/03/98	S 1	SU-62	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
		06/29/98	S2	SU-140	<.0130	<.0020	<.0010	.0061	<.0020	<.0050	<.0060
68	Scioto River at Higby, OH	06/04/98	S1	SU-73	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
		07/08/98	S2	SU-165	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
69	L. Miami River near Oldtown, OH	06/10/98	S 1	SU-92	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
		06/30/98	S2	SU-144	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
70	Mad River at Eagle City, OH	06/10/98	S 1	SU-91	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
		06/30/98	S2	SU-146	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
71	Tiffin River at Stryker, OH	06/01/98	S 1	SU-66	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
		07/07/98	S2	SU-172	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
72	Auglaize River at Fort Jennings, OH	06/17/98	S 1	SU-117	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
		07/08/98	S2	SU-171	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
			,	Wisconsin							
73	Root River at Racine, WI	06/01/98	S 1	SU61	<.0130	<.0020	<.0010	.0047	<.0020	<.0050	<.0060
		08/03/98	S2	SU-204	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
74	St. Croix River at St. Croix Falls, WI	06/03/98	S 1	SU68	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
		08/05/98	S2	SU-205	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
75	Wisconsin River at Muscoda, WI	06/16/98	S 1	SU-133	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
		08/07/98	S2	SU-202	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
76	Rock River at Afton, WI	06/17/98	S 1	SU-134	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
		07/21/98	S2	SU-179	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060

Table 14. Statistical summary of 46 pesticide and pesticide degradate concentrations in 134 water samples from

 71 Midwestern streams (concentrations in micrograms per liter)

[<, less than; E, estimate]

Herbicide	Method detection limit (MDL)	Number at or above MDL	25th percentile	Median	75th percentile	95th percentile	Maximum
2,6-diethylaniline	0.003	1	< 0.003	< 0.003	< 0.003	< 0.003	0.004
acetochlor	.002	128	.099	.400	1.14	11.40	25.1
alachlor	.002	119	.014	.040	.16	2.94	17.2
atrazine	.001	134	.536	3.77	8.78	37.6	224
azinphos-methyl	.001	0	<.001	<.001	<.001	<.001	<.001
benfluralin	.002	1	<.002	<.002	<.002	<.002	.004
butylate	.002	6	<.002	<.002	<.002	E.001	.270
carbaryl	.003	32	<.003	<.003	<.003	.059	.195
carbofuran	.003	47	<.003	<.003	.031	.191	1.03
chlorpyrifos	.004	44	<.004	<.004	.014	.072	.858
cyanazine	.004	125	.049	.322	1.01	6.75	20.0
dacthal	.002	0	<.002	<.002	<.002	.001	.002
deethylatrazine	.002	134	.067	.256	.446	.820	1.26
diazinon	.002	48	<.002	<.002	.006	.028	.071
dieldrin	.001	12	<.001	<.001	<.001	.006	.015
disulfoton	.017	0	<.017	<.017	<.017	<.017	<.017
EPTC	.002	28	<.002	<.002	<.002	.015	.076
ethalfluralin	.004	0	<.004	<.004	<.004	<.004	<.004
ethoprophos	.003	1	<.003	<.003	<.003	<.003	.045
fonofos	.003	3	< .003	< .003	< 003	< .003	.063
lindane	.004	10	<.004	<.004	<.004	.005	.042
linuron	002	7	< 002	< 002	< 002	025	129
malathion	.002	6	<.002	<.002	< 005	E 004	.009
metolachlor	002	133	301	1.67	3.21	14.7	143
metribuzin	004	88	< 004	020	099	329	1 76
molinate	004	3	< 004	< 004	< 004	< 004	049
napropamide	003	0	< 003	< 003	< 003	< 003	< 003
napropannae	.005	0	<.005	< 004	< 004	< 004	<.003
parathion methyl	.004	1	< 006	< 006	< 006	< 006	<.004 016
paradition metry	.000	1	<.000	<.000	< 004	< 004	.010
pedulate	.004	51	<.004	<.004	<.004	1.02	<.004
pendimethanii	.004	0	<.004	<.004	.020	.103	.520
promaton	.002	50	<.002 E 007	<.002 E 015	<.002	<.002	<.002
	.018	39	E.007	E.013	.031	.087	.340
propaciil	.007	20	<.007	<.007	<.007	.101	.007
	.004	0	<.004	<.004	<.004	<.004	<.004
propargite	.013	0	<.013	<.013	<.013	<.013	<.013
propyzamide	.005	105	<.003	<.003	<.003	<.003	<.003
simazine	.005	105	.009	.029	.086	.971	7.91
tebutniuron	.010	21	<.010	<.010	E.006	.016	.076
terbacil	.007	2	<.007	<.007	<.007	<.007	.014
terbufos	.013	3	<.013	<.013	<.013	<.013	.048
thiobencarb	.002	2	<.002	<.002	<.002	<.002	.032
tri-allate	.001	0	<.001	<.001	<.001	<.001	<.001
trifluralin	.002	68	<.002	.002	.006	.034	.268
alpha-HCH	.002	0	<.002	<.002	<.002	<.002	<.002
cis-Permethrin	.005	0	<.005	<.005	<.005	<.005	<.005
p,p'-DDE	.006	0	<.006	<.006	<.006	<.006	.003
Sum of 46 pesticides and degradates	.001	134	1.34	7.04	16.0	65.6	385

Figure 19. Pesticide and pesticide degradate (2,6-diethylaniline to fonofos) concentrations and percent detections at or above the method detection limit in 134 stream samples.

OCCURRENCE OF NUTRIENTS AND PHYSICAL PROPERTIES

Streams

The results of analyses of 7 nutrients, and measurements of 3 physical properties for 141 stream samples are given in table 27. The discharges on the day of sample collection are given in table 4. A statistical summary of these results is given in table 28. Nitrate was detected at or above the MRL in 136 (98 percent) of 139 samples. Nitrate concentrations were the highest of the nutrients with a median concentration of 4.34 milligrams per liter (mg/L) and more than 10 percent of the samples exceeding the EPA Maximum Contaminant Level (MCL) of 10 mg/L (U.S. Environmental Protection Agency, 1996b). Nitrite was detected at or above the MRL in 132 (96 percent) of 138 samples. However, nitrite concentrations were very low, with a median concentration of only 0.056 mg/L. Ammonia plus organic N was detected in 136 (99 percent) of 137 samples. Organic N concentrations were generally higher than ammonia concentrations. The median organic N concentration was 0.468 mg/L. Ammonia as N was detected at or above the MRL in 123 (89 percent) of 138 samples, with a median concentration of 0.063 mg/L. Dissolved phosphorus and orthophosphate were detected at or above the MRL in 97 percent and 96 percent of samples, respectively. They occurred at similar concentrations; the median dissolved phosphorus concentration was 0.107 mg/L, and the median orthophosphate concentration was 0.084 mg/L. Stream samples tended to be slightly basic; the median pH of the samples was 7.8. Specific conductances were moderate with a median of 500 microsiemens per centimeter at 25 degrees Celsius (µS/cm). Daily mean discharge on the date of sample collection ranged from 3 to 267,000 cubic feet per second (ft^3/s); the median discharge was $1.070 \text{ ft}^3/\text{s}.$

Table 15. Concentrations of 13 herbicides in water samples from 71 midwestern streams and 5 midwestern reservoirs

[S1, pre-emergence stream sample; S2, post-emergence stream sample; R1, first reservoir outflow sample; R2, second reservoir outflow sample;

Site no	Site	Date of collection Sample Sam			Concentration, in micrograms per liter						
(figs. 3, 4)	name	(month/	type	no.	Aceto-	Ala-	Ame-	Atra-	Cyana-		
		uuy/yeu/)	Illino	is	CIIIOI	CIIIOI	uyn	Zine	21116		
1	Vermillion River below Lake	06/10/98	R1	SU-98	0.36	< 0.05	< 0.05	4.94	0.49		
-	Vermillion Dam, IL	06/10/98	LD	SU-98	.37	<.05	<.05	5.22	.55		
		07/16/98	R2	SU-177	<.05	<.05	<.05	1.37	.15		
		07/16/98	LD	SU-177	<.05	<.05	<.05	1.15	.13		
2	Bonpas Creek at Browns, IL	05/23/98	S 1	SU-43	8.39	.39	<.05	73.34	1.31		
		07/07/98	S2	SU-166	.08	<.05	<.05	1.53	<.05		
3	Little Wabash River at Carmi, IL	05/23/98	S 1	SU-33	3.77	3.80	<.05	51.32	1.95		
		07/09/98	S 2	SU-175	.08	.30	<.05	6.50	.42		
4	S. Branch Kishwaukee River near	05/20/98	S 1	SU–29	12.50	.37	<.05	13.92	3.01		
	Fairdale, IL	07/29/98	S2	SU-195	<.05	<.05	<.05	.22	<.05		
5	Iroquois River near Chebanse, IL	06/10/98	S 1	SU-99	.22	<.05	<.05	1.90	.44		
		07/08/98	S2	SU-168	.09	<.05	<.05	2.71	.54		
6	Dupage River near Shorewood, IL	06/09/98	S 1	SU-100	.06	<.05	<.05	.09	.45		
		07/29/98	S2	SU-194	<.05	<.05	<.05	.05	<.05		
7	Illinois River at Marseilles, IL	06/12/98	S 1	SU-113	.98	.05	<.05	4.62	.85		
		07/09/98	S2	SU-176	.13	<.05	<.05	1.40	.23		
8	Spoon River at London Mills, IL	05/20/98	S 1	SU-25	4.09	.20	<.05	35.23	67.16		
		07/01/98	S2	SU-160	.14	<.05	<.05	2.67	.26		
9	Sangamon River near Monticello, IL	05/23/98	S 1	SU-35	.54	<.05	<.05	4.07	.22		
		05/23/98	LD	SU-35	.57	<.05	<.05	4.16	.23		
		08/05/98	S2	SU-201	<.05	<.05	<.05	.43	<.05		
10	Sangamon River at Riverton, IL	05/26/98	S 1	SU-44	1.46	.13	<.05	8.03	.51		
		07/09/98	S2	SU-174	.07	<.05	<.05	1.49	.07		
		07/09/98	LD	SU-174	.06	<.05	<.05	1.27	.06		
		07/09/98	LD	SU-174	.07	<.05	<.05	1.35	<.05		
11	LaMoine River at Colmar, IL	05/21/98	S 1	SU-27	9.80	.05	<.05	23.30	10.54		
		06/29/98	S2	SU-142	.36	<.05	<.05	4.32	1.40		
		06/29/98	LD	SU-142	.35	<.05	<.05	4.22	1.34		
12	Illinois River at Valley City, IL	06/18/98	S 1	SU-120	.98	.06	<.05	7.08	1.46		
		08/12/98	S 2	SU-207	<.05	<.05	<.05	.30	.09		
13	Mississippi River below Grafton, IL	06/02/98	S 1	SU-60	.79	<.05	<.05	3.25	.88		
		06/15/98	S2	SU-116	.71	.06	<.05	5.03	.82		
		06/15/98	LD	SU-116	.44	<.05	<.05	3.77	.58		
		06/15/98	LD	SU-116	.61	.05	<.05	4.03	.63		
14	Kaskaskia River near Cowden, IL	05/20/98	S1	SU-30	.33	<.05	<.05	1.76	.10		
		05/20/98	LD	SU-30	.36	<.05	<.05	1.73	.08		
		07/08/98	S 2	SU-169	.77	<.05	<.05	4.66	.21		

Site no.	Concentration, in micrograms per liter												
(figs. 3, 4)	Meto-	Metri-	Prome-	Prome-	Pro-	Pro-	Sima-	Ter-					
	lacillo	buzin	ton	Illinois—Cont	inued	pazine	200	buttyn					
1	0.97	< 0.05	< 0.05	< 0.05	<0.05	0.06	< 0.05	< 0.05					
-	1.03	<.05	<.05	<.05	<.05	.05	<.05	<.05					
	.48	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
	.41	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
2	14.09	.17	<.05	<.05	<.05	.68	14.15	<.05					
	.93	<.05	<.05	<.05	<.05	<.05	.08	<.05					
3	14.44	.34	<.05	<.05	<.05	.43	5.38	<.05					
	1.70	1.34	<.05	<.05	<.05	.07	.22	<.05					
4	9.58	<.05	<.05	<.05	<.05	.12	<.05	<.05					
	.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
5	.75	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
	.91	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
6	10	< 05	< 05	< 05	< 05	< 05	< 05	< 05					
0	.19 < 05	< 05	<.05	<.05	<.05	<.05	< .05	<.05					
7	1.16	.17	<.05	<.05	<.05	.05	<.05	<.05					
	.50	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
8	4.30	.35	<.05	<.05	<.05	.32	.14	<.05					
	.68	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
9	2.60	<.05	<.05	<.05	<.05	.05	<.05	<.05					
	2.69	<.05	<.05	<.05	<.05	.05	<.05	<.05					
	.11	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
10	1.69	.09	<.05	<.05	<.05	.08	.06	<.05					
	.33	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
	.28	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
	.40	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
11	1.35	.60	<.05	<.05	<.05	.16	.07	<.05					
	.78	.07	<.05	<.05	<.05	.06	<.05	<.05					
	.78	.06	<.05	<.05	<.05	.06	<.05	<.05					
12	1.63	.06	<.05	<.05	<.05	.08	.06	<.05					
	.09	<.05	.06	<.05	<.05	<.05	<.05	<.05					
13	1.12	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
	1.24	<.05	<.05	<.05	<.05	.06	.06	<.05					
	.84	<.05	<.05	<.05	<.05	.06	.06	<.05					
	.96	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
14	41	< 05	< 05	< 05	< 05	< 05	11	< 05					
14	43	< 05	< 05	< 05	< .05	< 05	.13	<.05					
	1.19	<.05	<.05	<.05	<.05	.06	.07	<.05					

SD, duplicate stream sample; RD, duplicate reservoir sample; SB, blank stream sample; SS, spiked stream sample; <, less than]

Table 15. Concentrations of 13 herbicides in water samples from 71 midwestern streams and 5 midwestern reservoirs

[S1, pre-emergence stream sample; S2, post-emergence stream sample; R1, first reservoir outflow sample; R2, second reservoir outflow sample;

0.1	0 ′′	Date of	<u> </u>	Concentration, in micrograms per liter						
Site no.	Site	collection	Sample	Sample	Acata		rograms p	Atro	Cuana	
(ligs. 3, 4)	name	(month/ day/year)	type	110.	chlor	chlor	tryn	Atra- zine	zine	
		I	llinois—Co	ntinued						
15	Shoal Creek near Breese, IL	05/22/98	S 1	SU-32	9.52	0.21	< 0.05	25.68	1.96	
		07/08/98	S2	SU-167	1.10	<.05	<.05	9.95	.21	
			Iowa	1						
16	Turkey River at Spillville, IA	06/02/98	S1	SU-64	.24	<.05	<.05	3.37	.66	
		06/12/98	S 2	SU-109	1.29	.25	<.05	3.53	1.66	
17	Mississippi River at Clinton, IA	05/27/98	S 1	SU-55	.25	<.05	<.05	.31	.11	
		07/01/98	S2	SU-155	.10	<.05	<.05	.62	.11	
18	Wapsipinicon River near Tripoli, IA	05/27/98	S 1	SU-54	.33	.08	<.05	1.12	.12	
		06/20/98	S2	SU-126	.36	.12	<.05	7.29	.45	
19	Wapsipinicon River at	05/29/98	S 1	SU-56	1.48	.32	<.05	8.39	.25	
	Independence, IA	06/12/98	S2	SU-110	1.16	.08	<.05	7.91	.55	
20	Iowa River near Rowan, IA	06/02/98	S 1	SU-65	.05	<.05	<.05	.39	<.05	
		06/23/98	S2	SU-129	.63	<.05	<.05	3.27	.07	
21	Old Mans Creek near Iowa City, IA	06/10/98	S 1	SU-93	.57	.21	<.05	3.15	.78	
		06/22/98	S2	SU-147	.28	<.05	<.05	3.05	.40	
22	Wolf Creek near Dysart, IA	06/10/98	S 1	SU-87	.64	<.05	<.05	6.02	.69	
		06/22/98	S 2	SU-128	.68	<.05	<.05	4.34	.54	
23	Iowa River at Wapello, IA	05/27/98	S 1	SU-53	.43	.05	<.05	1.86	.50	
		06/19/98	S2	SU-127	.38	<.05	<.05	3.91	.75	
24	N. Skunk River near Sigourney, IA	05/21/98	S 1	SU-21	14.50	<.05	<.05	23.64	2.25	
		06/10/98	S2	SU-95	.35	.10	<.05	8.26	2.09	
25	Skunk River at Augusta, IA	05/26/98	S 1	SU-45	7.58	.10	<.05	19.51	9.21	
		06/18/98	S2	SU-122	.90	.06	<.05	7.55	1.55	
26	Des Moines River at Fort Dodge, IA	05/16/98	S 1	SU–8	12.17	<.05	<.05	.53	.13	
		06/12/98	S2	SU-108	.11	<.05	<.05	.44	<.05	
27	Raccoon River at Van Meter, IA	05/17/98	S 1	SU–9	.94	<.05	<.05	2.73	.30	
		06/10/98	S2	SU-89	.32	<.05	<.05	3.20	.28	
28	Little Sioux River at	05/27/98	S 1	SU-42	.39	<.05	<.05	1.60	<.05	
	Correctionville, IA	06/18/98	S2	SU-123	.23	<.05	<.05	1.19	<.05	
29	Maple River at Mapleton, IA	05/29/98	S 1	SU-59	2.36	<.05	<.05	8.24	1.78	
		06/09/98	S2	SU-90	.19	<.05	<.05	4.31	.25	
30	Boyer River at Logan, IA	05/22/98	S 1	SU-31	3.93	.41	<.05	14.76	12.82	
		06/09/98	S2	SU-96	.64	<.05	<.05	5.23	.99	
31	Chariton River below Rathbun	06/04/98	R1	SU69	.13	<.05	<.05	1.05	.15	
	Lake Dam, IA	06/29/98	R2	SU-148	.23	<.05	<.05	1.64	.24	
32	Nishnabotna River at Hamburg, IA	06/17/98	S2	SU-124	.40	.05	<.05	5.06	.57	

Site no.	Concentration, in micrograms per liter												
(figs. 3, 4)	Meto-	Metri-	Prome-	Prome-	Pro-	Pro-	Sima-	Ter-					
	lachlor	buzin	ton	tryn	pachlor	pazine	zine	butryn					
15	7 55	0.17	<0.05		-0.05	<0.05	0.22	<0.05					
15	1.55	20	< 0.05	< 0.05	<0.03	<0.05	0.22	< 0.03					
	1.05	.20	<.05	<.05 Iowa_Conti	.09	.11	.00	<.05					
16	10	< 05	< 05	< 05	< 05	< 05	< 05	< 05					
10	.14	.09	<.05	<.05	<.05	<.05	<.05	<.05					
17	.12	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
	.20	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
18	.54	<.05	<.05	<.05	<.05	.06	<.05	<.05					
	2.03	<.05	<.05	<.05	<.05	.07	<.05	<.05					
10	1.02	05	0.5	0.5	0.5	00	0.5	0.5					
19	1.82	<.05	<.05	<.05	<.05	.08	<.05	<.05					
	2.16	.18	<.05	<.05	<.05	.09	<.05	<.05					
20	.15	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
	1.61	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
21	1.20	< 05	< 05	< 05	< 05	05	< 05	< 05					
21	98	< 05	< 05	< 05	< 05	.05	< 05	< 05					
	.90	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
22	1.84	.15	<.05	<.05	<.05	.06	<.05	<.05					
	2.03	.05	<.05	<.05	<.05	.05	<.05	<.05					
23	65	< 05	< .05	< .05	< 05	< 05	< .05	< .05					
	1.42	<.05	<.05	<.05	<.05	.05	<.05	<.05					
24	2.37	.33	<.05	<.05	<.05	.15	.06	<.05					
	2.44	.18	<.05	<.05	<.05	.11	<.05	<.05					
25	6.46	.09	<.05	<.05	<.05	.27	.06	<.05					
	2.86	<.05	<.05	<.05	<.05	.09	<.05	<.05					
26	5.10	05	. 05	. 05	20	. 05	. 05	. 05					
26	5.10	.05	<.05	<.05	.28	<.05	<.05	<.05					
	.22	<.03	<.05	<.03	<.05	<.03	<.05	<.05					
27	2.91	<.05	.06	<.05	<.05	<.05	<.05	<.05					
	1.15	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
28	36	< 05	< 05	< 05	< 05	< 05	< 05	< 05					
20	37	< 05	< 05	< 05	< 05	< 05	< 05	< 05					
	.57	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
29	4.50	.23	<.05	<.05	<.05	.08	<.05	<.05					
	2.25	.05	<.05	<.05	<.05	.06	<.05	<.05					
30	10.45	.10	<.05	<.05	<.05	.16	.08	<.05					
	1.95	.11	<.05	<.05	<.05	.07	<.05	<.05					
31	.15	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
	.34	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
32	1.16	.10	<.05	<.05	<.05	.06	<.05	<.05					

SD, duplicate stream sample; RD, duplicate reservoir sample; SB, blank stream sample; SS, spiked stream sample; <, less than]

Table 15. Concentrations of 13 herbicides in water samples from 71 midwestern streams and 5 midwestern reservoirs

[S1, pre-emergence stream sample; S2, post-emergence stream sample; R1, first reservoir outflow sample; R2, second reservoir outflow sample;

0:14	011-	Date of	0	0		Co	oncentratio	on,	
Site no.	Site	collection	Sample	Sample	A		rograms p		Cyana
(iigs. 3, 4)	lidille	day/year)	type	110.	Aceto- chlor	chlor	Ame- tryn	Atra- zine	cyana- zine
			India	na					
33	Whitewater River near Alpine, IN	05/26/98	S 1	SU-47	1.70	1.05	< 0.05	11.26	3.93
		07/08/98	S2	SU-162	.13	.06	<.05	1.50	.30
34	Blue River at Fredericksburg, IN	05/27/98	S 1	SU-50	.40	<.05	<.05	5.89	.19
		07/08/98	S2	SU-163	.05	<.05	<.05	.71	.05
35	Mississinewa River below	06/09/98	R1	SU-83	.45	<.05	<.05	4.27	1.99
	Mississinewa Lake Dam, IN	07/09/98	R2	SU-164	.74	.08	<.05	5.63	2.36
36	Eel River near Logansport, IN	05/21/98	S 1	SU-18	2.77	.06	<.05	7.23	.49
		06/30/98	S2	SU-152	.22	.86	<.05	2.77	.26
37	Wildcat Creek near Jerome, IN	05/21/98	S 1	SU-19	1.31	<.05	<.05	11.95	22.31
		06/30/98	S2	SU-151	.21	.22	<.05	5.21	.77
38	Wildcat Creek near Lafayette, IN	05/20/98	S 1	SU-22	.78	<.05	<.05	4.14	.18
		07/01/98	S2	SU-150	.14	<.05	<.05	2.26	.24
39	White River near Nora, IN	05/28/98	S 1	SU-51	1.39	<.05	<.05	9.46	1.40
		07/01/98	S2	SU-149	.37	.09	<.05	4.75	.53
		07/01/98	LD	SU-149	.38	.09	05	4.86	.58
40	Sugar Creek near Edinburgh, IN	05/26/98	S 1	SU-46	3.40	.12	<.05	14.66	1.97
		07/20/98	S 2	SU-178	.07	<.05	<.05	.67	<.05
41	E. Fork White River near	05/28/98	S 1	SU-52	4.40	.73	<.05	21.77	3.12
	Bedford, IN	07/06/98	S 2	SU-161	.15	.16	<.05	1.65	.13
42	Wabash River at New Harmony, IN	05/27/98	S 1	SU-57	1.98	.14	<.05	9.13	1.22
		05/27/98	SD	SU-58	1.37	<.05	<.05	6.69	.76
		06/23/98	S2	SU-136	.98	.17	<.05	8.36	1.98
			Minnes	sota					
43	Cottonwood River near New Ulm, MN	05/26/98	S 1	SU-49	.09	<.05	<.05	.16	.11
		07/21/98	S2	SU-180	<.05	<.05	<.05	.16	<.05
		07/21/98	SD	SU-181	<.05	<.05	<.05	.16	<.05
44	Little Cobb River near Beauford, MN	05/18/98	S 1	SU-12	2.11	.13	<.05	.10	<.05
		08/17/98	S2	SU-208	<.05	<.05	<.05	.07	<.05
45	Minnesota River near Jordan, MN	05/19/98	S 1	SU-13	1.19	.07	<.05	.10	<.05
		06/26/98	S2	SU-135	.24	.09	<.05	.90	.10
46	Mississippi River at Hastings, MN	05/20/98	S 1	SU-14	.32	.05	<.05	.16	<.05
		05/20/98	SD	SU-15	.38	.06	<.05	.15	.09
		05/20/98	LD	SU-15	.41	.06	<.05	.17	.10
		05/20/98	S2	SU-206	<.05	<.05	<.05	.08	<.05
47	Des Moines River at Jackson, MN	05/26/98	S 1	SU-48	.39	<.05	<.05	.38	<.05
		08/24/98	S2	SU-210	<.05	<.05	<.05	.15	<.05

Site no	Concentration, in micrograms per liter												
(figs. 3, 4)	Meto-	Metri-	Prome-	Prome-	Pro-	Pro-	Sima-	Ter-					
	lacilioi	buzin	ton	Indiana Con	tinued	pazine	21116	butiyn					
33	1 38	0.23	<0.05		<0.05	0.09	0.54	<0.05					
55	71	0.25	< 05	< 05	< 05	< 05	13	< 05					
	., 1	.05					.15	1.00					
34	1.05	<.05	<.05	<.05	<.05	.06	1.68	<.05					
	.12	<.05	.09	<.05	<.05	<.05	.13	<.05					
35	1.15	.22	<.05	<.05	<.05	.05	.31	<.05					
	2.48	.20	<.05	<.05	<.05	.07	.19	<.05					
36	2.48	.35	<.05	<.05	.05	.06	.10	<.05					
	.52	<.05	<.05	<.05	<.05	<.05	.09	<.05					
37	1.02	20	< 05	< 05	< 05	09	07	< 05					
51	2.09	.09	<.05	<.05	.21	.06	.06	<.05					
• •													
38	2.07	.06	<.05	<.05	<.05	<.05	<.05	<.05					
	1.19	<.05	<.05	<.05	<.05	<.05	.05	<.05					
39	3.78	.07	<.05	<.05	<.05	.05	.22	<.05					
	2.28	.06	.05	<.05	<.05	.05	.15	<.05					
	2.35	.06	.06	<.05	<.05	.06	.15	<.05					
40	4.00	.33	<.05	<.05	<.05	.15	.37	<.05					
	4.07	.32	.16	<.05	<.05	<.05	<.05	<.05					
41	4.65	.16	<.05	<.05	<.05	.18	.82	<.05					
	.74	<.05	<.05	<.05	<.05	<.05	.06	<.05					
42	1.87	.07	<.05	<.05	<.05	.09	.38	<.05					
	1.21	.06	<.05	<.05	<.05	.07	.28	<.05					
	4.22	.10	<.05	<.05	<.05	.10	.26	<.05					
				Minnesota—Co	ntinued								
43	.07	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
	.20	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
	.20	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
44	.55	<.05	<.05	<.05	.14	<.05	<.05	<.05					
	<.05	<.05	.09	<.05	<.05	<.05	<.05	<.05					
45	.36	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
	.41	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
46	.14	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
	.17	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
	.19	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
47	.07	<.05	<.05	<.05	<.05	<.05	<.05	<.05					
-	.13	<.05	<.05	<.05	<.05	<.05	<.05	<.05					

SD, duplicate stream sample; RD, duplicate reservoir sample; SB, blank stream sample; SS, spiked stream sample; <, less than]

Table 15. Concentrations of 13 herbicides in water samples from 71 midwestern streams and 5 midwestern reservoirs

[S1, pre-emergence stream sample; S2, post-emergence stream sample; R1, first reservoir outflow sample; R2, second reservoir outflow sample;

Site no.	Site	Date of collection	of on Sample Sample	Concentration, in micrograms per liter					
(figs. 3, 4)	name	(month/ dav/year)	type	no.	Aceto-	Ala-	Ame-	Atra-	Cyana- zine
		Mi	nnesota_(Continued				2	
48	Rock River at Luverne, MN	06/24/98	S1	SU-130	<0.05	< 0.05	< 0.05	0.10	<0.05
		06/25/98	S2	SU-131	05	< 05	< 05	.13	< 05
		06/25/98	LD	SU-131	.05	<.05	<.05	.14	<.05
			Kans	as					
49	Black Vermillion River at	05/05/98	S1	SU-1	<.05	.05	<.05	.36	<.05
	Frankfort, KS	06/09/98	S2	SU-107	<.05	1.09	<.05	9.59	<.05
50	Big Blue River below Tuttle	06/03/98	R1	SU-74	.16	.35	<.05	1.99	.10
	Creek Lake Dam, KS	07/29/98	R2	SU-197	.27	.65	<.05	.93	<.05
		07/29/98	LD	SU-197	.30	.72	<.05	1.05	<.05
51	Delaware River near Muscotah KS	05/05/98	S 1	SU-2	< 05	< 05	< 05	22	< 05
51		06/10/98	S2	SU-105	09	41	< 05	3.94	< 05
		00,10,90	Kentua	rkv	.07		1.05	5.71	1.00
52	Ohio River at Cannelton Dam, KY	06/04/98	S1	SU-75	.14	< 05	< 05	1.19	16
02		07/07/98	S2	SU-173	.11	< 05	< 05	.58	.10
		01101170	Misso	uri	100	400	400	.00	.07
53	Nodaway River near Graham. MO	06/18/98	S1	SU-119	.12	<.05	<.05	3.35	.59
		08/19/98	S2	SU-209	<.05	<.05	<.05	.27	<.05
			Nebras	ska					
54	North Dry Creek near Kearney, NE	05/22/98	S1	SU-28	5.57	.14	<.05	15.80	.20
•		05/22/98	LD	SU-28	5.44	.13	<.05	15.80	.20
		06/08/98		SU-76	.18	.05	<.05	7.89	<.05
55	Maple Creek near Nickerson, NE	05/21/98	S1	SU-37	21.32	8.77	.06	27.09	6.66
		06/08/98	S2	SU-79	2.05	.05	<.05	9.30	4.00
56	Salt Creek at Roca, NF	05/15/98	\$1	SU_6	18	18 27	< 05	172 18	14
50	Suit Creek at Roea, ME	06/10/98	\$2	SU_94	.10	1.61	< 05	34 79	2 48
		00/10/90	52	50)4	.01	1.01	<.05	54.77	2.40
57	Wahoo Creek at Ithaca, NE	05/15/98	S 1	SU-5	1.83	4.94	<.05	34.06	5.00
		06/08/98	S2	SU-78	.33	.22	<.05	4.49	.91
59	Diatta Divar at Louisvilla NE	05/22/08	S 1	SU 20	2.91	2.19	< 05	20.46	8 00
58	Tratte River at Louisville, NE	05/22/98	51	SU 77	2.01	2.10	<.05	6.22	1.31
		00/09/98	32	30-77	.05	./+	<.05	0.22	1.51
59	Big Nemaha River at Falls City, NE	05/26/98	S 1	SU-41	.36	.20	<.05	3.77	.44
		06/08/98	S2	SU-80	1.25	.85	<.05	22.33	9.66
		0.5/0.0/00		a			0.5	a a 4a	
60	W. Fork Big Blue River, Dorchester NF	05/23/98	SI	SU-36	2.15	4.17	<.05	28.43	.55
	Dorenester, TAL	06/10/98	S2	SU-82	.83	.57	<.05	10.63	.08
		06/01/98	LD	SU-82	.85	.57	<.05	11.64	.09
61	Big Blue River at Barneston, NE	05/15/98	S1	SU-4	1.02	2.84	<.05	8.08	<.05
		06/09/98	S2	SU-104	.57	7.90	<.05	25.03	.33
62	Little Blue River near Fairbury, NE	05/12/98	S 1	SU-3	.05	.13	<.05	.22	<.05
		06/08/98	S2	SU-81	<.05	<.05	<.05	.98	<.05

Site no.				Concer in microgra	ntration, ams per liter			
(figs. 3, 4)	Meto- lachlor	Metri- buzin	Prome- ton	Prome- tryn	Pro- pachlor	Pro- pazine	Sima- zine	Ter- butryn
				Minnesota—Co	ntinued	•	-	
48	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	.24	<.05	<.05	<.05	<.05	<.05	<.05	<.05
	.25	<.05	<.05	<.05	<.05	<.05	<.05	<.05
				Kansas—Cont	tinued			
49	.11	<.05	<.05	<.05	<.05	<.05	<.05	<.05
	8.80	.17	<.05	<.05	<.05	.10	<.05	<.05
50	74	. 05	. 05	. 05	. 05	. 05	. 05	. 05
50	.74	<.05	<.05	<.05	<.05	<.05	<.05	<.05
	2.39	<.05	<.05	<.05	<.05	<.05	<.05	<.05
	2.13	<.05	<.05	<.05	<.05	<.05	<.05	<.05
51	.09	<.05	<.05	<.05	<.05	<.05	<.05	<.05
	1.48	<.05	<.05	<.05	<.05	<.05	<.05	<.05
				Kentucky—Co	ntinued			
52	.23	<.05	<.05	<.05	<.05	<.05	.11	<.05
	.30	<.05	<.05	<.05	<.05	<.05	.09	<.05
				Missouri—Con	tinued			
53	.93	<.05	<.05	<.05	<.05	<.05	<.05	<.05
	.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
				Nebraska—Cor	ntinued			
54	3.00	<.05	.14	<.05	.08	.15	.05	<.05
	2.75	<.05	.13	<.05	.07	.14	.05	<.05
	.82	<.05	.12	<.05	<.05	.09	<.05	<.05
55	15.26	22	< 05	< 05	< 05	16	06	< 05
55	4.60	.22	<.05	< 05	<.05	.10	.00	<.05
	4.00	.50	<.05	<.05	<.05	<.05	<.05	<.05
56	124.3	.19	<.05	<.05	.06	.60	<.05	<.05
	12.31	.84	<.05	<.05	<.05	.29	<.05	<.05
57	16.03	< 05	< 05	< 05	31	36	08	< 05
51	.80	< 05	< 05	< 05	< 05	.50	< 05	<.05
	.00					100		
58	6.76	.37	<.05	<.05	<.05	.14	.17	<.05
	2.66	.14	.05	<.05	<.05	.07	<.05	<.05
50	1 /19	< 05	25	< 05	< 05	< 05	06	< 05
39	3.06	< 05	- 05	< 05	<.05 41	<.05	.00	<.05
	5.00	<.05	<.05	<.05	.71	<.05	.05	<.05
60	11.81	.31	<.05	<.05	.11	.19	.07	<.05
	3.89	.13	<.05	<.05	<.05	.11	<.05	<.05
	4.29	.15	<.05	<.05	<.05	.12	<.05	<.05
61	3 84	37	< 05	< 05	< 05	07	< 05	< 05
01	9.51	.37	< 05	< 05	<.05 42	.07	< 05	< 05
	7.51	.23	<.05	~.05	.72	.23	<.05	<.0 <i>5</i>
62	.13	<.05	<.05	<.05	<.05	<.05	<.05	<.05
	.14	<.05	<.05	<.05	<.05	<.05	<.05	<.05

SD, duplicate stream sample; RD, duplicate reservoir sample; SB, blank stream sample; SS, spiked stream sample; <, less than]

Table 15. Concentrations of 13 herbicides in water samples from 71 midwestern streams and 5 midwestern reservoirs

[S1, pre-emergence stream sample; S2, post-emergence stream sample; R1, first reservoir outflow sample; R2, second reservoir outflow sample;

			Concentration,						
Site no.	Site	collection	Sample	Sample		in mic	rograms p	er liter	
(figs. 3, 4)	name	(month/ day/year)	type	no.	Aceto- chlor	Ala- chlor	Ame- tryn	Atra- zine	Cyana- zine
			Ohio)					
63	Clear Creek near Rockbridge, OH	06/10/98	S 1	SU-86	< 0.05	< 0.05	< 0.05	0.21	< 0.05
		06/30/98	S 2	SU-145	.19	<.05	<.05	1.52	.14
64	Scioto River near Prospect, OH	06/02/98	S 1	SU-63	.83	<.05	<.05	4.40	1.17
		06/29/98	S2	SU-141	.20	<.05	<.05	3.76	.43
		06/29/98	LD	SU-141	.19	05	05	3.82	.40
65	Olentangy River at Claridon, OH	06/09/98	S 1	SU-85	<.05	<.05	<.05	.88	<.05
	,	06/29/98	S2	SU-157	.18	<.05	<.05	4.00	.16
		06/29/98	SB	SU-156	<.05	<.05	<.05	<.05	<.05
66	Olentangy River below Delaware.	06/09/98	R1	SU84	.20	<.05	<.05	2.30	.10
	Lake Dam, OH	06/29/98	R2	SU-153	.53	<.05	<.05	5.33	.60
		07/01/98	RD	SU-154	.41	<.05	<.05	4.20	.43
67	Big Darby Creek at Darbyville. OH	06/03/98	S 1	SU-62	.66	.10	<.05	8.07	1.65
		06/03/98	LD	SU-62	.70	.11	<.05	8.53	1.64
		06/29/98	S2	SU-140	.14	<.05	<.05	2.37	.16
68	Scioto River at Higby, OH	06/04/98	S 1	SU-73	.90	.05	<.05	5.98	1.58
		07/08/98	S 2	SU-165	.22	<.05	<.05	3.30	.45
69	L. Miami River near Oldtown, OH	06/10/98	S 1	SU-92	<.05	<.05	<.05	.24	<.05
	· · · · · · · · · · · · · · · · · · ·	06/30/98	S 2	SU-144	<.05	<.05	<.05	.43	.10
70	Mad River at Eagle City, OH	06/10/98	S 1	SU-91	<.05	<.05	<.05	.06	<.05
		06/30/98	S 2	SU-146	<.05	<.05	<.05	.45	<.05
71	Tiffin River at Stryker, OH	06/01/98	S 1	SU–66	.24	.13	<.05	1.51	.31
		06/01/98	SD	SU-67	.24	.13	<.05	1.39	.31
		07/07/98	S2	SU-172	<.05	<.05	<.05	.61	.16
		07/07/98	LD	SU-172	<.05	<.05	<.05	.60	.16
72	Auglaize River at Fort Jennings, OH	06/17/98	S 1	SU-117	1.28	.14	<.05	7.82	1.84
		07/08/98	S2	SU-171	.19	<.05	<.05	2.07	.38
			Wiscon	sin					
73	Root River at Racine, WI	06/01/98	S 1	SU-61	.14	<.05	<.05	.24	.12
		08/03/98	S2	SU-204	<.05	<.05	<.05	.12	<.05
74	St. Croix River at St. Croix Falls, WI	06/03/98	S 1	SU–68	<.05	<.05	<.05	.09	<.05
		08/05/98	S2	SU-205	<.05	<.05	<.05	<.05	<.05
		08/05/98	LD	SU-205	<.05	<.05	<.05	<.05	<.05
75	Wisconsin River at Muscoda, WI	06/16/98	S 1	SU-133	.05	<.05	<.05	.28	.08
		08/07/98	S2	SU-202	<.05	<.05	<.05	.12	<.05
76	Rock River at Afton, WI	06/17/98	S1	SU-134	.11	<.05	<.05	.37	.14
		06/17/98	LD	SU-134	.12	<.05	<.05	.38	.15
		07/21/98	S 2	SU-179	<.05	<.05	<.05	.47	.25
		07/21/98	LD	SU-179	<.05	<.05	<.05	.49	.21

88 Concentration of Selected Sulfonylurea, Sulfonamide, and Imidazolinone Herbicides, Other Pesticides, and Nutrients in 71 Streams, 5 Reservoir Outflows, and 25 Wells in the Midwestern United States, 1998

Site no.				Concer in microgra	ntration, ams per liter			
(figs. 3, 4)	Meto-	Metri-	Prome-	Prome-	Pro-	Pro- nazine	Sima-	Ter-
		Buzin		Ohio—Conti	nued	puzine	Line	butyn
63	0.16	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	0.05	< 0.05
	1.09	.12	<.05	<.05	<.05	<.05	.29	<.05
64	2.81	.24	<.05	<.05	<.05	<.05	1.17	<.05
	4.15	.13	<.05	<.05	<.05	.05	.57	<.05
	4.07	.13	<.05	<.05	<.05	.05	.58	<.05
65	.67	<.05	<.05	<.05	<.05	<.05	<.05	<.05
	3.75	<.05	<.05	<.05	<.05	<.05	.17	<.05
	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
66	1.52	.05	<.05	<.05	<.05	<.05	.24	<.05
	4.06	.10	<.05	<.05	<.05	.06	.67	<.05
	3.26	.08	<.05	<.05	<.05	.05	.53	<.05
67	2.24	.07	<.05	<.05	<.05	.07	.74	<.05
	2.24	.09	<.05	<.05	<.05	.08	.77	<.05
	2.32	<.05	<.05	<.05	<.05	<.05	.61	<.05
68	1.97	.09	<.05	<.05	<.05	.06	.30	<.05
	1.67	<.05	<.05	<.05	<.05	<.05	.21	<.05
69	.10	<.05	<.05	<.05	<.05	<.05	.20	<.05
	.23	<.05	<.05	<.05	<.05	<.05	.11	<.05
70	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
	.71	<.05	<.05	<.05	<.05	<.05	.05	<.05
71	.41	.09	<.05	<.05	<.05	<.05	.16	<.05
	.40	.08	<.05	<.05	<.05	<.05	.15	<.05
	.10	<.05	<.05	<.05	<.05	<.05	.06	<.05
	.10	<.05	<.05	<.05	<.05	<.05	.06	<.05
72	4.67	.49	<.05	<.05	<.05	.08	.54	<.05
	1.50	.08	<.05	<.05	<.05	<.05	.13	<.05
				Wisconsin—Co	ntinued			
73	.11	<.05	<.05	<.05	<.05	<.05	<.05	<.05
	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
74	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
75	.15	<.05	<.05	<.05	<.05	<.05	<.05	<.05
	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
76	.07	<.05	<.05	<.05	<.05	<.05	<.05	<.05
	.07	<.05	<.05	<.05	<.05	<.05	<.05	<.05
	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05

SD, duplicate stream sample; RD, duplicate reservoir sample; SB, blank stream sample; SS, spiked stream sample; <, less than]

Table 16. Concentrations of 10 herbicide degradates in water samples from 71 midwestern streams and 5 midwestern reservoirs

	Site c 4) name	Date of						iı	Conc n microg	entration, rams per	liter			
Site no. (figs. 3, 4)	Site name	collection (month/ day/year)	Sample type	Sample no.	Aceto- chlor ESA	Aceto- chlor OA	Ala- chlor ESA	Ala- chlor OA	Cyan- azine- amide	De- ethyl- atrazine	Deiso- prop- ylatra- zine	Hy- droxy- atrazine	Meto- lachlor ESA	Met- ola- chlor OA
					Il	linois								
1	Vermillion River below	06/10/98	R1	SU-98	1.29	0.62	0.59	< 0.20	0.99	0.43	0.44	0.49	4.18	1.15
	Lake Vermillion Dam,	06/10/98	LD	SU-98	1.23	.59	.57	<.20	1.06	.43	.42	.45	4.08	1.09
	IL.	07/16/98	R2	SU-177	.45	<.20	.66	<.20	.59	.50	.55	.60	3.30	1.31
		07/16/98	LD	SU-177	.60	<.20	<.20	.69	<.20	.47	.51	.74	3.50	1.39
2	Bonpas Creek at	05/23/98	S 1	SU-43	1.53	2.25	.50	<.20	<.05	2.67	2.34	.58	1.17	1.12
	Browns, IL	07/07/98	S 2	SU-166	1.16	.92	.91	<.20	<.05	.77	.42	<.20	2.63	1.86
3	Little Wabash River at	05/23/98	S 1	SU-33	.78	.65	.61	.51	.32	1.36	1.10	.88	.94	.86
	Carmi, IL	07/09/98	S2	SU-175	.88	.86	1.38	<.20	.48	1.17	.79	1.30	2.84	2.81
4	S. Branch Kishwaukee	05/20/98	S 1	SU-29	2.76	1.10	1.18	<.20	.19	.64	.39	1.26	4.97	2.12
	Rivernear Fairdale, IL	07/29/98	S2	SU-195	1.45	.39	2.97	<.20	.05	.17	.09	<.20	5.63	.81
5	Iroquois River near	06/10/98	S 1	SU-99	.90	.55	1.60	<.20	.76	.24	.30	.30	4.56	1.38
	Chebanse, IL	07/08/98	S 2	SU-168	1.17	.89	1.02	<.20	1.02	.62	.57	.45	2.86	1.48
6	Dupage River near	06/09/98	S 1	SU-100	<.20	<.20	<.20	<.20	.05	.10	.09	<.20	<.20	<.20
	Shorewood, IL	07/29/98	S2	SU-194	1.36	<.20	1.17	<.20	<.05	.06	<.05	<.20	.44	.36
7	Illinois River at	06/12/98	S 1	SU-113	1.70	1.61	1.03	.61	1.05	.51	.37	.74	1.84	1.47
	Marseilles, IL	07/09/98	S2	SU-176	1.60	1.52	1.01	<.20	.72	.37	.35	<.20	2.08	1.08
8	Spoon River at London	05/20/98	S 1	SU-25	1.52	1.36	.32	.27	3.98	1.18	1.07	1.72	1.93	.58
	Mills, IL	07/01/98	S2	SU-160	.86	.51	.35	<.20	.47	.44	1.07	1.72	1.93	.58
9	Sangamon River near	05/23/98	S 1	SU-35	1.63	.91	.72	<.20	.55	.41	.31	<.20	4.00	1.83
	Monticello, IL	05/23/98	LD	SU-35	1.63	.98	.71	<.20	.51	.39	.29	<.20	4.06	1.81
		08/05/98	S2	SU-201	1.56	<.20	.58	<.20	.15	.16	.13	.67	3.88	.71
10	Sangamon River at	05/26/98	S 1	SU-44	1.20	.95	.46	<.20	.66	.83	.51	<.20	1.60	1.01
	Riverton, IL	07/09/98	S 2	SU-174	<.20	<.20	<.20	<.20	.22	.46	.29	<.20	<.20	<.20
		07/09/98	LD	SU-174	<.20	<.20	<.20	<.20	.18	.51	.33	<.20	<.20	<.20
		07/09/98	LD	SU-174	<.20	<.20	<.20	<.20	.20	.46	.29	<.20	<.20	<.20
11	LaMoine River at	05/21/98	S 1	SU-27	.75	.55	.20	<.20	1.08	1.02	.67	.57	.75	.29
	Colmar, IL	06/29/98	S2	SU-142	1.60	1.48	.61	<.20	2.40	1.34	1.38	.67	1.21	.95
		06/29/98	LD	SU-142	1.98	1.85	.56	<.20	2.38	1.26	1.36	.46	1.41	.98
12	Illinois River at Valley	06/18/98	S 1	SU-120	2.25	2.16	.74	<.20	1.74	.98	.63	.66	1.91	1.38
	City, IL	08/12/98	S2	SU-207	.47	.30	.96	<.20	.12	.14	.10	<.20	1.46	.57

Table 16. Concentrations of 10 herbicide degradates in water samples from 71 midwestern streams and 5 midwestern reservoirs—Continued

	Site	Date of						i	Conc n microg	entration grams per	, liter			
Site no. (figs. 3, 4)	Site name	collection (month/ day/year)	Sample type	Sample no.	Aceto- chlor ESA	Aceto- chlor OA	Ala- chlor ESA	Ala- chlor OA	Cyan- azine- amide	De- ethyl- atrazine	Deiso- prop- ylatra- zine	Hy- droxy- atrazine	Meto- lachlor ESA	Met- ola- chlor OA
					Illinois-	-Contin	ued							
13	Mississippi River below	06/02/98	S 1	SU-60	0.82	0.71	0.64	< 0.20	0.69	0.32	0.19	< 0.20	2.02	0.73
	Grafton, IL	06/15/98	S2	SU-116	1.85	1.26	1.02	<.20	.95	.64	.39	<.20	2.58	1.03
14	Kaskaskia River near	05/20/98	S 1	SU-30	1.05	.34	.36	<.20	<.05	.14	.09	.45	2.45	.79
	Cowden, IL	05/20/98	LD	SU-30	1.01	.34	.35	<.20	<.05	.15	.09	.39	2.39	.84
		07/08/98	S 2	SU-169	1.67	1.52	.63	<.20	.21	.66	.35	.52	2.45	1.15
15	Shoal Creek near	05/22/98	S 1	SU-32	.77	.75	.41	.33	.46	1.08	.81	1.44	.87	.66
	Breese, IL	07/08/98	S2	SU-167	1.48	.80	.83	<.20	.44	1.41	.93	.58	2.59	.95
						Iowa								
16	Turkey River at	06/02/98	S 1	SU-64	1.17	.40	2.14	<.20	.50	.49	.32	<.20	2.06	1.08
	Spillville, IA	06/12/98	S 2	SU-109	5.01	4.27	3.02	.96	1.84	.95	.52	.43	1.64	<.20
17	Mississippi River at	05/27/98	S 1	SU–55	.31	<.20	.42	<.20	<.05	.08	.05	<.20	.73	.29
	Clinton, IA	07/01/98	S2	SU-155	.65	.43	.66	<.20	.11	.17	.10	.25	.86	.31
18	Wapsipinicon River near	05/27/98	S 1	SU-54	2.77	1.07	3.15	< 20	.11	31	12	< 20	12.44	2.52
10	Tripoli, IA	06/20/98	S1 S2	SU-126	2.22	1.27	1.91	.39	.73	.93	.50	<.20	4.22	2.04
10	Wansininicon River at	05/29/98	\$1	SU_56	1 72	85	1 / 1	< 20	16	77	44	< 20	1 13	1.03
17	Independence, IA	06/12/98	S1 S2	SU-110	3.02	2.39	1.33	<.20	.59	1.20	.56	1.26	3.71	1.49
20	Level Discourses	06/02/08	C 1	SIL 65	76	. 20	1 50	. 20	- 05	09	05	. 20	7.04	1 10
20	Rowan, IA	06/02/98	51	SU-05	./0	<.20	1.58	<.20	<.05	.08	.05	<.20	7.04	1.10
	,	06/23/98	52	SU-129	1.49	1.34	.88	<.20	.08	.52	.23	<.20	3.19	1.39
21	Old Mans Creek near	06/10/98	S 1	SU-93	<.20	<.20	<.20	<.20	1.12	.53	.38	<.20	<.20	<.20
	Iowa City, IA	06/30/98	S2	SU-147	2.54	1.76	1.02	<.20	.17	.68	.47	1.16	3.51	1.83
22	Wolf Creek near	06/10/98	S 1	SU-87	1.89	1.58	1.21	<.20	.60	.62	.40	.64	6.29	1.91
	Dysart, IA	06/22/98	S2	SU-128	1.34	1.05	.63	<.20	.71	.76	.52	<.20	2.42	1.06
23	Iowa River at	05/27/98	S 1	SU-53	.88	.43	1.05	<.20	.29	.23	.14	<.20	3.95	.85
	Wapello, IA	06/19/98	S2	SU-127	1.67	1.33	.98	<.20	1.05	.80	.46	<.20	2.72	1.16
24	N. Skunk Divor noor	05/21/08	S 1	SU 21	1.40	05	50	< 20	44	77	40	72	2.04	1.02
24	Sigourney, IA	05/21/98	51	SU-21	1.49	.95	.52	<.20	.44	.//	.49	.72	2.94	1.05
		00/10/98	52	30-95	1.41	1.23	.91	<.20	2.51	.05	.55	<.20	5.94	1.04
25	Skunk River at	05/26/98	S 1	SU-45	2.69	3.99	.87	<.20	4.51	1.39	.70	.96	2.88	1.61
	Augusta, IA	06/18/98	S2	SU-122	2.92	2.35	1.00	<.20	2.11	1.18	.64	.88	4.58	2.07
26	Des Moines River at	05/16/98	S 1	SU–8	1.77	<.20	.52	<.20	<.05	.09	.08	<.20	2.08	1.32
	Fort Dodge, IA	06/12/98	S2	SU-108	1.46	.65	.58	<.20	.06	.09	.09	<.20	4.41	.86

Table 16. Concentrations of 10 herbicide degradates in water samples from 71 midwestern streams and 5 midwestern reservoirs—Continued

	Site c I) name	Date of						i	Conc n microg	entration rams per	, liter			
Site no. (figs. 3, 4)	Site name	collection (month/ day/year)	Sample type	Sample no.	Aceto- chlor ESA	Aceto- chlor OA	Ala- chlor ESA	Ala- chlor OA	Cyan- azine- amide	De- ethyl- atrazine	Deiso- prop- ylatra- zine	Hy- droxy- atrazine	Meto- lachlor ESA	Met- ola- chlor OA
					Iowa-	-Continu	ied							
27	Raccoon River at	05/17/98	S 1	SU–9	< 0.20	< 0.20	0.49	< 0.20	0.16	0.13	0.10	< 0.20	2.30	1.18
	Van Meter, IA	06/10/98	S2	SU-89	1.50	1.21	.60	<.20	<.05	<.05	<.05	.84	3.44	1.31
28	Little Sioux River at	05/27/98	S 1	SU-42	.68	.53	.32	<.20	<.05	.10	.08	<.20	1.67	.53
	Correctionville, IA	06/18/98	S2	SU-123	1.19	1.18	.33	<.20	.06	.20	.11	<.20	1.47	.51
29	Maple River at	05/29/98	S 1	SU-59	.45	.51	.24	<.20	.74	.41	.34	1.48	.85	.67
	Mapleton, IA	06/09/98	S2	SU-90	.34	<.20	.30	<.20	.37	.24	.19	.74	1.43	.39
30	Boyer River at	05/22/98	S 1	SU-31	2.13	2.58	.70	<.20	4.97	1.03	.76	2.68	1.67	1.86
	Logan, IA	06/09/98	S2	SU-96	.68	.82	.20	<.20	.79	.41	.37	<.20	.76	.53
31	Chariton River below	06/04/98	R1	SU–69	<.20	<.20	.26	<.20	.35	.21	.13	.78	.81	.38
	Rathbun Lake Dam, IA	06/29/98	R2	SU-148	.33	.25	.22	<.20	.50	.23	.13	.56	.76	.51
32	Nishnabotna River at Hamburg, IA	06/17/98	S2	SU-124	.95	.99	.26	<.20	.73	.73	.45	.93	1.04	.74
					Ir	diana								
33	Whitewater River near	05/26/98	S 1	SU-47	1.15	.76	.50	.55	.99	.76	.48	.57	.69	.47
	Alpine, IN	07/08/98	S2	SU-162	.48	.35	.58	.40	.43	.47	.39	.21	.99	.50
34	Blue River at	05/27/98	S 1	SU-50	.49	.28	.24	<.20	.36	.51	.32	<.20	1.01	.26
	Fredericksburg, IN	07/08/98	S2	SU-163	<.20	<.20	<.20	<.20	.13	.35	.27	<.20	.59	<.20
35	Mississinewa River below	06/09/98	R 1	SU-83	.61	.50	.51	<.20	.88	.81	.33	.67	2.05	.82
	Mississinewa Lake Dam, IN	07/09/98	R2	SU-164	1.60	1.58	.70	<.20	2.09	1.39	1.00	.50	2.16	1.50
36	Eel River near	05/21/98	S 1	SU-18	<.20	<.20	.53	<.20	.11	.52	.42	1.21	1.26	1.27
	Logansport, IN	06/30/98	S2	SU-152	2.21	2.06	1.23	.61	.56	.62	.38	.74	1.36	.96
37	Wildcat Creek near	05/21/98	S 1	SU-19	.99	.65	.53	<.20	1.45	.71	.59	.98	4.80	1.04
	Jerome, IN	06/30/98	S 2	SU-151	1.94	1.14	1.16	.44	1.42	.85	.65	1.01	6.36	2.40
38	Wildcat Creek near	05/20/98	S 1	SU-22	.85	.46	.44	<.20	.15	.34	.21	.55	3.10	.91
	Lafayette, IN	07/01/98	S2	SU-150	1.64	1.04	.72	<.20	.41	.57	.38	.82	3.67	1.75
39	White River near	05/28/98	S 1	SU-51	.97	.80	.62	.22	.43	.53	.38	<.20	3.11	1.26
	Nora, IN	07/01/98	S 2	SU-149	1.47	1.16	.76	.20	.78	.94	.64	.67	3.45	2.01
		07/01/98	LD	SU-149	1.51	1.23	.76	.22	.96	.93	.64	.55	3.67	2.05
40	Sugar Creek near	05/26/98	S 1	SU-46	1.65	1.63	.63	<.20	.88	1.05	.52	<.20	2.57	1.28
	Euinburgn, IIN	07/20/98	S2	SU-178	.64	.43	.39	<.20	<.05	.30	.14	<.20	1.46	1.03

Table 16. Concentrations of 10 herbicide degradates in water samples from 71 midwestern streams and 5 midwestern reservoirs-Continued

		Date of						i	Conc n microg	entration	, liter			
Site no. (figs. 3, 4)	Site name	collection (month/ day/year)	Sample type	Sample no.	Aceto- chlor ESA	Aceto- chlor OA	Ala- chlor ESA	Ala- chlor OA	Cyan- azine- amide	De- ethyl- atrazine	Deiso- prop- ylatra- zine	Hy- droxy- atrazine	Meto- lachlor ESA	Met- ola- chlor OA
]	Indiana-	-Contin	nued				-			
41	E. Fork White River near	05/28/98	S 1	SU-52	1.68	1.89	0.67	0.40	0.90	1.42	.76	1.23	1.50	1.00
	Bedford, IN	07/06/98	S2	SU-161	.88	.60	.51	<.20	.22	.58	.33	.27	1.17	.82
42	Wabash River at New	05/27/98	S 1	SU–57	.78	.80	.35	<.20	.75	.62	.42	<.20	.86	.65
	Harmony, IN	05/27/98	SD	SU-58	.60	.70	.29	<.20	.56	.54	.38	<.20	.80	.52
		06/23/98	S2	SU-136	2.31	1.97	1.38	.26	2.22	1.51	.95	<.20	3.25	2.04
					Mi	nnesota								
43	Cottonwood River near	05/26/98	S 1	SU-49	.40	<.20	.48	<.20	.20	.05	.20	<.20	1.30	.36
	New Ulm, MN	07/21/98	S 2	SU-180	.65	.28	.79	<.20	<.05	<.05	.05	<.20	1.58	.46
		07/21/98	SD	SU-181	.63	<.20	.78	<.20	<.05	<.05	<.05	<.20	1.43	.43
44	Little Cobb River near	05/18/98	S 1	SU-12	1.94	<.20	.99	<.20	<.05	.07	<.05	<.20	3.54	.99
	Beauford, MN	08/17/98	S2	SU-208	1.96	.59	1.99	.24	<.05	<.05	<.05	<.20	4.69	.76
45	Minnesota River near	05/19/98	S 1	SU-13	.95	.65	.70	<.20	<.05	<.05	<.05	<.20	1.78	.62
	Jordan, MN	06/26/98	S2	SU-135	1.76	1.29	1.45	.43	.17	.19	.96	<.20	2.65	.83
46	Mississippi River at	05/20/98	S 1	SU-14	<.20	<.20	.45	<.20	<.05	<.05	<.05	<.20	.99	.34
	Hastings, MN	05/20/98	SD	SU-15	<.20	<.20	.46	<.20	<.05	<.05	<.05	<.20	1.02	.32
		05/20/98	LD	SU-15	<.20	<.20	.48	<.20	<.05	<.05	<.05	<.20	1.04	.35
		05/20/98	S2	SU-206	<.20	<.20	.62	<.20	<.05	<.05	<.05	<.20	.53	<.20
47	Des Moines River at	05/26/98	S 1	SU-48	.71	.66	.37	<.20	<.05	.06	.05	<.20	2.00	.49
	Jackson, MN	08/24/98	S2	SU-210	1.54	1.22	.93	<.20	<.05	.12	.07	<.20	4.97	1.24
48	Rock River at	06/24/98	S 1	SU-130	<.20	<.20	<.20	<.20	<.05	.06	.05	<.20	1.67	<.20
	Luverne, MN	06/25/98	S 2	SU-131	<.20	.50	<.20	<.20	<.05	.08	.05	<.20	1.29	<.20
		06/25/98	LD	SU-131	<.20	.44	<.20	<.20	<.05	.09	.05	<.20	1.29	<.20
					K	ansas								
49	Black Vermillion River	05/05/98	S 1	SU-1	<.20	<.20	.22	<.20	<.05	.05	<.05	<.20	.35	.21
	at Frankfort, KS	06/09/98	S2	SU-107	<.20	<.20	1.17	1.40	<.05	1.56	.42	1.58	1.22	1.34
50	Big Blue River below	06/03/98	R1	SU-74	<.20	<.20	.36	<.20	<.05	.15	.08	1.07	.52	.33
	Tuttle Creek Lake	07/29/98	R2	SU-197	.56	.79	1.34	1.95	.06	.73	.43	2.73	.96	1.35
	Daiii, KS	07/29/98	LD	SU-197	.56	.81	1.42	2.11	.07	.78	.46	3.16	1.03	1.39
51	Delaware River near	05/05/98	S 1	SU–2	<.20	<.20	<.20	<.20	<.05	<.05	<.05	<.20	.38	<.20
	Muscotah, KS	06/10/98	S 2	SU-105	.36	<.20	.37	<.20	<.05	.32	.15	.48	.83	.61
					Ke	ntucky								
52	Ohio River at Cannelton	06/04/98	S 1	SU-75	<.20	<.20	<.20	<.20	.08	.10	.06	<.20	<.20	<.20
	Dam, KY	07/07/98	S2	SU-173	<.20	<.20	.25	<.20	.10	.14	.11	<.20	<.20	.38

Table 16. Concentrations of 10 herbicide degradates in water samples from 71 midwestern streams and 5 midwestern reservoirs—Continued

	Site	Date of						iı	Conc n microg	entration, rams per	liter			
Site no. (figs. 3, 4)	Site name	collection (month/ day/year)	Sample type	Sample no.	Aceto- chlor ESA	Aceto- chlor OA	Ala- chlor ESA	Ala- chlor OA	Cyan- azine- amide	De- ethyl- atrazine	Deiso- prop- ylatra- zine	Hy- droxy- atrazine	Meto- lachlor ESA	Met- ola- chlor OA
					М	issouri								
53	Nodaway River near	06/18/98	S 1	SU-119	0.95	0.63	0.38	< 0.20	0.93	0.79	0.46	0.88	1.55	0.75
	Graham, MO	08/19/98	S 2	SU-209	<.20	<.20	.26	<.20	<.05	.12	.09	<.20	.91	<.20
					Ne	braska								
54	North Dry Creek near	05/22/98	S 1	SU-28	.65	.59	.28	<.20	<.05	1.62	.77	1.12	.51	.34
	Kearney, NE	05/22/98	LD	SU-28	.64	.58	.26	<.20	<.05	1.46	.68	1.17	.52	.30
		06/08/98	S2	SU-76	1.28	1.51	.53	<.20	<.05	1.67	.73	.79	.56	.56
55	Maple Creek near	05/21/98	S 1	SU-37	1.16	1.66	.38	.50	.93	1.29	.70	2.02	.50	.40
	Nickerson, NE	06/08/98	S2	SU-79	1.69	2.62	.47	<.20	<.05	1.10	.80	1.73	.59	.67
56	Salt Creek at	05/15/98	S 1	SU–6	<.20	<.20	.59	<.20	<.05	1.74	.97	3.13	1.51	1.01
	Roca, NE	06/10/98	S2	SU-94	1.29	2.21	2.81	1.03	1.37	3.66	2.17	4.31	5.17	6.37
57	Wahoo Creek at	05/15/98	S 1	SU–5	<.20	<.20	.55	.66	.77	.98	.58	4.47	.55	.76
	Ithaca, NE	06/08/98	S2	SU-78	.36	.47	.41	.41	.48	.55	.39	<.20	.34	.41
58	Platte River at	05/22/98	S 1	SU-39	1.19	1.64	.83	1.06	3.03	1.68	1.04	2.75	.92	1.13
	Louisville, NE	06/09/98	S2	SU-77	1.05	1.48	.72	.61	.78	1.51	.57	2.40	.92	1.10
59	Big Nemaha River at	05/26/98	S 1	SU-41	<.20	<.20	.30	<.20	.18	.24	.14	<.20	.52	.42
	Falls City, NE	06/08/98	S2	SU-80	.46	.69	.42	.42	<.05	<.05	<.05	1.59	.58	.43
60	W. Fork Big Blue River,	05/23/98	S 1	SU-36	<.20	<.20	.58	<.20	.17	1.45	.86	2.59	.59	.42
	Dorchester, NE	06/10/98	S 2	SU-82	.69	1.06	.69	.67	<.05	2.16	.64	4.43	.58	.72
		06/01/98	LD	SU-82	.70	1.06	.67	.66	<.05	2.28	.65	4.20	.55	.77
61	Big Blue River at	05/15/98	S 1	SU-4	<.20	<.20	.26	<.20	<.05	.31	.15	1.13	.38	.21
	Barneston, NE	06/09/98	S2	SU-104	.61	1.23	2.74	4.30	<.05	<.05	<.05	2.23	1.58	1.82
62	Little Blue River near	05/12/98	S 1	SU-3	<.20	<.20	<.20	<.20	<.05	.07	<.05	<.20	<.20	<.20
	Fairbury, NE	06/08/98	S 2	SU-81	<.20	<.20	.52	.69	<.05	.19	.10	<.20	.40	.34
					(Ohio								
63	Clear Creek near	06/10/98	S 1	SU-86	.50	<.20	<.20	<.20	<.05	.05	<.05	<.20	.91	.28
	Kockonage, OH	06/30/98	S2	SU-145	4.17	3.87	.81	<.20	.47	.51	.36	.52	3.66	2.28
64	Scioto River near	06/02/98	S 1	SU-63	2.35	.49	4.52	<.20	.66	.53	.45	<.20	2.44	3.18
	Prospect, OH	06/29/98	S2	SU-141	1.54	1.08	2.13	.21	.76	1.08	.88	.84	5.08	3.30
		06/29/98	LD	SU-141	1.50	1.02	2.06	.33	.67	1.09	.88	.72	4.94	3.19
65	Olentangy River at	06/09/98	S 1	SU-85	<.20	<.20	.60	<.20	<.05	.14	.09	.31	1.92	.58
		06/29/98	S 2	SU-157	1.92	2.00	1.22	<.20	.22	.71	.54	.78	2.87	2.12
		06/29/98	SB	SU-156	<.20	<.20	<.20	<.20	<.05	<.05	<.05	<.20	<.20	<.20

Table 16. Concentrations of 10 herbicide degradates in water samples from 71 midwestern streams and 5 midwestern reservoirs—Continued

		Date of		Concentration, in micrograms per liter										
Site no. (figs. 3, 4)	Site name	collection (month/ day/year)	Sample type	Sample no.	Aceto- chlor ESA	Aceto- chlor OA	Ala- chlor ESA	Ala- chlor OA	Cyan- azine- amide	De- ethyl- atrazine	Deiso- prop- ylatra- zine	Hy- droxy- atrazine	Meto- lachlor ESA	Met- ola- chlor OA
					Ohio-	-Continu	ıed							
66	Olentangy River below	06/09/98	R 1	SU-84	0.58	< 0.20	0.75	< 0.20	0.05	0.55	0.19	0.68	3.20	1.19
	Delaware Lake	06/29/98	R2	SU-153	2.91	3.22	1.28	<.20	.80	1.29	.98	1.32	5.31	4.83
	Duni, Oli	07/01/98	RD	SU-154	2.44	2.87	1.11	.25	.65	1.01	.76	1.14	4.71	4.25
67	Big Darby Creek at	06/03/98	S 1	SU-62	1.78	1.01	.64	<.20	.81	.79	.52	<.20	3.04	1.37
	Darbyville, OH	06/03/98	LD	SU-62	1.66	1.07	.66	<.20	.67	.83	.58	<.20	2.99	1.23
		06/29/98	S2	SU-140	.36	.45	.34	<.20	.13	.46	.41	.49	.75	.68
68	Scioto River at	06/04/98	S 1	SU-73	.57	.49	.41	<.20	.67	.41	.33	.45	1.55	.59
	Higby, OH	07/08/98	S2	SU-165	1.09	1.05	.99	<.20	.49	.64	.48	.51	2.52	1.61
69	L. Miami River near	06/10/98	S 1	SU-92	.24	<.20	.31	<.20	<.05	.07	.08	<.20	1.13	.28
	Oldtown, OH	06/30/98	S2	SU-144	.78	.33	.51	<.20	.21	.16	.14	<.20	1.73	.58
70	Mad River at Eagle	06/10/98	S 1	SU–91	<.20	<.20	.31	<.20	<.05	<.05	<.05	<.20	.63	<.20
	City, OH	06/30/98	S2	SU-146	.44	.22	.44	<.20	<.05	.16	.09	<.20	1.25	.50
71	Tiffin River at	06/01/98	S 1	SU–66	<.20	<.20	.62	<.20	.08	.20	.17	<.20	1.07	.47
	Stryker, OH	06/01/98	SD	SU-67	<.20	<.20	.60	<.20	.08	.17	.15	<.20	1.21	.53
		07/07/98	S2	SU-172	.32	<.20	.54	<.20	.16	.15	.12	<.20	.66	.33
		07/07/98	LD	SU-172	.30	<.20	.62	<.20	.17	.15	.11	<.20	.66	.24
72	Auglaize River at Fort	06/17/98	S 1	SU-117	4.03	4.17	2.15	<.20	1.53	1.68	1.05	.89	6.23	3.83
	Jennings, OH	07/08/98	S2	SU-171	1.91	1.86	2.01	<.20	.57	.65	.51	.68	5.03	3.45
					Wi	sconsin								
73	Root River at	06/01/98	S 1	SU61	<.20	<.20	<.20	.38	.22	.18	.16	<.20	.69	.30
	Racine, WI	08/03/98	S2	SU-204	<.20	<.20	.37	<.20	<.05	.05	<.05	<.20	1.35	<.20
74	St. Croix River at	06/03/98	S 1	SU–68	<.20	<.20	<.20	<.20	<.05	<.05	<.05	<.20	<.20	<.20
	St. Croix Falls, WI	08/05/98	S 2	SU-205	<.20	<.20	<.20	<.20	<.05	<.05	<.05	<.20	<.20	<.20
		08/05/98	LD	SU-205	<.20	<.20	<.20	<.20	<.05	<.05	<.05	<.20	<.20	<.20
75	Wisconsin River at	06/16/98	S 1	SU-133	<.20	<.20	.29	<.20	<.05	.07	<.05	<.20	<.20	<.20
	Muscoda, WI	08/07/98	S2	SU-202	.26	<.20	.56	<.20	<.05	.07	<.05	<.20	.56	.21
76	Rock River at	06/17/98	S 1	SU-134	.60	<.20	.85	<.20	.09	.13	.09	<.20	.93	.41
	Afton, WI	06/17/98	LD	SU-134	.58	<.20	.82	<.20	.10	.14	.09	<.20	.86	.38
		07/21/98	S2	SU-179	.84	.71	1.23	.22	.12	.18	.07	<.20	.78	.44
		07/21/98	LD	SU-179	.76	.74	1.20	.25	.12	.19	.10	<.20	.76	.42

 Table 17. Statistical summary of 23 herbicide and herbicide degradate concentrations in 141 water samples from 71 midwestern streams (concentrations in micrograms per liter)

[<, less than]

Herbicide	Method reporting limit (MRL)	Number at or above MRL	25th percentile	Median	75th percentile	95th percentile	Maximum
acetochlor	0.05	115	0.08	0.32	0.98	7.58	21.3
acetochlor ESA	.20	109	.32	.88	1.60	2.69	5.01
acetochlor OA	.20	96	<.20	.60	1.21	2.35	4.27
alachlor	.05	62	<.05	<.05	.13	2.18	18.3
alachlor ESA	.20	127	.36	.58	.99	2.14	4.52
alachlor OA	.20	30	<.20	<.20	<.20	.66	4.30
ametryn	.05	1	<.05	<.05	<.05	<.05	.06
atrazine	.05	140	.47	3.27	7.91	27.1	172
deethylatrazine	.05	131	.14	.49	.85	1.68	3.66
deisopropylatrazine	.05	125	.09	.36	.54	.97	2.34
hydroxy-atrazine	.20	67	<.20	<.20	.79	2.40	4.47
cyanazine	.05	104	<.05	.25	.88	6.66	67.2
cyanazine-amide	.05	99	<.05	.21	.73	2.22	4.99
metolachlor	.05	132	.20	1.15	2.48	10.5	124
metolachlor ESA	.20	131	.76	1.55	2.87	5.08	12.4
metolachlor OA	.20	123	.39	.76	1.28	2.40	6.37
metribuzin	.05	56	<.05	<.05	.10	.35	1.34
prometon	.05	11	<.05	<.05	<.05	.06	.35
prometryn	.05	0	<.05	<.05	<.05	<.05	<.05
propachlor	.05	11	<.05	<.05	<.05	.09	.42
propazine	.05	61	<.05	<.05	.07	.25	.68
simazine	.05	58	<.05	<.05	.08	.57	14.2
terbutryn	.05	0	<.05	<.05	<.05	<.05	<.05
Sum of 13 herbicides	.05	140	1.12	5.96	13.4	47.8	316
Sum of 10 degradates	.05	139	3.47	7.53	10.93	17.7	30.4

Reservoir Outflows

The results of analyses of 7 nutrients and measurements of 3 physical properties for 10 reservoir outflow samples are given in table 27. The discharges on the day of sample collection are given in table 4. A statistical summary of these results is given in table 29. Nitrate was detected at or above the MRL in all 10 samples. Nitrate concentrations were the highest of the nutrients with a median concentration of 1.83 mg/L, and one sample exceeded the EPA MCL of 10 mg/L. Nitrite was detected at or above the MRL in 9 of 10 samples. Nitrite concentrations were very low, with a median concentration of only 0.040 mg/L. Ammonia was detected in 7 of 10 samples, and ammonia plus organic N was detected in 9 of

10 samples. Organic N concentrations were generally higher, with a median concentrations of 0.389 mg/L compared to 0.061 mg/L for ammonia. Dissolved phosphorus and orthophosphate were each detected at or above the MRL in 8 of 10 samples. They occurred at similar concentrations; the median dissolved phosphorus concentration was 0.063 mg/L, and the median orthophosphate concentration was 0.059 mg/L. Reservoir outflow samples tended to be slightly basic, although less so than the stream samples. The median pH of the reservoir outflow samples was 7.4. Specific conductances (median value of 409 μ S/cm) were lower in reservoir outflows than in streams. Daily mean discharge on the date of sample collection ranged from 34 to $3.610 \text{ ft}^3/\text{s}$: the median discharge was $653 \text{ ft}^3/\text{s}$.

Ground Water

The results of analyses of 7 nutrients and measurements of 3 physical properties for 25 groundwater samples are given in table 30. A statistical summary of these results is given in table 31. Nitrate plus nitrite was detected at or above the MRL in 18 (72 percent) of 25 samples. Nitrate concentrations were the highest of the nutrients with a median concentration of 1.33 mg/L and three samples exceeded the EPA MCL of 10 mg/L. Nitrite was detected at or above the MRL in only 7 (33 percent) of 21 samples, and concentrations were very low. Ammonia was detected at or above the MRL in 18 (72 percent) of 25 samples, and ammonia plus organic

Figure 21. Herbicide and herbicide degradate concentrations and percent detections at or above the method reporting limit in 141 midwestern stream samples.

N was detected in 13 (52 percent) of 25 samples. Unlike in streams and reservoir outflow, ammonia concentrations were generally higher than organic N concentrations in ground-water samples (table 31). Dissolved phosphorus was detected at or above the MRL in 14 (67 percent) of 21 samples and orthophosphate was detected in 22 (88 percent) of 25 samples. Orthophosphate tended to occur at a higher concentrations with the median value of 0.077 mg/L for orthophosphate compared to 0.036 mg/L for dissolved phosphorus. Ground-water samples tended to be slightly basic; the median pH of the samples was 7.19. Specific conductances were higher than for streams or reservoir outflows, with a median value of 675 μ S/cm.

HERBICIDES IN PRE-EMERGENCE AND POST-EMERGENCE STREAM AND RESERVOIR OUTFLOW SAMPLES

Because they are more frequently applied after crops have emerged, the frequency of detections and concentrations of SU, SA, and IMI herbicides was expected to be greater in post-emergence stream runoff and reservoir outflow samples than in preemergence samples. The opposite was expected for herbicides such as acetochlor, atrazine, and metolachlor that are more often applied prior to crop emergence, and would be expected to occur at higher concentrations in the pre-emergence sample. A summary of discharge and herbicide concentration in pre- and post-emergence stream runoff and reservoir outflow samples is given for flumetsulam, imazethapyr, nicosulfuron, acetochlor, atrazine, and metolachlor in table 32. Flumetsulam, imazethapyr, and nicosulfuron were all more frequently detected in post-emergence samples than in pre-emergence samples. There is little difference in detection frequencies for acetochlor, atrazine, and metolachlor between pre- and post-emergence samples (table 32).

Paired difference tests were used to determine if the observed differences between pre- and postemergence herbicide concentrations are statistically significant. Because the distributions of herbicide concentrations are positively skewed, the nonparametric Wilcoxon signed-rank test was used (Helsel and Hirsch, 1992). The following hypothesis was tested. **Table 18.** Statistical summary of 46 pesticide and pesticide degradate concentrations in 10 water samples from five Midwestern reservoir outflows (concentrations in micrograms per liter, the 95th percentile is not given as it is the same as the maximum)

[<, less than; E, estimated]

Herbicide	Method reporting limit (MRL)	Number at or above MRL	25th percentile	Median	75th percentile	Maximum
2,6-diethylaniline	0.003	0	< 0.003	< 0.003	< 0.003	< 0.003
acetochlor	.002	10	.194	.294	.478	.821
alachlor	.002	9	.006	.014	.099	.815
atrazine	.001	10	1.52	2.01	5.70	6.90
azinphos-methyl	.001	0	<.001	<.001	<.001	<.001
benfluralin	.002	0	<.002	<.002	<.002	<.002
butylate	.002	0	<.002	<.002	<.002	<.002
carbaryl	.003	2	<.003	<.003	<.003	.028
carbofuran	.003	2	<.003	<.003	<.003	.232
chlorpyrifos	.004	1	<.004	<.004	<.004	.031
cyanazine	.004	10	.150	.325	.624	2.90
dacthal	.002	0	<.002	<.002	<.002	<.002
deethylatrazine	.002	10	.133	.219	.349	.729
diazinon	.002	2	<.002	<.002	<.002	.012
dieldrin	.001	1	<.001	<.001	<.001	.003
disulfoton	.017	0	<.017	<.017	<.017	<.017
EPTC	.002	1	<.002	<.002	<.002	.0027
ethalfluralin	.004	0	<.004	<.004	<.004	<.004
ethoprophos	.003	0	<.003	<.003	<.003	<.003
fonofos	.003	0	<.003	<.003	<.003	<.003
lindane	.004	0	<.004	<.004	<.004	<.004
linuron	.002	0	<.002	<.002	<.002	<.002
malathion	.005	0	<.005	<.005	<.005	<.005
metolachlor	.002	10	.619	1.36	3.08	4.36
metribuzin	.004	9	.009	.026	.087	.225
molinate	.004	0	<.004	<.004	<.004	<.004
napropamide	.003	0	<.003	<.003	<.003	<.003
parathion	.004	0	<.004	<.004	<.004	<.004
parathion methyl	.006	0	<.006	<.006	<.006	<.006
pebulate	.004	0	<.004	<.004	<.004	<.004
pendimethalin	.004	4	<.004	<.004	.014	.023
phorate	.002	0	<.002	<.002	<.002	<.002
prometon	.018	6	E.0094	.024	.029	.039
propachlor	.007	2	<.007	<.007	<.007	.017
propanil	.004	0	<.004	<.004	<.004	<.004
propargite	.013	0	<.013	<.013	<.013	<.013
propyzamide	.003	0	<.003	<.003	<.003	<.003
simazine	.005	9	.016	.051	.358	1.03
tebuthiuron	.010	1	<.005	E.0031	.008	.015
terbacil	.007	0	<.007	<.007	<.007	<.007
terbufos	.013	0	<.013	<.013	<.013	<.013
thiobencarb	.002	0	<.002	<.002	<.002	<.002
tri-allate	.001	0	<.001	<.001	<.001	<.001
trifluralin	.002	1	<.002	<.002	<.002	.0062
alpha-HCH	.002	0	<.002	<.002	<.002	<.002
cis-permethrin	.005	0	<.005	<.005	<.005	<.005
p,p'-DDE	.006	1	<.006	<.006	<.006	.0062
Sum of 46 pesticides a degradates	and .001	10	3.08	4.98	10.4	14.7

Table 19. Statistical summary of 13 herbicide and 10 herbicide degradate concentrations in 10 water samples from five midwestern reservoir outflows (concentration in micrograms per liter, the 95th percentile is not given as it is the same as the maximum)

[<, less than]

Herbicide	Method reporting limit (MRL)	Number at or above MRL	25th percentile	Median	75th percentile	Maximum
acetochlor	0.05	9	0.16	0.25	0.45	0.74
acetochlor ESA	.20	8	.33	.57	1.29	2.91
acetochlor OA	.20	6	<.20	.38	.79	3.22
alachlor	.05	3	<.05	<.05	.08	.65
alachlor ESA	.20	10	.36	.63	.75	1.34
alachlor OA	.20	1	<.20	<.20	<.20	1.95
ametryn	.05	0	<.05	<.05	<.05	<.05
atrazine	.05	10	1.37	2.15	4.94	5.63
deethylatrazine	.05	10	.23	.53	.81	1.39
deisopropylatrazine	.05	10	.13	.38	.55	1.00
hydroxy-atrazine	.20	10	.56	.68	1.07	2.73
cyanazine	.05	9	.10	.20	.60	2.36
cyanazine-amide	.05	9	.06	.55	.88	2.09
metolachlor	.05	10	.48	1.06	2.39	4.06
metolachlor ESA	.20	10	.81	2.11	3.30	5.31
metolachlor OA	.20	10	.51	1.17	1.35	4.83
metribuzin	.05	4	<.05	<.05	.10	.22
prometon	.05	0	<.05	<.05	<.05	<.05
prometryn	.05	0	<.05	<.05	<.05	<.05
propachlor	.05	0	<.05	<.05	<.05	<.05
propazine	.05	4	<.05	<.05	.06	.07
simazine	.05	4	<.05	<.05	.24	.67
terbutryn	.05	0	<.05	<.05	<.05	<.05
Sum of 13 herbicides	.05	10	2.45	4.33	8.44	11.8
Sum of 10 degradates	.05	10	3.49	7.58	10.9	21.94

Null Hypothesis. Concentrations/streamflows in pre-emergence samples are not significantly different from values in post-emergence samples (median of differences = 0).

Alternate Hypothesis. Concentrations/ streamflows in pre-emergence samples are significantly different from values in post-emergence samples (median of differences not equal to 0).

Differences were calculated as the postemergence value minus pre-emergence value, so a significant test result with a positive signed rank would mean that the post-emergence values are larger than the pre-emergence values, while a negative signed rank would mean the opposite. The expected relations are observed for flumetsulam, imazethapyr, and nicosulfuron. Concentrations of these herbicides are all significantly larger in the post-emergence samples than in pre-emergence samples (table 33). The median of the paired differences is largest for nicosulfuron (0.031 µg/L). The expected relations also are observed for acetochlor, atrazine, and metolachlor. Concentration of these herbicides are all significantly larger in the pre-emergence samples than in post-emergence samples (table 33). The median of the paired differences is largest for atrazine ($-0.66 \mu g/L$). Some of the differences in concentration could be a result of differences in streamflow. Results of the paired-difference test on streamflow indicate that post-emergence streamflows were larger than pre-emergence flows, but that the difference is not statistically significant at the p = 0.05 level.

Table 20. Pesticide and pesticide degradate (2,6 diethylaniline through fonofos) concentrations in water samples

[W1, well samp	ble from round 1; WD.	duplicate well sample;	<, less than; E, estimate]
[· · · · , · · · · · · · · · · · · · ·			·, ·····, …, …, ······,

0:42 - 22	014-	Date of	0	0			Co in mic	oncentratio rograms p	on, er liter		
Site no. (fig. 5)	Site name	collection (month/ day/year)	Sample type	Sample no.	2,6- diethyl- aniline	Aceto- chlor	Ala- chlor	Atra- zine	Azin- phos- methyl	Benflu- ralin	Butyl- ate
1	11101 4	05/10/00	XX7.1	QU. 11	Illinois	.0.0020	-0.0020	-0.0010	-0.0010	.0.0020	.0.0020
I	LUSI-4	05/19/98	WI	SU-11	<0.0030	<0.0020	<0.0020	<0.0010	<0.0010	<0.0020	<0.0020
2	LUS1-14	05/18/98	W1	SU–7	Sample n	ot analyzed	(broken bot	tle)			
3	LUS1-26	06/18/98	W1	SU-118	<.0030	<.0020	<.0020	E.0034	<.0010	<.0020	<.0020
4	LUS2–9	06/15/98	W1	SU-111	<.0030	<.0020	<.0020	.010	<.0010	<.0020	<.0020
5	LUS2-22	06/18/98	W1	SU-121	<.0030	<.0020	<.0020	.032	<.0010	<.0020	<.0020
6	Plashton 1	07/22/08	W/1	CII 194	Iowa	< 0020	< 0020	< 0010	< 0010	< 0020	< 0020
0		07/23/98	W I	30-104	<.0030	<.0020	<.0020	<.0010	<.0010	<.0020	<.0020
7	Fort Madison 4	07/22/98	W1	SU-182	.0894	<.0020	<.0020	<.0010	<.0010	<.0020	.0042
8	Shambaugh 3	07/24/98	W1	SU-186	<.0030	<.0020	<.0020	<.0010	<.0010	<.0020	<.0020
9	Nodaway 4	07/23/98	W1	SU-185	<.0030	<.0020	<.0020	<.0010	<.0010	<.0020	<.0020
10	Silver City 3	07/31/98	W1	SU-198	<.0030	<.0020	<.0020	<.0010	<.0010	<.0020	<.0020
11	Carson (5), 3	07/31/98	W1	SU-200	<.0030	<.0020	<.0020	.014	<.0010	<.0020	<.0020
12	Cumberland 1	07/27/98	W1	SU-188	<.0030	<.0020	<.0020	<.0010	<.0010	<.0020	<.0020
13	Fontanelle 5	07/23/98	W1	SU-183	<.0030	<.0020	<.0020	.036	<.0010	<.0020	<.0020
14	Menlo 3	07/29/98	W1	SU-193	<.0030	<.0020	<.0020	.091	<.0010	<.0020	<.0020
15	Carlisle 5	07/27/98	W1	SU-187	<.0030	<.0020	<.0020	.015	<.0010	<.0020	<.0020
16	Newton 13	06/03/98	W1	SU-71	<.0030	<.0020	<.0020	.039	<.0010	<.0020	<.0020
17	Belle Plaine 4	06/02/98	W1	SU-70	Sample n	ot analyzed	(broken bot	tle)			
18	Cedar Rapids S6	08/25/98	W1	SU-211	<.0030	<.0020	<.0020	.410	<.0010	<.0020	<.0020
19	Vail 1	06/23/98	W1	SU-137	<.0030	<.0020	<.0020	.004	<.0010	<.0020	<.0020
20	Marshalltown 8	06/02/98	W1	SU-72	.0045	<.0020	<.0020	<.0010	<.0010	<.0020	<.0020
21	Boone 20	07/28/98	W1	SU-190	<.0030	E.0039	<.0020	.179	<.0010	<.0020	<.0020
22	Boxholm 2	07/25/98	W1	SU-189	<.0030	<.0020	<.0020	<.0010	<.0010	<.0020	<.0020
23	Holstein 3	06/25/98	W1	SU-139	<.0030	<.0020	.016	.123	<.0010	<.0020	<.0020
24	Kingsley 1	06/25/98	W1	SU-138	<.0030	<.0020	<.0020	.011	<.0010	<.0020	<.0020
25	Sheffield 2	07/29/98	W1	SU-192	<.0030	<.0020	<.0020	.221	<.0010	<.0020	<.0020

Sito no	Concentration, in micrograms per liter													
(fig. 5)	Car- baryl	Carbo- furan	Chlor- pyrifos	Cyana- zine	Dac- thal	Deethyl- atrazine	Diaz- inon	Dield- rin	Disul- foton	EPTC	Ethal- fluralin	Etho- prophos	Fono- fos	
	Illinois—Continued													
1	< 0.0030	< 0.0030	< 0.0040	< 0.0040	< 0.0020	< 0.0020	< 0.002	< 0.0010	< 0.0170	< 0.0020	< 0.0040	< 0.0030	< 0.0030	
2	Sample	Sample not analyzed												
3	<.0030	<.0030	<.0040	<.0040	<.0020	<.0020	<.0020	<.0010	<.0170	<.0020	<.0040	<.0030	<.0030	
4	<.0030	<.0030	<.0040	<.0040	<.0020	E.0243	<.0020	<.0010	<.0170	<.0020	<.0040	<.0030	<.0030	
5	<.0030	<.0030	<.0040	<.0040	<.0020	E.0283	<.0020	<.0010	<.0170	<.0020	<.0040	<.0030	<.0030	
						Iowa—	Continued							
6	<.0030	<.0030	<.0040	<.0040	<.0020	<.0020	<.0020	<.0010	<.0170	<.0020	<.0040	<.0030	<.0030	
7	<.0030	<.0030	<.0040	<.0040	<.0020	<.0020	<.0020	<.0010	<.0170	<.0020	<.0040	<.0030	<.0030	
8	<.0030	<.0030	<.0040	<.0040	<.0020	<.0020	<.0020	<.0010	<.0170	<.0020	<.0040	<.0030	<.0030	
9	<.0030	<.0030	<.0040	<.0040	<.0020	<.0020	<.0020	<.0010	<.0170	<.0020	<.0040	<.0030	<.0030	
10	<.0030	<.0030	<.0040	<.0040	<.0020	<.0020	<.0020	<.0010	<.0170	<.0020	<.0040	<.0030	<.0030	
11	<.0030	<.0030	<.0040	<.0040	<.0020	E.0094	<.0020	<.0010	<.0170	<.0020	<.0040	<.0030	<.0030	
12	<.0030	<.0030	<.0040	<.0040	<.0020	<.0020	<.0020	<.0010	<.0170	<.0020	<.0040	<.0030	<.0030	
13	<.0030	<.0030	<.0040	<.0040	<.0020	E.0071	<.0020	<.0010	<.0170	<.0020	<.0040	<.0030	<.0030	
14	<.0030	<.0030	<.0040	<.0040	<.0020	E.0740	<.0020	<.0010	<.0170	<.0020	<.0040	<.0030	<.0030	
15	<.0030	<.0030	<.0040	<.0040	<.0020	E.0068	<.0020	<.0010	<.0170	<.0020	<.0040	<.0030	<.0030	
16	<.0030	<.0030	<.0040	<.0040	<.0020	.0808	<.0020	<.0010	<.0170	<.0020	<.0040	<.0030	<.0030	
17	Sample 1	Sample not analyzed												
18	<.0030	<.0030	<.0040	<.0040	<.0020	E.103	<.0020	<.0010	<.0170	<.0020	<.0040	<.0030	<.0030	
19	<.0030	<.0030	<.0040	<.0040	<.0020	E.0065	<.0020	<.0010	<.0170	<.0020	<.0040	<.0030	<.0030	
20	<.0030	<.0030	<.0040	<.0040	<.0020	<.0020	<.0020	<.0010	<.0170	<.0020	<.0040	<.0030	<.0030	
21	<.0030	<.0030	<.0040	<.0040	<.0020	E.0287	<.0020	<.0010	<.0170	<.0020	<.0040	<.0030	<.0030	
22	<.0030	<.0030	<.0040	<.0040	<.0020	<.0020	<.0020	<.0010	<.0170	<.0020	<.0040	<.0030	<.0030	
23	<.0030	<.0030	<.0040	.0074	<.0020	E.0423	<.0020	<.0010	<.0170	<.0020	<.0040	<.0030	<.0030	
24	<.0030	<.0030	<.0040	<.0040	<.0020	.0188	<.0020	<.0010	<.0170	<.0020	<.0040	<.0030	<.0030	
25	<.0030	<.0030	<.0040	<.0040	<.0020	E.237	<.0020	<.0010	<.0170	<.0020	<.0040	<.0030	<.0030	
Table 21. Pesticide and pesticide degradate (lindane through terbacil) concentrations in water samples from 23 midwestern wells

Site no	Site	Date of collection	Sample	Sample			Co in mic	oncentrati rograms p	on, oer liter		
(fig. 5)	name	(month/ day/year)	type	no.	Lin- dane	Lin- uron	Mala- thion	Metola- chlor	Metri- buzin	Molin- ate	Naprop- amide
					Illinois						
1	LUS1–4	05/19/98	W1	SU-11	< 0.0040	< 0.0020	< 0.0050	< 0.0020	< 0.0040	< 0.0040	< 0.0030
2	LUS1-14	05/18/98	W1	SU–7	Sample 1	not analyzed	l (broken bo	ottle)			
3	LUS1-26	06/18/98	W1	SU-118	<.0040	<.0020	<.0050	E.0024	<.0040	<.0040	<.0030
4	LUS2–9	06/15/98	W1	SU-111	<.0040	<.0020	<.0050	.005	<.0040	<.0040	<.0030
5	LUS2-22	06/18/98	W1	SU-121	<.0040	<.0020	<.0050	.364	<.0040	<.0040	<.0030
6	Blockton 1	07/23/98	W1	SU-184	lowa	< 0020	< 0050	< 0020	< 0040	< 0040	< 0030
7	Fort Medison 4	07/22/08	W1	SU 182	< 0040	< 0020	< 0050	< 0020	< 0040	< 0040	< 0020
7		07/22/98	W I	SU-182	<.0040	<.0020	<.0050	<.0020	<.0040	<.0040	<.0030
8	Shambaugh 3	07/24/98	WI	SU-186	<.0040	<.0020	<.0050	<.0020	<.0040	<.0040	<.0030
9	Nodaway 4	07/23/98	W1	SU-185	<.0040	<.0020	<.0050	<.0020	<.0040	<.0040	<.0030
10	Silver City 3	07/31/98	W1	SU-198	<.0040	<.0020	<.0050	<.0020	<.0040	<.0040	<.0030
11	Carson (5), 3	07/31/98	W1	SU-200	<.0040	<.0020	<.0050	.007	<.0040	<.0040	<.0030
12	Cumberland 1	07/27/98	W1	SU-188	<.0040	<.0020	<.0050	<.0020	<.0040	<.0040	<.0030
13	Fontanelle 5	07/23/98	W1	SU-183	<.0040	<.0020	<.0050	.013	<.0040	<.0040	<.0030
14	Menlo 3	07/29/98	W1	SU-193	<.0040	<.0020	<.0050	.002	<.0040	<.0040	<.0030
15	Carlisle 5	07/27/98	W1	SU-187	<.0040	<.0020	<.0050	.006	<.0040	<.0040	<.0030
16	Newton 13	06/03/98	W1	SU-71	<.0040	<.0020	<.0050	.035	<.0040	<.0040	<.0030
17	Belle Plaine 4	06/02/98	W1	SU-70	Sample 1	not analyzed	l (broken bo	ottle)			
18	Cedar Rapids S6	08/25/98	W1	SU-211	<.0040	<.0020	<.0050	.100	<.0040	<.0040	<.0030
19	Vail 1	06/23/98	W1	SU-137	<.0040	<.0020	<.0050	E.002	<.0040	<.0040	<.0030
20	Marshalltown 8	06/02/98	W1	SU-72	<.0040	<.0020	<.0050	<.0020	<.0040	<.0040	<.0030
21	Boone 20	07/28/98	W1	SU-190	<.0040	<.0020	<.0050	.190	<.0040	<.0040	<.0030
22	Boxholm 2	07/25/98	W1	SU-189	<.0040	<.0020	<.0050	<.0020	<.0040	<.0040	<.0030
23	Holstein 3	06/25/98	W1	SU-139	<.0040	<.0020	<.0050	.557	<.0040	<.0040	<.0030
24	Kingsley 1	06/25/98	W1	SU-138	<.0040	<.0020	<.0050	.003	.006	<.0040	<.0030
25	Sheffield 2	07/29/98	W1	SU-192	<.0040	<.0020	<.0050	<.0020	<.0040	<.0040	<.0030

[W1, well sample from round 1; WD, duplicate well sample; <, less than; E, estimate]

	Concentration, in micrograms per liter													
Site no. (fig. 5)	Para- thion	Para- thion- methyl	Pebu- late	Pendi- metha- lin	Phor- ate	Prome- ton	Propa- chlor	Prop- anil	Prop- argite	Prop- yzamide	Sima- zine	Tebu- thiuron	Terba- cil	
						Illinois—C	Continued							
1	< 0.0040	< 0.0060	< 0.0040	< 0.0040	< 0.0020	< 0.0180	< 0.0070	< 0.0040	< 0.0130	< 0.0030	< 0.0050	< 0.010	< 0.0070	
2	Sample 1	not analyzed	1											
3	<.0040	<.0060	<.0040	<.0040	<.0020	<.0108	<.0070	<.0040	<.0130	<.0030	<.0050	<.010	<.0070	
4	<.0040	<.0060	<.0040	<.0040	<.0020	<.0180	<.0070	<.0040	<.0130	<.0030	<.0050	<.010	<.0070	
5	<.0040	<.0060	<.0040	<.0040	<.0020	<.0180	<.0070	<.0040	<.0130	<.0030	<.0050	<.010	<.0070	
						Iowa—Co	ontinued							
6	<.0040	<.0060	<.0040	<.0040	<.0020	<.0180	<.0070	<.0040	<.0130	<.0030	<.0050	<.010	<.0070	
7	<.0040	<.0060	<.0040	<.0040	<.0020	<.0180	<.0070	<.0040	<.0130	<.0030	<.0050	<.010	<.0070	
8	<.0040	<.0060	<.0040	<.0040	<.0020	<.0180	<.0070	<.0040	<.0130	<.0030	<.0050	<.010	<.0070	
9	<.0040	<.0060	<.0040	<.0040	<.0020	<.0180	<.0070	<.0040	<.0130	<.0030	<.0050	<.010	<.0070	
10	<.0040	<.0060	<.0040	<.0040	<.0020	<.0180	<.0070	<.0040	<.0130	<.0030	<.0050	<.010	<.0070	
11	<.0040	<.0060	<.0040	<.0040	<.0020	<.0180	<.0070	<.0040	<.0130	<.0030	<.0050	<.010	<.0070	
12	<.0040	<.0060	<.0040	<.0040	<.0020	<.0180	<.0070	<.0040	<.0130	<.0030	<.0050	<.010	<.0070	
13	<.0040	<.0060	<.0040	<.0040	<.0020	<.0180	<.0070	<.0040	<.0130	<.0030	<.0050	<.010	<.0070	
14	<.0040	<.0060	<.0040	<.0040	<.0020	<.0180	<.0070	<.0040	<.0130	<.0030	<.0050	<.010	<.0070	
15	<.0040	<.0060	<.0040	<.0040	<.0020	<.0180	<.0070	<.0040	<.0130	<.0030	<.0050	<.010	<.0070	
16	<.0040	<.0060	<.0040	<.0040	<.0020	<.0180	<.0070	<.0040	<.0130	<.0030	<.0050	<.010	<.0070	
17	Sample 1	not analyzed	1											
18	<.0040	<.0060	<.0040	<.0040	<.0020	<.0180	<.0070	<.0040	<.0130	<.0030	.0051	<.010	<.0070	
19	<.0040	<.0060	<.0040	<.0040	<.0020	.0414	<.0070	<.0040	<.0130	<.0030	<.0050	<.010	<.0070	
20	<.0040	<.0060	<.0040	<.0040	<.0020	<.0180	<.0070	<.0040	<.0130	<.0030	<.0050	<.010	<.0070	
21	<.0040	<.0060	<.0040	<.0040	<.0020	E.0079	<.0070	<.0040	<.0130	<.0030	E.0032	<.010	<.0070	
22	<.0040	<.0060	<.0040	<.0040	<.0020	<.0180	<.0070	<.0040	<.0130	<.0030	<.0050	<.010	<.0070	
23	<.0040	<.0060	<.0040	<.0040	<.0020	E.0112	<.0070	<.0040	<.0130	<.0030	<.0050	<.010	<.0070	
24	<.0040	<.0060	<.0040	<.0040	<.0020	.0222	<.0070	<.0040	<.0130	<.0030	<.0050	<.010	<.0070	
25	<.0040	<.0060	<.0040	<.0040	<.0020	.146	<.0070	<.0040	<.0130	<.0030	E.0031	<.010	<.0070	

Table 22. Pesticide and pesticide degradate (terbufos through p,p'-DDE) concentrations in water samples from 23 midwestern wells

[W1, well sample from round 1; WD, duplicate well sample; <, less than]

Sito no	Site	Date of	Samplo	Samplo			C in mic	oncentrati crograms p	on, per liter		
(fig. 5)	name	(month/ day/year)	type	no.	Terb- ufos	Thio- bencarb	Tri- allate	Triflur- alin	alpha- HCH	cis- per- methrin	p,p' - DDE
					Illinois						
1	LUS1–4	05/19/98	W1	SU-11	< 0.0130	< 0.0020	< 0.0010	< 0.0020	< 0.0020	< 0.0050	< 0.0060
2	LUS1–14	05/18/98	W1	SU-7	Sample r	not analyzed	(broken bot	tle)			
3	LUS1-26	06/18/98	W1	SU-118	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
4	LUS2–9	06/15/98	W1	SU-111	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
5	LUS2–22	06/18/98	W1	SU-121	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
<i>.</i>		07/22/00	1171	CU 104	Iowa	. 0020	. 0010	. 0020	. 0020	. 0050	. 00.00
0	Blockton 1	07/23/98	WI	SU-184	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
7	Fort Madison 4	07/22/98	W1	SU–182	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
8	Shambaugh 3	07/24/98	W1	SU-186	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
9	Nodaway 4	07/23/98	W1	SU-185	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
10	Silver City 3	07/31/98	W1	SU-198	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
11	Carson (5), 3	07/31/98	W1	SU-200	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
12	Cumberland 1	07/27/98	W1	SU-188	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
13	Fontanelle 5	07/23/98	W1	SU-183	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
14	Menlo 3	07/29/98	W1	SU-193	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
15	Carlisle 5	07/27/98	W1	SU-187	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
16	Newton 13	06/03/98	W1	SU-71	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
17	Belle Plaine 4	06/02/98	W1	SU-70	Sample r	not analyzed	(broken bot	tle)			
18	Cedar Rapids S6	08/25/98	W1	SU-211	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
19	Vail 1	06/23/98	W1	SU-137	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
20	Marshalltown 8	06/02/98	W1	SU-72	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
21	Boone 20	07/28/98	W1	SU-190	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
22	Boxholm 2	07/25/98	W1	SU-189	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
23	Holstein 3	06/25/98	W1	SU-139	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
24	Kingsley 1	06/25/98	W1	SU-138	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060
25	Sheffield 2	07/29/98	W1	SU-192	<.0130	<.0020	<.0010	<.0020	<.0020	<.0050	<.0060

 Table 23.
 Statistical summary of 46 pesticide and pesticide degradate concentrations in 23 water samples from 23 midwestern wells (concentrations in micrograms per liter)

[<, less than; E, estimate]

Herbicide	Method reporting limit	Number above MRI	25th	Median	75th percentile	95th percentile	Maximum
2.6-diethylaniline	0.003	2		<0.003		0.0045	0.080
2,0-dictilyianinic	0.003	1	< 0.003	< 002	< 0.003	0.00 4 5	0.087 E 004
alachlor	.002	1	<.002	<.002	<.002	<.002	016
atrazina	.002	1	<.002	<.002	<.002 030	<.002 221	.010
attazine	.001	14	<.001	.010	.039	.221	.410
honflyralin	.001	0	<.001	<.001	<.001	<.001	<.001
belliuralli	.002	0	<.002	<.002	<.002	<.002	<.002
	.002	1	<.002	<.002	<.002	<.002	.004
carbaryl	.003	0	<.003	<.003	<.003	<.003	<.003
carboluran	.003	0	<.003	<.003	<.003	<.003	<.003
chlorpyrlios	.004	0	<.004	<.004	<.004	<.004	<.004
cyanazine	.004	1	<.004	<.004	<.004	<.004	.0074
dacthal	.002	0	<.002	<.002	<.002	<.002	<.002
deethylatrazine	.002	13	<.002	.0068	.029	.103	E.237
diazinon	.002	0	<.002	<.002	<.002	<.002	<.002
dieldrin	.001	0	<.001	<.001	<.001	<.001	<.001
disulfoton	.017	0	<.017	<.017	<.017	<.017	<.017
EPTC	.002	0	<.002	<.002	<.002	<.002	<.002
ethalfluralin	.004	0	<.004	<.004	<.004	<.004	<.004
ethoprophos	.003	0	<.003	<.003	<.003	<.003	<.003
fonofos	.003	0	<.003	<.003	<.003	<.003	<.003
lindane	.004	0	<.004	<.004	<.004	<.004	<.004
linuron	.002	0	<.002	<.002	<.002	<.002	<.002
malathion	.005	0	<.005	<.005	<.005	<.005	<.005
metolachlor	.002	13	<.002	.002	.013	.364	.557
metribuzin	.004	1	<.004	<.004	<.004	<.004	.006
molinate	.004	0	<.004	<.004	<.004	<.004	<.004
napropamide	.003	0	<.003	<.003	<.003	<.003	<.003
parathion	.004	0	<.004	<.004	<.004	<.004	<.004
parathion methyl	.006	0	<.006	<.006	<.006	<.006	<.006
pebulate	.004	0	<.004	<.004	<.004	<.004	<.004
pendimethalin	.004	0	<.004	<.004	<.004	<.004	<.004
phorate	.002	0	<.002	<.002	<.002	<.002	<.002
prometon	.018	3	<.018	<.018	<.018	.041	.146
propachlor	.007	0	<.007	<.007	<.007	<.007	<.007
propanil	.004	0	<.004	<.004	<.004	<.004	<.004
propargite	.013	0	<.013	<.013	<.013	<.013	<.013
propyzamide	.003	0	<.003	<.003	<.003	<.003	<.003
simazine	.005	1	<.005	<.005	<.005	E.0032	.0051
tebuthiuron	.010	0	<.010	<.010	<.010	<.010	<.010
terbacil	.007	0	<.007	<.007	<.007	<.007	<.007
terbufos	.013	0	<.013	<.013	<.013	<.013	<.013
thiobencarb	.002	0	<.002	<.002	<.002	<.002	<.002
tri-allate	.001	0	<.001	<.001	<.001	<.001	<.001
trifluralin	.002	0	<.002	<.002	<.002	<.002	<.002
alpha-HCH	.002	0	<.002	<.002	<.002	<.002	<.002
cis-permethrin	.005	0	<.005	<.005	<.005	<.005	<.005
p,p'-DDE	.006	0	<.006	<.006	<.006	<.006	<.006
Sum of 46 pesticides and degradates	.001	15	<.001	.021	.093	.515	.715

Table 24. Concentrations of 13 herbicides in water samples from 25 midwestern wells

[W1, well sample from round 1; WD, duplicate well sample; LD, laboratory duplicate sample; <, less than]

Site no	Site	Date of	Sample	Sample		(in m	Concentration	n, r liter	
(fig. 5)	name	(month/ day/vear)	type	no.	Aceto-	Ala-	Ame- trvn	Atra-	Cyan- azine
		,-,,		Illin	nois		yn	2000	uzine
1	LUS1-4	05/19/98	W1	SU-11	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2	LUS1-14	05/18/98	W1	SU-7	<.05	<.05	<.05	<.05	<.05
		05/18/98	WD	SU-10	<.05	<.05	<.05	<.05	<.05
		05/18/98	LD	SU-10	<.05	<.05	<.05	<.05	<.05
3	LUS1-26	06/18/98	W1	SU-118	<.05	<.05	<.05	<.05	<.05
		06/18/98	LD	SU-118	<.05	<.05	<.05	<.05	<.05
4	LUS2–9	06/15/98	W1	SU-111	<.05	<.05	<.05	<.05	<.05
5	LUS2-22	06/18/98	W1	SU-121	<.05	<.05	<.05	<.05	<.05
				Io	wa				
6	Blockton 1	07/23/98	W1	SU-184	<.05	<.05	<.05	<.05	<.05
7	Fort Madison 4	07/22/98	W1	SU-182	<.05	<.05	<.05	<.05	<.05
8	Shambaugh 3	07/24/98	W1	SU-186	<.05	<.05	<.05	<.05	<.05
	-	07/24/98	LD	SU-186	<.05	<.05	<.05	<.05	<.05
9	Nodaway 4	07/23/98	W1	SU-185	<.05	<.05	<.05	<.05	<.05
10	Silver City 3	07/31/98	W1	SU-198	<.05	<.05	<.05	<.05	<.05
11	Carson (5), 3	07/31/98	W1	SU-200	<.05	<.05	<.05	<.05	<.05
12	Cumberland 1	07/27/98	W1	SU-188	<.05	<.05	<.05	<.05	<.05
		07/27/98	LD	SU-188	<.05	<.05	<.05	<.05	<.05
13	Fontanelle 5	07/23/98	W1	SU-183	<.05	<.05	<.05	<.05	<.05
14	Menlo 3	07/29/98	W1	SU-193	<.05	<.05	<.05	.08	<.05
		07/29/98	LD	SU-193	<.05	<.05	<.05	.08	<.05
15	Carlisle 5	07/27/98	W1	SU-187	<.05	<.05	<.05	<.05	<.05
16	Newton 13	06/03/98	W1	SU-71	<.05	<.05	<.05	<.05	<.05
17	Belle Plaine 4	06/02/98	W1	SU-70	<.05	<.05	<.05	.20	<.05
18	Cedar Rapids S6	08/25/98	W1	SU-211	<.05	<.05	<.05	.40	<.05
19	Vail 1	06/23/98	W1	SU-137	<.05	<.05	<.05	<.05	<.05
20	Marshalltown 8	06/02/98	W1	SU-72	<.05	<.05	<.05	<.05	<.05
		06/02/98	LD	SU-72	<.05	<.05	<.05	<.05	<.05
21	Boone 20	07/28/98	W1	SU-190	<.05	<.05	<.05	.18	<.05
22	Boxholm 2	07/25/98	W1	SU-189	<.05	<.05	<.05	<.05	<.05
23	Holstein 3	06/25/98	W1	SU-139	<.05	<.05	<.05	.09	<.05
24	Kingsley 1	06/25/98	W1	SU-138	<.05	<.05	<.05	<.05	<.05
25	Sheffield 2	07/29/98	W1	SU-192	<.05	<.05	<.05	.22	<.05

Site no				Concer in microgra	ntration, Ims per liter			
(fig. 5)	Metola-	Metri-	Prome-	Prome-	Propa-	Propa-	Sima-	Terbu
(chlor	buzin	ton	tryn	chlor	zine	zine	tryn
				Illinois—Contin	nued			
1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
3	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
4	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
5	.41	<.05	<.05	<.05	<.05	<.05	<.05	<.05
				Iowa—Contin	ued			
6	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
7	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
8	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
9	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
10	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
11	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
12	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
13	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
14	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
15	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
16	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
17	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
18	.07	<.05	<.05	<.05	<.05	<.05	<.05	<.05
19	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
20	< 05	< 05	< 05	< 05	< 05	< 05	< 05	< 05
20	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
21	.16	< 05	< 05	<.05	< 05	< 05	<.05	< 05
	< 05	< 05	< 05	< 05	< 05	< 05	< 05	~ 05
22	<.UJ	~.05	~.05	<.0J	~.05	~.05	<.UJ	<.05 - 05
25	.43	<.05	<.05	<.05	<.05	<.05	<.05	<.05
24	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
25	<.05	<.05	.16	<.05	<.05	<.05	<.05	<.05

Table 25. Concentrations of 10 herbicide degradates in water samples from 25 midwestern wells

[W1, well sample from round 1; WD, duplicate well sample, LD, laboratory duplicate sample; <, less than]

		Date of		Concentration, in micrograms per liter										
Site no.	Site name	collection (month/ day/year)	Sample type	Sample no.	Aceto- chlor ESA	Aceto- chlor OA	Ala- chlor ESA	Ala- chlor OA	Cyan- azine- amide	Deethyl- atra- zine	Deiso- prop- ylatra- zine	Hy- droxy- atra- zine	Meto- lachlor ESA	Metola- chlor OA
						I	llinois							
1	LUS1-4	05/19/98	W1	SU-11	< 0.20	< 0.20	< 0.20	< 0.20	< 0.05	< 0.05	< 0.05	< 0.20	< 0.20	< 0.20
2	LUS1-14	05/18/98	W1	SU-7	<.20	<.20	<.20	<.20	<.05	<.05	<.05	<.20	<.20	<.20
		05/18/98	WD	SU-10	<.20	<.20	<.20	<.20	<.05	<.05	<.05	<.20	<.20	<.20
		05/18/98	LD	SU-10	<.20	<.20	<.20	<.20	<.05	<.05	<.05	<.20	<.20	<.20
3	LUS1-26	06/18/98	W1	SU-118	3.47	1.43	.44	<.20	<.05	<.05	<.05	<.20	3.05	1.13
		06/18/98	LD	SU-118	3.08	1.23	.35	<.20	<.05	<.05	<.05	<.20	2.78	.99
4	LUS2–9	06/15/98	W1	SU-111	<.20	<.20	<.20	<.20	<.05	<.05	<.05	<.20	1.37	<.20
5	LUS2-22	06/18/98	W1	SU-121	<.20	<.20	<.20	<.20	<.05	.05	<.05	<.20	<.20	<.20
,	D1 1. 1	07/00/00	****	GUL 104	20	20	Iowa	20	05	05	05	20	20	20
6	Blockton I	07/23/98	WI	SU-184	<.20	<.20	<.20	<.20	<.05	<.05	<.05	<.20	<.20	<.20
7	Fort Madison 4	07/22/98	W1	SU-182	<.20	<.20	1.93	.72	<.05	<.05	<.05	<.20	1.17	.45
8	Shambaugh 3	07/24/98	W1	SU-186	<.20	<.20	<.20	<.20	<.05	<.05	<.05	<.20	<.20	<.20
		07/24/98	LD	SU-186	<.20	<.20	<.20	<.20	<.05	<.05	<.05	<.20	<.20	<.20
9	Nodaway 4	07/23/98	W1	SU-185	<.20	<.20	<.20	<.20	<.05	<.05	<.05	<.20	<.20	<.20
10	Silver City 3	07/31/98	W1	SU-198	<.20	<.20	<.20	<.20	<.05	<.05	<.05	<.20	.37	<.20
11	Carson (5), 3	07/31/98	W1	SU-200	<.20	<.20	<.20	<.20	<.05	<.05	<.05	<.20	.60	<.20
12	Cumberland 1	07/27/98	W1	SU-188	<.20	<.20	<.20	<.20	<.05	<.05	<.05	<.20	<.20	<.20
		07/27/98	LD	SU-188	<.20	<.20	<.20	<.20	<.05	<.05	<.05	<.20	<.20	<.20
13	Fontanelle 5	07/23/98	W1	SU-183	<.20	<.20	<.20	<.20	<.05	<.05	<.05	<.20	1.62	.53
14	Menlo 3	07/29/98	W1	SU-193	<.20	<.20	2.25	<.20	.14	.15	.39	<.20	.75	<.20
		07/29/98	LD	SU-193	<.20	<.20	2.54	<.20	.13	.14	.37	<.20	.84	<.20
15	Carlisle 5	07/27/98	W1	SU-187	<.20	<.20	2.99	<.20	<.05	<.05	<.05	<.20	.75	<.20
16	Newton 13	06/03/98	W1	SU-71	<.20	<.20	<.20	<.20	<.05	.08	.05	<.20	1.05	<.20
17	Belle Plaine 4	06/02/98	W1	SU-70	<.20	<.20	3.26	1.23	<.05	<.05	<.05	<.20	1.84	1.29
18	Cedar Rapids S6	08/25/98	W1	SU-211	<.20	<.20	<.20	<.20	<.05	.14	.06	<.20	<.20	<.20
19	Vail 1	06/23/98	W1	SU-137	<.20	<.20	<.20	<.20	<.05	<.05	<.05	<.20	<.20	<.20
20	Marshalltown 8	06/02/98	W1	SU-72	<.20	<.20	1.07	<.20	<.05	<.05	<.05	<.20	1.87	.70
		06/02/98	LD	SU-72	<.20	<.20	1.09	<.20	<.05	<.05	<.05	<.20	1.82	.78
21	Boone 20	07/28/98	W1	SU-190	1.54	.39	.64	<.20	<.05	.05	<.05	<.20	3.77	.87
22	Boxholm 2	07/25/98	W1	SU-189	<.20	<.20	.72	2.00	<.05	<.05	<.05	<.20	<.20	<.20
23	Holstein 3	06/25/98	W1	SU-139	<.20	<.20	<.20	<.20	.06	.06	<.05	<.20	1.06	.61
24	Kingsley 1	06/25/98	W1	SU-138	<.20	<.20	<.20	<.20	<.05	<.05	<.05	<.20	.66	<.20
25	Sheffield 2	07/29/98	W1	SU-192	<.20	<.20	<.20	<.20	<.05	.39	.85	<.20	1.16	<.20

108 Concentration of Selected Sulfonylurea, Sulfonamide, and Imidazolinone Herbicides, Other Pesticides, and Nutrients in 71 Streams, 5 Reservoir Outflows, and 25 Wells in the Midwestern United States, 1998
 Table 26.
 Statistical summary of 13 herbicide and 10 herbicide degradate concentrations in 25 water samples from 25 midwestern wells (concentrations in micrograms per liter)

[<, less than]

Herbicide	Method reporting limit (MRL)	Number at or above MRL	25th percentile	Median	75th percentile	95th percentile	Maximum
acetochlor	0.05	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
acetochlor ESA	.20	2	<.20	<.20	<.20	1.54	3.47
acetochlor OA	.20	2	<.20	<.20	<.20	.39	1.43
alachlor	.05	0	<.05	<.05	<.05	<.05	<.05
alachlor ESA	.20	8	<.20	<.20	.64	2.99	3.26
alachlor OA	.20	3	<.20	<.20	<.20	1.23	2.00
ametryn	.05	0	<.05	<.05	<.05	<.05	<.05
atrazine	.05	6	<.05	<.05	<.05	.22	.40
deethylatrazine	.05	7	<.05	<.05	.05	.15	.39
deisopropylatrazine	.05	4	<.05	<.05	<.05	.39	.85
hydroxy-atrazine	.20	0	<.20	<.20	<.20	<.20	<.20
cyanazine	.05	0	<.05	<.05	<.05	<.05	<.05
cyanazine-amide	.05	2	<.05	<.05	<.05	.06	.14
metolachlor	.05	4	<.05	<.05	<.05	.41	.43
metolachlor ESA	.20	15	<.20	.66	1.17	3.05	3.77
metolachlor OA	.20	7	<.20	<.20	.45	1.13	1.29
metribuzin	.05	0	<.05	<.05	<.05	<.05	<.05
prometon	.05	1	<.05	<.05	<.05	<.05	.16
prometryn	.05	0	<.05	<.05	<.05	<.05	<.05
propachlor	.05	0	<.05	<.05	<.05	<.05	<.05
propazine	.05	0	<.05	<.05	<.05	<.05	<.05
simazine	.05	0	<.05	<.05	<.05	<.05	<.05
terbutryn	.05	0	<.05	<.05	<.05	<.05	<.05
Sum of 13 herbicides	.05	7	<.05	<.05	.08	.47	.52
Sum of 10 degradates	.05	18	<.05	1.18	3.64	7.62	9.52

SULFONYLUREA, SULFONAMIDE, AND IMIDAZOLINONE HERBICIDES RELATIVE TO ATRAZINE AND METOLACHLOR

Because they have similar chemical properties, much lower application rates, and a shorter history of use, SU, SA, and IMI herbicides were expected to occur at fraction (1/100th or less) of the concentrations of other herbicides such as atrazine (Battaglin and others, 1998a). In figures 22 and 23, the concentrations in streams and reservoir outflows of imazethapyr, flumetsulam, and nicosulfuron, the three most frequently detected SU, SA, or IMI herbicides, are plotted in relation to the concentrations of atrazine and metolachlor, the two most frequently detected other herbicides in results from the NWQL. On figures 22 and 23, the circles are pre-emergence samples and the triangles are post-emergence samples. The lines crossing these plots show the 1:10, 1:100, and 1:1,000 ratios of concentration. The data plotted in figure 22 indicate that in about one-half of the samples, imazethapyr, flumetsulam, and nicosulfuron occur at 1/100th or less the concentration of atrazine. The ratios of metolachlor concentration to imazethapyr, flumetsulam, and nicosulfuron concentrations (fig. 23) are, in general, smaller than the ratios of these compounds to atrazine.

Table 27. Concentrations of nutrients and field data for water samples from 71 midwestern streams and outflow from 5 midwestern reservoirs

									Co in mil	oncentrati ligrams p	ion, er liter		
Site no. (figs. 3, 4)	Site name	collection Sa (month/ r day/year)	Sample no.	Water temper- ature (°C)	Specific cond- uctance (µS/cm)	pH (stand- ard units)	Am- monia as nitro- gen	Nitrite as nitro- gen	Am- monia and organic nitro- gen	Nitrite plus nitrate as nitro- gen	Phos- phorus (dis- solved)	Ortho- phos- phate as phos- phorus	Dis- solved organic carbon
]	Illinois							
1	Vermillion River below	06/10/98	SU-98	19.5	602	7.4	< 0.02	0.042	0.389	11.06	0.084	0.079	
	Lake Vermillion Dam, IL	07/16/98	SU-177	25.5	422	7.8	.076	.06	.465	6.26	.063	.062	
2	Bonpas Creek at	05/23/98	SU-43	20.5	178	6.4	.552	.081	1.392	2.05	.234	.024	
	Browns, IL	07/07/98	SU-166	24.2	120	6.82	.028	.038	.533	1.36	.089	.084	
3	Little Wabash River	05/23/98	SU-33	20.0	177	6.4	.664	.069	1.285	1.06	.291	.269	
	at Carmi, IL	07/09/98	SU-175	27.2	340	7.06	.088	.081	.734	1.66	.055	.051	
4	S. Branch Kishwaukee	05/20/98	SU-29	17.8	514	8.05	.509	.107	1.553	10.80	.151	.076	
	River near Fairdale, IL	07/29/98	SU-195	23.4	835	8.0	<.02	.022	.338	4.34	.253	.211	
5	Iroquois River near	06/10/98	SU-99	17.8	645	7.5	<.02	.038	.509	9.91	.057	.044	
	Chebanse, IL	07/08/98	SU-168	23.0	366	7.8	.054	.035	.545	6.49	.127	.125	
6	Dupage River near	06/09/98	SU-100	16.3	1,085		<.02	.029	.537	6.10	.957	.993	
	Shorewood, IL	07/29/98	SU-194	26.0	1,045	8.52	<.02	<.01	.464	.82	1.097	<.01	
7	Illinois River at	06/12/98	SU-113	21.2	580	7.63	.15	.095	.601	5.16	.293	.309	
	Marseilles, IL	07/09/98	SU-176	27.4	521	7.7	.041	.043	.55	5.34	.269	.242	
8	Spoon River at	05/20/98	SU-25	18.9	541	7.64	.035	.08	.575	8.16	.086	.037	
	London Mills, IL	07/01/98	SU-160	22.5	578	7.89	.048	.05	.489	9.31	.099	.074	
9	Sangamon River near	05/23/98	SU-35	16.3	436	7.54	.123	.051	.562	9.21	.097	.096	4.1
	Monticello, IL	08/05/98	SU-201	23.0	486	7.8	.047	.013	.309	2.52	.081	.074	2.9
10	Sangamon River at	05/26/98	SU-44	21.0	484	7.58	.052	.122	.554	8.08	.151	.025	
	Riverton, IL	07/09/98	SU-174	25.7	479	7.56	.197	.055	.471	6.21	.180	.167	
11	LaMoine River at	05/21/98	SU-27	20.0	376	7.58	.21	.102	.869	5.46	.099	.105	4.7
	Colmar, IL	06/29/98	SU-142	24.3	251	7.44	.088	.063	.687	4.14	.132	.116	6.4
12	Illinois River at	06/18/98	SU-120	22.8	491	7.53	<.02	.088	.505	6.76	.157	.148	4.3
	Valley City, IL	08/12/98	SU-207	28.4	630	7.66	.089	.056	.351	2.89	.313	.316	4.5
13	Mississippi River below	06/02/98	SU-60	23.3	522	7.92	.053	.197	.389	4.85	.118	.117	4.8
	Grafton, IL	06/15/98	SU-116	21.8	495	8.13	.029	.098	.475	5.47	.167	.14	4.3
14	Kaskaskia River near	05/20/98	SU-30	17.5	505	7.9	.082	.123	.393	8.44	.034	.036	17.5
	Cowden, IL	07/08/98	SU–169	23.2	418	7.65	.061	.101	.542	6.09	.071	.075	23.2
15	Shoal Creek near	05/22/98	SU-32	20.0	301	7.1	.767	.137	1.547	2.28	.582	.601	
	Breese, IL	07/08/98	SU-167	25.2	233	7.08	.295	.068	1.096	1.92	.392	.351	
						Iowa							
16	Turkey River at	06/02/98	SU-64	25.5	515	7.8	.110	.068	.360	10.21	.031	.048	
	spinvine, IA	06/12/98	SU-109	15.8	482	7.43	.163	.067	.830	13.06	.164	.157	

Table 27. Concentrations of nutrients and field data for water samples from 71 midwestern streams and outflow from 5 midwestern reservoirs—Continued

	Site name								Co in mil	oncentrat ligrams p	ion, er liter		
Site no. (figs.3, 4)		Date of collection Sampl (month/ no. day/year)	Sample no.	Water temper- ature (°C)	Specific cond- uctance (µS/cm)	pH (stand- ard units)	Am- monia as nitro- gen	Nitrite as nitro- gen	Am- monia and organic nitro- gen	Nitrite plus nitrate as nitro- gen	Phos- phorus (dis- solved)	Ortho- phos- phate as phos- phorus	Dis- solved organic carbon
					Iowa-	-Continu	ued						
17	Mississippi River at	05/27/98	SU-55	20.5	461	7.6	0.033	0.063	0.593	1.17	0.026	0.065	6.5
	Clinton, IA	07/01/98	SU-155	25.7	440	7.4	<.02	.146	.468	2.80	.132	.141	5.0
18	Wapsipinicon River	05/27/98	SU-54	17.9	457	7.63	.081	.105	.593	14.46	.03	.014	2.7
	near Tripoli, IA	06/20/98	SU-126	18.7	275	7.29	<.02	.072	.559	8.12	.092	.075	5.5
19	Wapsipinicon River at	05/29/98	SU-56	20.5	406	7.5	.120	.087	.602	11.30	.093	.065	
	Independence, IA	06/12/98	SU-110	19.0	272	7.26	.135	.05	.606	6.98	.167	.164	
20	Iowa River near	06/02/98	SU-65	15.1	683	8.09	.063	.077	.536	11.80	.071	.069	3.7
	Rowan, IA	06/23/98	SU-129	21.1	412	7.47	.022	.141	.867	9.71	.206	.169	5.4
21	Old Mans Creek near	06/10/98	SU–93	14.6	494	7.6	.102	.09	.475	11.99	.146	.120	3.4
	Iowa City, IA	06/30/98	SU-147	19.7	363	7.2	.048	.10	.719	7.78	.102	.030	6.1
22	Wolf Creek near	06/10/98	SU-87	15.6	458	7.67	.073	.048	.429	14.10	.146	.131	3.0
	Dysart, IA	06/22/98	SU-128	21.1	284	7.43	.038	.048	.426	7.34	.193	.186	3.8
23	3 Iowa River at	05/27/98	SU-53	20.2	500	8.42	.061	.047	.294	8.05	.049	.012	3.2
	Wapello, IA	06/19/98	SU-127	19.8	489	7.66	.087	.062	.518	9.74	.152	.137	3.4
24	N. Skunk River near	05/21/98	SU-21	19.0	391	7.3	.092	.096	.651	7.74	.107	.057	
	Sigourney, IA	06/10/98	SU-95	15.2	405	7.74	.109	.076	.662	8.98	.078	.096	
25	Skunk River at	05/26/98	SU-45	17.0	327	7.26	.15	.113	.840	7.91	.134	.044	18.
	Augusta, IA	06/18/98	SU-122	20.4	385	7.55	.047	.071	.508	8.34	.136	.146	4.8
26	Des Moines River at	05/16/98	SU-8	17.0	437	7.7				8.52			
	Fort Dodge, IA	06/12/98	SU-108	18.5	711	8.2	<.02	.025	.401	13.85	.085	.056	
27	Raccoon River at	05/17/98	SU–9	20.5	598	7.7	.112	.08	.542	11.95	.109	.106	
	Van Meter, IA	06/10/98	SU-89	16.0	522	8.1	.062	.04	.405	11.15	.113	.067	
28	Little Sioux River at	05/27/98	SU-42	18.5	642	8.1	.053	.048	.362	8.45	.075	.059	
	Correctionville, IA	06/18/98	SU-123	22.0	678	8.0	.028	.043	.434	12.25	.100	.101	
29	Maple River at	05/29/98	SU–59	21.5	514	7.7	.444	.109	1.078	8.80	.141	.152	
	Mapleton, IA	06/09/98	SU-90	14.0	574	8.2	.164	.042	.723	8.10	.154	.151	
30	Boyer River at Logan, IA	05/22/98	SU-31	15.5	471	7.6	.425	.097	.923	4.92	.186	.523	
		06/09/98	SU-96	14.0	384	7.7	.183	.041	.555	3.95	.128	.111	
31	Chariton River below	06/04/98	SU–69	18.0	240	7.0	.073	.025	.451	.63	.015	.023	
	Rathbun Lake Dam, IA	06/29/98	SU-148	20.8	234	7.28	.029	<.01	.377	.80	.021	.016	
32	Nishnabotna River above Hamburg, IA	06/04/98	SU-124	19.5	172	7.3	.07	.033	<.10	2.69	.056	.066	

Table 27. Concentrations of nutrients and field data for water samples from 71 midwestern streams and outflow from 5 midwestern reservoirs—Continued

[°C, degrees Celsius; µS/cm, microsiemens per centimeter at 25 degrees Celsius; --, not analyzed; <, less than]

									Co in mil	oncentrat lligrams p	ion, er liter		
Site no. (figs. 3, 4)	Site name	Date of collection S (month/ day/year)	Sample no.	Water temper- ature (°C)	Specific cond- uctance (µS/cm)	pH (stand- ard units)	Am- monia as nitro- gen	Nitrite as nitro- gen	Am- monia and organic nitro- gen	Nitrite plus nitrate as nitro- gen	Phos- phorus (dis- solved)	Ortho- phos- phate as phos- phorus	Dis- solved organic carbon
					I	ndiana							
33	Whitewater River near	05/26/98	SU-47	16.2	592	8.11	0.055	0.060	0.463	5.89	0.030	0.029	
	Alpine, IN	07/08/98	SU-162	23.5	428	7.94	.039	.024	.300	2.74	.058	.051	
34	Blue River at	05/27/98	SU-50	17.4	342	7.73	<.02	.023	.182	3.35	.073	.045	
	Fredericksburg, IN	07/08/98	SU-163	21.6	289	7.45	.04	.024	.472	1.97	.115	.118	
35	Mississinewa River	06/09/98	SU-83	18.7	444	8.10	.049	.013	<.10	.07	<.01	<.01	
	below Mississinewa Lake Dam, IN	07/09/98	SU-164	23.3	340	7.38	.104	.197	.630	4.49	.141	.106	
36	Eel River near	05/21/98	SU-18	20.8	550	7.91	Sample	not analy:	zed				
	Logansport, IN	06/30/98	SU-152	24.1	968	8.34	<.02	.045	.489	4.24	.050	.050	
37	Wildcat Creek near	05/21/98	SU-19	17.9	524	7.79	.273	.119		11.88		.057	
	Jerome, IN	06/30/98	SU-151	21.5	474	7.60	.029	.075	.579	10.05	.049	.027	
38	Wildcat Creek near	05/20/98	SU-22	21.4	651	8.28	.050	.035	.438	7.76	.172	.015	
	Lafayette, IN	07/01/98	SU-150	22.5	509	8.03	.036	.031	.498	6.40	.128	.132	
39	White River near	05/28/98	SU–51	20.7	624.	8.04	.022	.055	.333	5.50	.076	.117	
	Nora, IN	07/01/98	SU-149	24.7	607	7.97	<.02	.032	.517	5.32	.121	.118	
40	Sugar Creek near	05/26/98	SU-46	17.6	521	7.95	.046	.075	.595	7.55	.072	.030	
	Edinburgh, IN	07/20/98	SU-178	23.2	242	7.57	.125	.040	.617	1.22	.118	.102	
41	E. Fork White River	05/28/98	SU-52	21.4	373	7.66	.027	.084	.572	4.03	.083	.085	
	near Bedford, IN	07/06/98	SU-161	25.3	371	7.67	.072	.046	.425	2.57	.053	.057	
42	Wabash River at New	05/27/98	SU-57	20.5	370	7.60	.087	.114	.429	3.55	.076	.066	4.2
	Harmony, IN	06/23/98	SU-136	26.0	332	7.60	.021	.089	.474	4.47	.106	.119	4.4
					Μ	innesota							
43	Cottonwood River near	05/26/98	SU-49	21.3	1,086	8.25	.058	.036	.533	9.43	<.01	<.01	
	New Ulm, MN	07/21/98	SU-180	24.9	752	8.12	.024	.034	.438	3.68	.046	.04	
44	Little Cobb River near	05/18/98	SU-12	19.5	655	7.94	.068	.127	.893	16.19	.103	.103	6.6
	Beauford, MN	08/17/98	SU-208	25.8	549	7.97	.037	<.01	.886	<.05	.092	.084	8.5
45	Minnesota River near	05/19/98	SU-13	21.0	824	8.14	.046	.042	.537	9.64	.051	.040	5.3
	Jordan, MN	06/26/98	SU-135	23.5	746	8.07	.024	.044	.771	10.47	.125	.129	5.4
46	Mississippi River at	05/20/98	SU-14	21.2	632	8.05	.128	.065	.983	3.33	.075	.065	7.2
	Hastings, MN	05/20/98	SU-206	24.9	570	8.08	.066	.041	.641	1.03	.127	.127	8.0
47	Des Moines River at	05/26/98	SU-48	17.6	728	8.63	.053	.042	.561	3.47	<.01	<.01	
	Jackson, MN	08/24/98	SU-210	26.3	636	8.59	.085	.013	.733	<.05	.046	.042	
48	Rock River at	06/24/98	SU-130	24.2	697	8.23	.037	.041	.359	2.98	.023	.027	
	Luverne, MN	06/25/98	SU-131	21.1	530	8.03	.236	.055	.732	2.78	.227	.137	

112 Concentration of Selected Sulfonylurea, Sulfonamide, and Imidazolinone Herbicides, Other Pesticides, and Nutrients in 71 Streams, 5 Reservoir Outflows, and 25 Wells in the Midwestern United States, 1998

Table 27. Concentrations of nutrients and field data for water samples from 71 midwestern streams and outflow from 5 midwestern reservoirs—Continued

									Co in mil	oncentrati ligrams p	ion, er liter		
Site no. (figs. 3, 4)	Site name	Date of collection (month/ day/year)	Sample no.	Water temper- ature (°C)	Specific cond- uctance (µS/cm)	pH (stand- ard units)	Am- monia as nitro- gen	Nitrite as nitro- gen	Am- monia and organic nitro- gen	Nitrite plus nitrate as nitro- gen	Phos- phorus (dis- solved)	Ortho- phos- phate as phos- phorus	Dis- solved organic carbon
]	Kansas							
49	Black Vermillion River	05/05/98	SU-1	17.6	652	7.87	0.041	0.024	0.359	0.88	0.064	0.072	
	at Frankfort, KS	06/09/98	SU-107	17.3	504	7.84	.171	.092	.727	3.21	.147	.089	
50	Big Blue River below	06/03/98	SU-73	22.6	515	8.26	<.02	.037	.422	1.52	.140	.163	
	Tuttle Creek Lake Dam, KS	07/29/98	SU-197	27.6	395	8.26	<.02	.015	.341	.92	.084	.088	
51	Delaware River near	05/05/98	SU–2	22.2	579	8.32	.022	.019	.308	.80	.051	.042	
	Muscotah, KS	06/10/98	SU-105	21.8	571	8.17	.045	.072	.431	1.93	.141	.086	
					K	entucky							
52	Ohio River at Cannelton	06/04/98	SU-75	23.4	335	7.3	.049	.058	.221	1.30	.053	.044	2.6
	Dam, KY	07/07/98	SU-173	24.4	231	7.0	.041	<.01	.248	1.07	.026	.023	4.0
					Ν	lissouri							
53	Nodaway River near	06/18/98	SU-119	20.5	240	7.7	Sample	not analy:	zed				
	Graham, MO	08/19/98	SU-209	30.5	309	9.2	.063	<.01	.269	<.05	.022	.031	
					Ν	ebraska							
54 N	North Dry Creek near	05/22/98	SU-28	16.5	1,040	8.0	.763	.220	2.042	5.37	.627	.567	9.1
	Kearney, NE	06/08/98	SU-76	15.5	1,040	7.9	.231	.223	.910	7.57	.539	.503	6.1
55 Ma	Maple Creek near	05/21/98	SU-37	21.0	657	7.93	.402	.403	1.347	5.52	.261	.24	
	Nickerson, NE	06/08/98	SU-79	14.0	405	7.74	.609	.144	1.630	4.46	.178	.15	
56	Salt Creek at	05/15/98	SU–6	19.0	452	7.75	.770	.083	1.963	4.98	.168	.141	
	Roca, NE	06/10/98	SU-94	18.5	383	7.69	.251	.075	.848	4.87	.136	.108	
57	Wahoo Creek at	05/15/98	SU-5	19.0	420	7.10	.624	.078	1.326	3.19	.125	.056	
	Ithaca, NE	06/08/98	SU-78	15.0	534	7.78	.303	.079	.646	3.48	.170	.153	
58	Platte River at	05/22/98	SU-39	19.0	464	7.44	.555	.075	1.101	2.05	.042	.060	6.1
	Louisville, NE	06/09/98	SU-77	15.5	440	7.92	.200	.061	.665	2.61	.129	.144	4.9
59	Big Nemaha River at	05/26/98	SU-41	21.0	620		<.02	.029	.302	2.05	.224	.224	
	Falls City, NE	06/08/98	SU-80	17.0	555	7.88	.491	.121	1.201	4.89	.204	.159	
60	W. Fork Big Blue River,	05/23/98	SU-36	19.0	417	7.22	.292	.172	1.008	4.20	.556	.541	
	Dorchester, NE	06/10/98	SU-82	17.5	460	7.56	.164	.083	.619	3.88	.37	.37	
61	Big Blue River at	05/15/98	SU–4	22.0	592	8.26	.056	.029	.387	.64	.161	.145	
	Barneston, NE	06/09/98	SU-104	18.5	543	7.90	.168	.078	.741	4.41	.369	.370	
62	Little Blue River near	05/12/98	SU–3	21.5	464	8.32	.042	<.01	.247	.63	.192	.190	
	Fairbury, NE	06/08/98	SU-81	16.0	438	7.64	.151	.041	.428	1.60	.241	.254	
						Ohio							
63	Clear Creek near	06/10/98	SU-86	18.6	395	8.3	.038	.019	.182	1.35	.057	.026	
	Rockbridge, OH	06/30/98	SU-145	21.1	420	7.8	<.02	.036	.446	5.30	.044	.040	

Table 27. Concentrations of nutrients and field data for water samples from 71 midwestern streams and outflow from 5 midwestern reservoirs—Continued

Site no. (1) Site name Date of collecting (month/ day/year) Water network (C) Specific server (C) (h) (h) (h) (h) (h) (h) (h) (h) (h) (h) (h) (h) (h) (h) (h) (h) (h) (h) (h) (h) </th <th></th> <th colspan="8">Concentration,</th> <th>ion,</th> <th></th> <th></th>		Concentration,								ion,				
Site no. (fig.s., 4) Date of name Date of collection (month/ day/year) Water solves (s.Sem) Specific uctance (s.Sem) pH and uctance (s.Sem) Am- monia and uctance (s.Sem) Am- monia and uctance (s.Sem) Am- monia and uctance Mintre monia and uctance Onto- monia uctance Am- monia and uctance Am- monia and uctance Am- monia and uctance Am- monia and uctance Am- monia and uctance Am- monia and uctance Am- monia and uctance Am- monia and uctance Am- monia plas Am- monia plas Am- monia plas Am- monia plas Am- monia plas Am- monia plas Am- monia plas Am- monia plas Miniter monia plas Ortio- plorus Dortio- plorus Ortio- plorus Ortio- plorus Ortio- plorus Option plas Miniter monia plas Miniter monia plas Miniter monia plas Miniter monia plas Miniter monia plas Ortio- plorus Ortio- plorus Miniter monia plas Miniter plas Ortio- plorus Miniter plas Miniter plas										in mil	ligrams p	er liter		Dis- solved organic carbon
Min and and bill bill bill bill bill bill bill bill	Sito no		Date of		Water	Specific	рН	A		Am-	Nitrite		Ortho-	
name (month) daylyear) ne. attree (uSCm) uclance miter attree miter attree miter attree miter miter miter miter miter <thmiter< th=""> <thmiter< th=""> miter mit</thmiter<></thmiter<>	(fias. 3.	Site	collection	Sample	temper-	cond-	(stand-	Am- monia	Nitrite	monia	plus	Phos-	phos-	Dis-
dag/year) (C) (us/sem) unite unite (us/sem) nite (us/sem)	4)	name	(month/	no.	ature	uctance	ard	as	as	and	nitrate	phorus	r Orthophos- phos- phate Dis- solved $s as$ organic as $organic$ as as as $organic$ as	
Bit Delio Solver Bit Bi			day/year)		(°C)	(μ S/cm)	units)	nitro-	nitro-	organic	as	(dis-	as	organic
Ohlo—Continued Operation Operation 64 Scioto River near Prospect, OH 0602/98 SU-63 21.6 797 7.7 0.682 0.192 1.309 4.82 0.392 0.374 65 Olentangy River at Claridon, OH 06029/98 SU-141 23.0 392 7.2 .197 .107 1.043 7.87 .273 .166 66 Olentangy River at Delaware, Lake 06029/98 SU-157 21.0 187 7.4 .101 .070 .791 3.76 .081 .068 66 Olentangy River below Delaware, Lake 06029/98 SU-153 2.8. 266 7.1 .219 .102 .873 4.89 .062 .055 67 Big Darby Creek at Dam, OH 06029/98 SU-140 2.18 106 7.4 .106 .027 526 1.37 .161 .091 68 Scioto River at Higby, OH 06604/98 SU-21 5.5 685								gen	gen	nitro-	nitro-	solved)	pnos-	carbon
64 Scioto River near Prospect, OH 6602/98 SU-63 21.6 797 7.2 0.682 0.192 1.30 4.82 0.392 0.374 65 Olentangy River at Claridon, OH 66029/98 SU-157 21.0 187 7.4 .101 .002 .373 1.23 .017 .046 66 Olentangy River at Delaware, Lake Dam, OH 6609/98 SU-85 15.9 730 7.7 .062 .026 .373 1.23 .017 .046 66 Olentangy River at Delaware, Lake Dam, OH 6609/98 SU-84 19.8 .422 7.4 .307 .120 .727 .2.30 .01 .01 67 Big Darby Creek at Darby Ville, OH 6603/98 SU-12 2.2.8 .74 8.3 .037 .038 .341 .19 .069 .060 68 Scioto River at Higby, OH 6604/98 SU-12 2.5 685 8.0 .028 .016 .168							C. C.			gen	gen		priorus	
64 Scioto River near Prospect, OH (6/29/98) 60/29/98 SU=141 21.6 797 7.7 0.682 0.192 1.309 4.82 0.392 0.374						Onio-	-Contin	uea						
Prospect, OH 06/29/98 SU-141 23.0 392 7.2 .197 .107 1.043 7.87 .273 .166 65 Olentangy River at Claridon, OH 06/09/98 SU-157 21.0 187 7.4 .101 .070 .791 3.76 .081 .068 66 Olentangy River at Dam, OH 06/09/98 SU-153 23.8 266 7.1 .219 .02 .727 2.30 <.01	64	Scioto River near	06/02/98	SU-63	21.6	797	7.7	0.682	0.192	1.309	4.82	0.392	0.374	
65 Olentangy River at Claridon, OH 060998 SU-85 15.9 7.30 7.7 7.4 .001 .070 .791 3.76 .081 .068 66 Olentangy River below Delaware, Lake Delaware, OH 060998 SU-84 19.8 442 7.4 .307 .120 .727 2.30 <.01 <.01 67 Big Darby Creek at Darbyville, OH 060398 SU-62 .044 7.50 8.2 .124 .067 .446 8.44 .122 .130 68 Scioto River at Higby, OH 060498 SU-73 20.8 574 8.3 .037 .038 .341 .19 .069 .060 69 L. Miami River near Oldtown, OH 06/1098 SU-12 15.5 .685 8.0 .028 .016 .168 4.36 .01 .018 70 Mad River at Eagle Chy, OH 06/1098 SU-91 14.4 .727 8.1 .063 .038 .147 4.147 .041 .023 71 Tiffin River at Str		Prospect, OH	06/29/98	SU-141	23.0	392	7.2	.197	.107	1.043	7.87	.273	.166	
Claridon, OH 06/29/98 SU-157 21.0 187 7.4 .101 .070 .791 3.76 .081 .068 66 Olentangy River below Delaware, Lake Dam, OH 06/29/98 SU-153 23.8 266 7.1 .219 .102 .873 4.89 .062 .051 67 Big Darby Creek at Darby Ville, OH 06/29/98 SU-10 21.8 106 7.4 .106 .027 .526 1.37 .161 .091 68 Scioto River at Higby, OH 06/03/98 SU-22 20.8 574 8.3 .037 .038 .341 3.19 .069 .060 69 L. Miami River near 06/10/98 SU-142 15.5 685 8.0 .028 .016 .168 4.36 <.01 .018 70 Mad River at Eagle 06/10/98 SU-144 20.8 679 8.3 .022 .022 .267 4.09 .049 .049 .049 .049 .041 .041 .043 .041 .043 .041<	65	Olentangy River at	06/09/98	SU-85	15.9	730	7.7	.062	.026	.373	1.23	.017	.046	
66 Olentangy River below Delaware, Lake Dam, OH 06/09/98 SU-54 19.8 442 7.4 .307 .120 .727 2.30 <0.01 <0.01 67 Big Darby Creek at Darby Vile, OH 06/03/98 SU-62 .04 750 8.2 .124 .067 .446 8.44 .122 .130 68 Scioto River at Higby, OH 06/03/98 SU-73 .20.8 .574 8.3 .037 .038 .341 .3.19 .069 .060 69 L Miami River near Oldtown, OH 06/10/98 SU-92 .15.5 .685 8.0 .028 .016 .168 4.3.6 .011 .018 70 Mad River at Eagle City, OH 06/10/98 SU-91 14.4 .277 8.1 .063 .038 .147 4.147 .041 .023 71 Tiffin River at Styker, OH 06/10/98 SU-91 14.4 .277 8.1 .063 .038 .147 4.147 .041 .023 72 Auglaize River at Fort Jennings		Claridon, OH	06/29/98	SU-157	21.0	187	7.4	.101	.070	.791	3.76	.081	.068	
Delaware, Lake Dam, OH 06/29/98 (6/29/98 SU-153 23.8 266 7.1 .219 .102 .873 4.89 .062 .055 67 Big Darby Creek at Darbyville, OH 06/03/98 SU-162 20.4 750 8.2 .124 .067 .446 8.44 .122 .130 68 Scioto River at Higby, OH 06/04/98 SU-173 20.8 574 8.3 .037 .038 .341 3.19 .069 .060 68 Scioto River at Higby, OH 06/04/98 SU-155 685 8.0 .028 .016 .168 4.36 <.01	66	Olentangy River below	06/09/98	SU-84	19.8	442	74	307	120	727	2 30	< 01	< 01	
Dam, OH 06/29/98 SU-13 2.3.5 2.06 7.1 2.15 1.02 3.73 4.85 1.02 1.03 1.12 67 Big Darby Creek at Darbyville, OH 06/03/98 SU-62 20.4 750 8.2 1.124 .067 .446 8.44 .122 .130 68 Scioto River at Higby, OH 06/04/98 SU-73 20.8 574 8.3 .037 .038 .341 3.19 .069 .060 68 Scioto River at Higby, OH 06/04/98 SU-73 20.8 574 8.3 .037 .038 .341 3.19 .069 .060 69 L. Miami River near Oldtown, OH 06/10/98 SU-92 15.5 685 8.0 .022 .016 .211 4.77 .035 .037 70 Mad River at Eagle City, OH 06/01/98 SU-12 22.5 631 7.9 .064 .022 .267 4.098 .025 .018	00	Delaware, Lake	00/05/50	SU 152	22.0	266	7.1	210	102	.121	4.80	062	055	
67 Big Darby Creek at DarbyVille, OH 06/03/98 SU-62 20.4 750 8.2 .124 .067 .446 8.44 .122 .130 68 Scioto River at Higby, OH 06/04/98 SU-73 20.8 574 8.3 .037 .038 .341 3.19 .069 .060 69 L. Miami River near Oldown, OH 06/10/98 SU-92 15.5 685 8.0 .028 .016 .168 4.36 <.01		Dam, OH	06/29/98	30-155	25.8	200	/.1	.219	.102	.075	4.09	.062	.035	
Darbyville, OH 06/29/98 SU-140 21.8 106 7.4 .106 .027 .526 1.37 .161 .091 68 Scioto River at Higby, OH 06/04/98 SU-73 20.8 574 8.3 .037 .038 .341 3.19 .069 .060 69 L. Miami River near Oldtown, OH 06/10/98 SU-92 15.5 685 8.0 .028 .016 .168 4.36 <.01	67	Big Darby Creek at	06/03/98	SU-62	20.4	750	8.2	.124	.067	.446	8.44	.122	.130	
68 Scioto River at Higby, OH 06/04/98 SU-73 20.8 574 8.3 .0.37 .0.38 .341 3.19 .0.69 .0.60 69 L. Miami River near Oldtown, OH 06/10/98 SU-92 15.5 685 8.0 .022 .016 .168 4.36 <.01 .018 70 Mad River at Eagle City, OH 06/10/98 SU-91 14.4 727 8.1 .063 .038 .147 4.147 .041 .023 71 Tiffin River at Stryker, OH 06/01/98 SU-91 21.0 623 8.0 .135 .069 .573 1.89 .049 .048 71 Tiffin River at Fort Jennings, OH 06/17/98 SU-172 22.5 631 7.9 .053 .093 .786 10.43 .111 .120 72 Auglaize River at Fort Jennings, OH 06/01/98 SU-171 23.0 534 7.8 .063 .021 .686 6.00 .126 .129 73 Root River at Racine, W		Darbyville, OH	06/29/98	SU-140	21.8	106	7.4	.106	.027	.526	1.37	.161	.091	
Observe at Action Oor // 08/98 SU - 165 24.0 490 8.0 .065 .029 .420 4.14 .068 .076 69 L. Miami River near Oldtown, OH 06/10/98 SU - 92 15.5 685 8.0 .028 .016 .168 4.36 <.01	68	Scioto River at	06/04/98	SU_73	20.8	574	83	037	.038	341	3 19	069	060	
69 L. Miami River near Oldtown, OH 06/10/98 SU-92 15.5 685 8.0 .003 .003 .120 4.14 1.006 .010 1- 69 L. Miami River near Oldtown, OH 06/10/98 SU-92 15.5 685 8.0 .028 .016 .168 4.36 <.01	00	Higby, OH	07/09/09	SU 165	24.0	400	8.0	065	020	420	4.14	069	076	
69 L. Miami River near Oldtown, OH 06/10/98 SU-92 15.5 685 8.0 .028 .016 .168 4.36 <.01			07/08/98	30-105	24.0	490	0.0	.005	.027	.420	4.14	.008	.070	
Oldtown, OH 06/30/98 SU-144 20.8 679 8.3 <.02 .016 .211 4.77 .035 .037 70 Mad River at Eagle City, OH 06/10/98 SU-91 14.4 727 8.1 .063 .038 .147 4.147 .041 .023 71 Tiffin River at Stryker, OH 06/01/98 SU-66 21.0 623 8.0 .135 .069 .573 1.89 .049 .048 72 Auglaize River at Fort Jennings, OH 06/01/98 SU-172 22.5 631 7.9 .053 .093 .786 10.43 .111 .120 73 Root River at Racine, WI 06/01/98 SU-171 23.0 534 7.8 .063 .021 .686 6.00 .126 .129 74 St. Croix River at Racine, WI 06/01/98 SU-204 23.5 753 8.0 .121 .013 .647 .11 .124 .117 74 St. Croix River at St. Croix Falls, WI 06/03/98 SU-205	69	L. Miami River near	06/10/98	SU-92	15.5	685	8.0	.028	.016	.168	4.36	<.01	.018	
70 Mad River at Eagle City, OH 06/10/98 SU-91 14.4 727 8.1 .063 .038 .147 4.147 .041 .023 71 Tiffin River at Stryker, OH 06/01/98 SU-66 21.0 623 8.0 .135 .069 .573 1.89 .049 .048 72 Auglaize River at Fort Jennings, OH 06/17/98 SU-172 22.5 631 7.9 .053 .093 .786 10.43 .111 .120 73 Root River at Racine, WI 06/01/98 SU-171 23.0 534 7.8 .063 .021 .686 6.00 .126 .129 74 St Croix River at Racine, WI 06/01/98 SU-61 19.0 747 7.8 .096 .075 .814 2.27 .051 .015		Oldtown, OH	06/30/98	SU-144	20.8	679	8.3	<.02	.016	.211	4.77	.035	.037	
City, OH 06/30/98 SU-146 17.9 664 8.0 <.02 .022 .267 4.098 .025 .018 71 Tiffin River at Stryker, OH 06/01/98 SU-66 21.0 623 8.0 .135 .069 .573 1.89 .049 .048 72 Auglaize River at Fort Jennings, OH 06/17/98 SU-117 20.0 597 7.9 .053 .093 .786 10.43 .111 .120 73 Root River at Racine, WI 06/01/98 SU-61 19.0 747 7.8 .096 .075 .814 2.27 .051 .015 74 St. Croix River at Racine, WI 06/01/98 SU-204 23.5 753 8.0 .121 .013 .647 .11 .124 .117 74 St. Croix River at St. Croix Falls, WI 06/03/98 SU-205 22.5 191 7.9 .060 .022 .336 .12 .034 .018 5.8 75 Wisconsin River at Muscoda, WI 06/03/98 SU-205	70	Mad River at Eagle	06/10/98	SU–91	14.4	727	8.1	.063	.038	.147	4.147	.041	.023	
71 Tiffin River at Stryker, OH 06/01/98 SU-66 21.0 623 8.0 .135 .069 .573 1.89 .049 .048 72 Auglaize River at Fort Jennings, OH 06/17/98 SU-172 22.5 631 7.9 .053 .093 .786 10.43 .111 .120 73 Root River at Racine, WI 06/01/98 SU-61 19.0 .747 7.8 .096 .075 .814 2.27 .051 .015 74 Root River at Racine, WI 06/01/98 SU-61 19.0 .747 7.8 .096 .075 .814 2.27 .051 .015 74 St. Croix River at Racine, WI 06/03/98 SU-204 23.5 .753 8.0 .121 .013 .647 .11 .124 .117 74 St. Croix River at St. Croix Falls, WI 06/03/98 SU-68 17.6 171 7.9 .060 .022 .336 .12 .034 .018 .5.8 75 Wisconsin River at Muscoda, WI 06/1		City, OH	06/30/98	SU-146	17.9	664	8.0	<.02	.022	.267	4.098	.025	.018	
And Missing River at Fort Jennings, OH 06/07/98 SU-172 22.5 631 7.9 .064 .024 .418 1.12 .064 .067 . 72 Auglaize River at Fort Jennings, OH 06/17/98 SU-172 22.5 631 7.9 .053 .093 .786 10.43 .111 .120 73 Root River at Racine, WI 06/01/98 SU-61 19.0 747 7.8 .096 .075 .814 2.27 .051 .015 74 St. Croix River at St. Croix River at St. Croix River at St. Croix River at Marker at St. Croix River at Marker at Afton, WI 06/17/98 SU-133 20.5 237 8.4 .051 .010 .371 .18 .037 <.01	71	Tiffin River at	06/01/98	SU-66	21.0	623	8.0	135	.069	573	1.89	049	048	
72 Auglaize River at Fort Jennings, OH 06/17/98 SU-117 20.0 597 7.9 .053 .093 .786 10.43 .111 .120 73 Root River at Racine, WI 06/01/98 SU-171 23.0 534 7.8 .063 .021 .686 6.00 .126 .129 73 Root River at Racine, WI 06/01/98 SU-61 19.0 747 7.8 .096 .075 .814 2.27 .051 .015 74 St. Croix River at St. Croix Falls, WI 06/03/98 SU-68 17.6 171 7.7 .060 .022 .336 .12 .034 .018 5.8 75 Wisconsin River at Muscoda, WI 06/16/98 SU-133 20.5 237 8.4 .051 .010 .371 .18 .037 <.01		Stryker, OH	07/07/08	SU 172	22.5	631	7.0	064	024	/18	1.12	064	067	
72 Auglaize River at Fort Jennings, OH 06/17/98 SU-117 20.0 597 7.9 .053 .093 .786 10.43 .111 .120 73 Root River at Racine, WI 06/01/98 SU-61 19.0 747 7.8 .063 .021 .686 6.00 .126 .129 73 Root River at Racine, WI 06/01/98 SU-61 19.0 747 7.8 .096 .075 .814 2.27 .051 .015 74 St. Croix River at St. Croix Falls, WI 06/03/98 SU-68 17.6 171 7.7 .060 .022 .336 .12 .034 .018 5.8 75 Wisconsin River at Muscoda, WI 06/16/98 SU-133 20.5 237 8.4 .051 .010 .371 .18 .037 <.01			07/07/98	30-172	22.5	051	1.9	.004	.024	.410	1.12	.004	.007	-
Fort Jennings, OH 07/08/98 SU-171 23.0 534 7.8 .063 .021 .686 6.00 .126 .129 73 Root River at Racine, WI 06/01/98 SU-61 19.0 747 7.8 .096 .075 .814 2.27 .051 .015 73 Root River at Racine, WI 06/01/98 SU-204 23.5 753 8.0 .121 .013 .647 .11 .124 .117 Wisconsin 74 St. Croix River at St. Croix Falls, WI 06/03/98 SU-68 17.6 171 7.7 .060 .022 .336 .12 .034 .018 5.8 75 Wisconsin River at Muscoda, WI 06/16/98 SU-133 20.5 237 8.4 .051 .010 .371 .18 .037 <.01 76 Rock River at Afton, WI 06/17/98 SU-134 22.0 639 8.4 .047 .014 .706 .87 .062 .043 76 Rock River at Afton, WI <td< td=""><td>72</td><td>Auglaize River at</td><td>06/17/98</td><td>SU-117</td><td>20.0</td><td>597</td><td>7.9</td><td>.053</td><td>.093</td><td>.786</td><td>10.43</td><td>.111</td><td>.120</td><td></td></td<>	72	Auglaize River at	06/17/98	SU-117	20.0	597	7.9	.053	.093	.786	10.43	.111	.120	
73 Root River at Racine, WI 06/01/98 SU-61 19.0 747 7.8 .096 .075 .814 2.27 .051 .015 08/03/98 SU-204 23.5 753 8.0 .121 .013 .647 .11 .124 .117 Wisconsin 74 St. Croix River at St. Croix Falls, WI 06/03/98 SU-68 17.6 171 7.7 .060 .022 .336 .12 .034 .018 5.8 75 Wisconsin River at Muscoda, WI 06/16/98 SU-133 20.5 237 8.4 .051 .010 .371 .18 .037 <.01		Fort Jennings, OH	07/08/98	SU-171	23.0	534	7.8	.063	.021	.686	6.00	.126	.129	
08/03/98 SU-204 23.5 753 8.0 .121 .013 .647 .11 .124 .117 Wisconsin 74 St. Croix River at St. Croix Falls, WI 06/03/98 SU-68 17.6 171 7.7 .060 .022 .336 .12 .034 .018 5.8 75 St. Croix Falls, WI 06/05/98 SU-205 22.5 191 7.9 .060 <.01	73	Root River at Racine, WI	06/01/98	SU61	19.0	747	7.8	.096	.075	.814	2.27	.051	.015	
Wisconsin 74 St. Croix River at St. Croix Falls, WI 06/03/98 SU-68 17.6 171 7.7 .060 .022 .336 .12 .034 .018 5.8 75 Wisconsin River at Muscoda, WI 06/16/98 SU-133 20.5 237 8.4 .051 .010 .371 .18 .037 <.01			08/03/98	SU-204	23.5	753	8.0	.121	.013	.647	.11	.124	.117	
74 St. Croix River at St. Croix Falls, WI 06/03/98 SU-68 17.6 171 7.7 .060 .022 .336 .12 .034 .018 5.8 75 Wisconsin River at Muscoda, WI 06/16/98 SU-202 21.5 298 7.6 .055 .010 .371 .18 .037 <.01						W	isconsin							
St. Croix Falls, WI 06/16/98 SU-205 22.5 191 7.9 .060 <.01 .439 .09 <.01 <.01 75 Wisconsin River at Muscoda, WI 06/16/98 SU-133 20.5 237 8.4 .051 .010 .371 .18 .037 <.01	74	St. Croix River at	06/03/98	SU-68	17.6	171	7.7	.060	.022	.336	.12	.034	.018	5.8
75 Wisconsin River at Muscoda, WI 06/16/98 SU-133 20.5 237 8.4 .051 .010 .371 .18 .037 <.01		St. Croix Falls, WI	08/05/98	SU_205	22.5	101	79	060	< 01	/30	00	< 01	< 01	
75 Wisconsin River at Muscoda, WI 06/16/98 SU-133 20.5 237 8.4 .051 .010 .371 .18 .037 <.01			00/05/70	50-205	22.5	171	1.)	.000	<.01	.+37	.07	<.01	<.01	
Muscoda, WI 08/07/98 SU-202 21.5 298 7.6 .055 .015 .594 .56 .030 .051 76 Rock River at Afton, WI 06/17/98 SU-134 22.0 639 8.4 .047 .014 .706 .87 .062 .043 76 Rock River at Afton, WI 06/17/98 SU-134 22.0 639 8.4 .047 .014 .706 .87 .062 .043	75	Wisconsin River at	06/16/98	SU-133	20.5	237	8.4	.051	.010	.371	.18	.037	<.01	
76 Rock River at Afton, WI 06/17/98 SU-134 22.0 639 8.4 .047 .014 .706 .87 .062 .043		Muscoda, WI	08/07/98	SU-202	21.5	298	7.6	.055	.015	.594	.56	.030	.051	
	76	Rock River at Afton, WI	06/17/98	SU-134	22.0	639	8.4	.047	.014	.706	.87	.062	.043	
$0^{1/21/98}$ SU-179 27.0 549 8.6 .028 .025 .840 .69 .032 .035			07/21/98	SU–179	27.0	549	8.6	.028	.025	.840	.69	.032	.035	

Table 28. Statistical summary of nutrient, field, and discharge data in water samples from 71 midwestern streams

 $[^{\circ}C$, degrees Celsius; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; mg/L, milligrams per liter; N, nitrogen; P, phosphorus, C, carbon; ft^3/s , cubic feet per second]

Parameter	Method reporting limit (MRL)	Number of samples analyzed	Number at or above MRL	25th percentile	Median	75th percentile	95th percentile	Maximum
Water temperature (°C)	0.10	141	141	17.9	20.8	22.8	26.0	30.5
Specific conductance (µS/cm)	1.0	141	141	391	500	624	824	1,086
pH (standard units)	.10	139	139	7.58	7.80	8.04	8.4	9.2
Ammonia as N (mg/L)	.02	138	123	.038	.063	.135	.609	.770
Ammonia plus organic N (mg/L)	.10	137	136	.425	.542	.732	1.35	2.04
Organic N (mg/L) ¹	.10	137	136	.336	.468	.575	.846	1.28
Nitrite as N (mg/L)	.01	138	132	.032	.056	.084	.146	.403
Nitrite plus nitrate as N (mg/L)	.05	139	136	2.05	4.47	8.08	12.0	16.2
Nitrate as N (mg/L) ²	.05	139	136	.198	4.34	7.96	11.87	16.1
Dissolved phosphorus as P (mg/L)	.006	137	133	.056	.107	.161	.392	1.10
Orthophosphate as P (mg/L)	.01	138	133	.044	.084	.141	.374	.993
Dissolved organic carbon as C (mg/L)	.33	37	37	4.0	4.8	6.1	9.1	18.0
Daily mean discharge (ft ³ /s)	.01	141	141	268	1,070	5,030	56,600	267,000

¹Calculated as ammonia plus organic N concentration minus ammonia concentration with non-detects set equal to zero.

²Calculated as nitrite plus nitrate concentration minus nitrite concentration with non-detects and missing values set equal to zero.

Table 29. Statistical summary of nutrient, field, and discharge data in water samples from five midwestern reservoir outflows (the 95th percentile is not given as it is the same as the maximum)

 $[^{\circ}C$, degrees Celsius; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; mg/L, milligrams per liter; N, nitrogen; P, phosphorus, C, carbon; ft³/s, cubic feet per second; ND, no data; <, less than]

Parameter	Method reporting limit (MRL)	Number of samples analyzed	Number at or above MRL	25th percentile	Median	75th percentile	Maximum
Water temperature (°C)	0.10	10	10	19.5	21.7	23.8	27.6
Specific conductance (µS/cm)	1.0	10	10	266	409	444	602
pH (standard units)	.10	10	10	7.28	7.40	8.10	8.26
Ammonia as N (mg/L)	.02	10	7	<.02	.061	.104	.307
Ammonia plus organic N (mg/L)	.10	10	9	.377	.437	.630	.873
Organic N (mg/L) ¹	.10	10	9	.348	.389	.422	.654
Nitrite as N (mg/L)	.01	10	9	.015	.040	.102	.197
Nitrite plus nitrate as N (mg/L)	.05	10	10	.80	1.91	4.89	11.1
Nitrate as N (mg/L) ²	.05	10	10	.80	1.83	4.79	11.0
Dissolved phosphorus as P (mg/L)	.006	10	8	.015	.063	.084	.141
Orthophosphate as P (mg/L)	.01	10	8	.016	.059	.088	.163
Dissolved organic carbon as C (mg/L)	.33	0	ND	ND	ND	ND	ND
Daily mean discharge (ft^3/s)	.01	10	10	162	653	1,540	3,610

¹Calculated as ammonia plus organic N concentration minus ammonia concentration with non-detects set equal to zero.

²Calculated as nitrite plus nitrate concentration minus nitrite concentration with non-detects set equal to zero.

Table 30. Concentrations of nutrients and field data for water samples from 25 midwestern wells

 $[^{\circ}C, degrees \ Celsius; \mu S/cm, microsiemens \ per \ centimeter \ at \ 25 \ degrees \ Celsius; \ ND, \ no \ data; <, less \ than]$

		Data of					Concentration, in milligrams per liter							
Site no. (fig. 5)	Site name	collec- tion (month/ day/year)	Sample no.	Water temper- ature (°C)	Specific conduc- tance (µS/cm)	pH (stan- dard units)	Am- monia as nitrogen	Nitrite as nitrogen	Am- monia and organic nitrogen	Nitrite plus nitrate as nitrogen	Phos- phorus (dis- solved)	Ortho- phos- phate as phos- phorus	Dis- solved organic carbon	
						III	inois					-		
1	LUS1–4	05/19/98	SU-11	31.5	675	7.1	0.582	0.017	0.709	0.06	0.013	0.031	1.2	
2	LUS1-14	05/18/98	SU-7	19.5	660	7.33	1.39	<.01	1.349	<.05	.024	.077	1.7	
3	LUS1-26	06/18/98	SU-118	30.0	647	7.34	.056	.047	<.1	17.38	<.01	.015	.7	
4	LUS2–9	06/15/98	SU-111	19.5	561	7.2	.032	<.01	<.1	7.77	.017	<.01	.6	
5	LUS2-22	06/18/98	SU-121	21.8	786	7.05	.062	<.01	<.1	26.02	<.01	.018	.7	
6	Blockton 1	07/23/98	SU-184	13.5	1 770	I 7 87	owa 27	ND	35	< 1	ND	400	ND	
7	Fort Madison 4	07/22/98	SU_182	21.4	511	6.94	5.05	< 01	5.90	05	230	317	ND	
, o	Shambaugh 2	07/24/08	SU 196	11.0	172	6.52	< 1	ND	2.20	.05	ND	300	ND	
0	Shanbaugh 5	07/24/98	SU-100	11.0	475	0.55	<.1	ND	.2	<.1	ND	.500	ND	
9	Nodaway 4	07/23/98	SU-185	11.5	577	6.91	<.1	ND	.2	1.10	ND	<.1	ND	
10	Silver City 3	07/31/98	SU–198	11.5	982	7.37	.261	<.01	.281	<.05	<.01	.015	ND	
11	Carson (5), 3	07/31/98	SU-200	11.0	742	7.19	.060	<.01	<.1	1.33	<.01	.011	ND	
12	Cumberland 1	07/27/98	SU-188	13.5	350	7.03	<.02	<.01	<.1	.08	<.01	.012	ND	
13	Fontanelle 5	07/23/98	SU-183	11.5	675	7.05	.600	ND	.8	<.1	ND	.500	ND	
14	Menlo 3	07/29/98	SU-193	10.5	490	7.34	.02	<.01	<.1	5.49	.164	.175	ND	
15	Carlisle 5	07/27/98	SU-187	12.0	600	7.36	<.02	<.01	<.1	.78	<.01	.015	ND	
16	Newton 13	06/03/98	SU-71	10.4	692	7.06	<.02	.017	<.1	7.90	.103	.109	ND	
17	Belle Plaine 4	06/02/98	SU-70	11.2	624	11.1	.340	1.081	.494	5.15	.036	.340	ND	
18	Cedar Rapids S6	08/25/98	SU-211	17.1	514	7.14	.212	.047	.291	3.09	.049	.062	ND	
19	Vail 1	06/23/98	SU-137	12.5	899	7.0	.020	<.01	<.1	6.45	.112	.121	ND	
20	Marshalltown 8	06/02/98	SU-72	10.7	737	7.28	1.323	<.01	1.507	<.05	.047	.077	ND	
21	Boone 20	07/28/98	SU-190	11.5	761	7.33	<.02	.031	.16	5.30	.078	.100	ND	
22	Boxholm 2	07/25/98	SU–189	11.0	1,067	7.35	1.621	<.01	1.672	<.05	.151	.025	ND	
23	Holstein 3	06/25/98	SU-139	10.5	735	7.07	.025	.012	<.1	7.20	.074	.082	ND	
24	Kingsley 1	06/25/98	SU-138	10.0	884	7.02	.024	<.01	<.1	9.44	.128	.135	ND	
25	Sheffield 2	07/29/98	SU-192	12.0	583	7.44	<.02	<.01	<.1	11.56	<.01	<.023	ND	

116 Concentration of Selected Sulfonylurea, Sulfonamide, and Imidazolinone Herbicides, Other Pesticides, and Nutrients in 71 Streams, 5 Reservoir Outflows, and 25 Wells in the Midwestern United States, 1998

Table 31. Statistical summary of nutrient and field data in water samples from 25 midwestern wells

 $[^{\circ}C$, degrees Celsius; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; mg/L, milligrams per liter; N, nitrogen; P, phosphorus, C, carbon; ft³/s, cubic feet per second; <, less than]

Parameter	Method reporting limit (MRL)	Number of samples analyzed	Number at or above MRL	25th percentile	Median	75th percentile	95th percentile	Maximum
Water temperature (°C)	0.10	25	25	11.0	11.5	17.1	30.0	31.5
Specific conductance (µS/cm)	1.0	25	25	577	675	761	1,067	1,770
pH (standard units)	.10	25	25	7.05	7.19	7.34	7.87	11.1
Ammonia as N (mg/L)	.02	25	18	<.02	.056	.582	2.70	5.05
Ammonia plus organic N (mg/L)	.10	25	13	<.10	.160	.709	3.50	5.90
Organic N (mg/L) ¹	.10	25	13	<.10	<.10	0.16	.80	.85
Nitrite as N (mg/L)	.01	21	7	<.01	<.01	.017	.047	1.08
Nitrite plus nitrate as N (mg/L)	.05	25	18	<.05	1.33	7.20	17.4	26.0
Nitrate as N (mg/L) ²	.05	25	18	.05	1.33	7.19	17.3	26.0
Dissolved phosphorus as P (mg/L)	.006	21	14	<.006	.036	.103	.164	.239
Orthophosphate as P (mg/L)	.01	25	22	.015	.077	.135	.40	.50
Dissolved organic carbon as C (mg/L)	.33	5	5	.7	.7	1.2	1.7	1.7

¹Calculated as ammonia plus organic N concentration minus ammonia concentration with non-detects set equal to zero.

 2 Calculated as initiating plus nitrate concentration minus nitrite concentration with non-detects and missing values set equal to zero.

Table 32. Statistical summary of selected herbicide concentrations and discharge in pre-emergence and post-emergence water samples from midwestern streams and reservoir outflows (concentration in μ g/L)

[<, less than]

Herbicide	Number of samples	Number above MRL	25th percentile	Median	75th percentile	95th percentile	Maximum
flumetsulam pre-emergence	72	37	< 0.010	0.011	0.049	0.127	0.358
flumetsulam post-emergence	69	55	.013	.032	.062	.169	.220
imazethapyr pre-emergence	72	44	<.010	.019	.056	.134	.689
imazethapyr post-emergence	69	53	.014	.045	.097	.236	.407
nicosulfuron pre-emergence	72	19	<.010	<.010	.010	.065	.266
nicosulfuron post-emergence	69	55	.012	.028	.059	.132	.161
acetochlor pre-emergence	70	69	.22	.80	2.80	15.6	25.1
acetochlor post-emergence	74	69	.05	.20	.49	1.42	2.26
atrazine pre-emergence	70	70	.54	.32	15.1	48.1	224
atrazine post-emergence	74	74	.70	2.97	5.96	12.6	37.6
metolachlor pre-emergence	70	70	.29	1.70	4.05	17.7	143
metolachlor post-emergence	74	73	.37	1.33	2.89	7.16	14.7
		in cul	Discharge, bic feet per seco	nd			
pre-emergence	75	75	210	883	4,220	56,600	172,000
post-emergence	76	76	360	1,235	4,795	101,000	267,000

 Table 33.
 Median of differences between post-emergence and pre-emergence concentrations of selected herbicides and

 Wilcoxon signed-rank test results (differences in micrograms per liter)

[<, less than]

		Median of paired	Wilcoxon signed-rank test results						
Herbicide	Number of pairs	differences between post- and pre-emergence concentrations	Rank	p value	Accept alternate hypothesis?				
flumetsulam	65	0.016	442	< 0.001	yes				
imazethapyr	65	.017	334	.005	yes				
nicosulfuron	65	.023	598	<.001	yes				
acetochlor	70	42	-870	<.001	yes				
atrazine	70	66	-573	.001	yes				
metolachlor	70	14	-360	.032	yes				
		Discharge, in cubic feet per s	econd						
discharge	75	82	341	.07	no				

Δ Post-emergence

Figure 22. Concentrations of atrazine in samples collected from midwestern streams and reservoir outflows in relation to: (*A*) imazethapyr, (*B*) flumetsulam, and (*C*) nicosulfuron.

Figure 23. Concentrations of metolachlor in samples collected from midwestern streams and reservoir outflows in relation to: (*A*) imazethapyr, (*B*) flumetsulam, and (*C*) nicosulfuron.

SU, SA, and IMI herbicide concentrations were expected to be smaller relative to atrazine and metolachlor concentrations in the pre-emergence samples than the post-emergence samples because the majority of atrazine and metolachlor is applied before crops emerge, and the majority of the SU, SA, and IMI herbicides are applied after crops emerge. In 68 pre-emergence stream and reservoir outflow samples, the median imazethapyr, flumetsulam, and nicosulfuron to atrazine concentration ratios were 1:157, 1:173, and 1:315, respectively. In 68 post-emergence stream and reservoir outflow samples, the median imazethapyr, flumetsulam, and nicosulfuron to atrazine concentration ratios were 1:50, 1:75, and 1:68, respectively. In all cases, the medians of the ratios of these three compounds to metolachlor concentrations were less than the medians of ratios to atrazine concentration. This was expected as the median atrazine to metolachlor ratios was 2.6:1 for pre-emergence samples and 2.4:1 for post-emergence samples. The distributions of imazethapyr, flumetsulam, and nicosulfuron to atrazine and metolachlor ratios from pre- and postemergence stream and reservoir outflow samples are shown in figure 24.

Figure 24. Ratios of imazethapyr, flumetsulam, and nicosulfuron concentrations to atrazine and metolachlor concentrations in pre- and post-emergence stream and reservoir outflow samples.

CONCLUSIONS

Sulfonylurea (SU), sulfonamide (SA), and imidazolinone (IMI) herbicides were detected in samples of both surface water and ground water from across the Midwestern United States. The frequency of detection and concentrations of SU, SA, and IMI herbicides were generally larger in streams and reservoir outflows than in ground-water samples. At least 1 of the 16 SUs, SAs or IMIs was detected at or above the method reporting limit (MRL) of 0.01 μ g/L in 111 of 133 stream samples, 6 of 8 reservoir samples, and 5 of 25 ground-water samples. In stream and reservoir samples, the frequency of detection and concentrations of SU, SA, and IMI herbicides were larger in postemergence samples than in pre-emergence samples. SU, SA, and IMI herbicides were detected less frequently and at substantially lower concentrations than other herbicides like atrazine and metolachlor that are applied in greater total amounts.

The observed ranges and maximum concentrations of SU, SA, and IMI herbicides in samples collected from midwestern streams during postapplication runoff events in 1998 were very close to what was expected. The majority of SU, SA, and IMI detections were at concentrations less than $0.1 \,\mu\text{g/L}$. These concentrations are not likely to be toxic to nontarget aquatic plants or humans, but they do add to the overall burden of pesticides carried by midwestern streams. The maximum concentrations of SU, SA, and IMI herbicide in samples collected from midwestern ground water in 1998 were slightly higher than expected.

Several other pesticides, particularly triazine and chloroacetanilide herbicides, occurred more frequently and at higher concentrations than did the SU, SA, and IMI herbicides. In streams and reservoir outflows, the SU, SA, and IMI herbicides generally occurred 1/50th or less of the concentrations of atrazine and metolachlor. The ratios of imazethapyr, flumetsulam, and nicosulfuron concentrations to atrazine and metolachlor concentrations were larger in pre-emergence samples (when atrazine and metolachlor concentrations tended to be higher) than in post-emergence samples.

The results and interpretations presented here are limited by the quantity of samples that have been analyzed for SU, SA, and IMI herbicides. The data that are available are lacking, mostly due to the low frequency of sample collection and resulting limited temporal distribution of results. More frequent sampling at selected sites is required to determine if herbicides are present at other times of the year and to determine annual mean concentrations and fluxes of SU, SA, and IMI herbicides in midwestern streams.

REFERENCES CITED

- Afyuni, M.M., Wagger, M.G., Leidy, R.B., 1997, Runoff of two sulfonylurea herbicides in relation to tillage system and rainfall intensity: Journal of Environmental Quality, v. 26, p. 1318–1326.
- Al-Khatib, K., Parker, R., and Fuerst, E.P., 1992, Alfalfa response to simulated herbicide spray drift: Weed Technology, v. 6, p. 956–960.
- Anderson, R.L., and Humburg, N.E., 1987, Field duration of chlorsulfuron bioactivity in the central great plains: Journal of Environmental Quality, v. 16, p. 263–266.
- Battaglin, W.A., Furlong, E.T., Burkhardt, M., and Peter, C.J., 1998a, A reconnaissance for new, low-application rate herbicides in surface and ground water in the Midwestern United States, 1998, *in* Proceeding of the NWQMC National Conference Monitoring—Critical foundations to protect our waters: U.S. Environmental Protection Agency, p. 245–256.
- Battaglin, W.A., Furlong, E.T., Burkhardt, M.R., and Peter, C.J., 2000, Occurrence of sulfonylurea, sulfonamide, imidazolinone, and other herbicides in rivers, reservoirs, and ground water in the Midwestern United States, 1998: Science of the Total Environment, v. 248, no. 2–3, p. 123–133.
- Battaglin, W.A., Furlong, E.T., Peter, C.J., 1998b, A reconnaissance for sulfonylurea herbicides in waters of the Midwestern USA—An example of collaboration between the public and private sectors: U.S. Geological Survey Fact Sheet FS–046–98, 4 p.
- Bergstrom L., 1990, Leaching of chlorsulfuron and metsulfuron methyl in three Swedish soils measured in field lysimeters: Journal of Environmental Quality, v. 19, p. 701–706.
- Brown, H.M., 1990, Mode of action, crop selectivity, and soil relations of the sulfonylurea herbicide: Pesticide Science, v. 29, p. 263–281.
- Childress, C.J.O., Foreman, W.T., Connor, B.F., and Maloney, T.J., 1999, New reporting procedures based on long-term methods detection levels and some considerations for interpretations of water-quality data provided by the U.S. Geological Survey National Water Quality Laboratory: U.S. Geological Survey Open-File Report 99–193, 19 p.

Coupe, R.H., Goolsby, D.A., Iverson, J.L., Markovchick, D.J., and Zaugg, S.J., 1995, Pesticide, nutrient, water-discharge, and physical-property data for the Mississippi River and some of its tributaries, April 1991–September 1992: U.S. Geological Survey Open-File Report 93–657, 116 p.

Crescenzi, C., Di Corcia, A., Guerriero, E., and Samperi, R., 1997, Development of a multiresidue method for analyzing pesticide traces in water based on solidphase extraction and electrospray liquid chromatography mass spectrometry: Environmental Science & Technology, v. 31, no. 2, p. 479–488.

Curran, W.S., Knake, E.L., and Liebl, R.A., 1991, Corn (*Zea mays*) injury following use of clomazone, chlorimuron, imazaquin, and imazethapyr: Weed Technology, v. 5, p. 539–544.

D'Ascenzo, G., Gentili, A., Marchese, S., Marino, A., and Perret, D., 1998, Multiresidue method for determination of post-emergence herbicides in water by HPLC/ESI/MS in positive ionization mode: Environmental Science Technology, v. 32, p. 1340–1347.

Detroy, M.G., Hunt, P.K.B., and Holub, M.A., 1988, Ground-water-quality-monitoring program in Iowa—Nitrate and pesticides in shallow aquifers: U.S. Geological Survey Open-File Report 88–4123, 32 p.

Dinelli, G., Vicari, A., Bonetti, A., and Catizone, P., 1997, Hydrolytic dissipation of four sulfonylurea herbicides: Journal of Agricultural and Food Chemistry, v. 45, p. 1940–1945.

DuPont, 1998, A guide to DuPont sulfonylurea herbicides: Wilmington, Delaware, E. I. du Pont de Nemours and Company.

Edwards, T.K., and Glysson, D.G., 1988, Field methods for measurement of fluvial sediment: U.S. Geological Survey Open-File Report 86–531, 118 p.

Fairchild, J.F., Ruessler, D.S., Haverland, P.S., and Carlson, A.S., 1997, Comparative sensitivity of Selenastrum capricornutum and Lemna minor to sixteen herbicides: Archives of Environmental Contaminant Toxicology, v. 32, p. 353–357.

Fahl, G.M., Kreft, L., Altenburger, R., Faust, M., Boedeker, W., and Grimme, L.H., 1995, pH-dependent sorption, bioconcentration and algal toxicity of sulfonylurea herbicides: Aquatic Toxicology, v. 31, p. 175–187.

Felsot, A.S., Bhatti, M.A., Mink, G.I., and Reisenauer, G., 1996, Biomonitoring with sentinel plants to assess exposure of nontarget crops to atmospheric deposition of herbicide residues: Environmental Toxicology and Chemistry, v. 15, p. 452–459.

Ferrer, I., Hennion, M.C., and Barcelo, D., 1997a, Immunosorbents coupled on line with liquid chromatography atmospheric pressure chemical ionization mass spectrometry for the part per trillion level determination of pesticides in sediments and natural water using low preconcentration volumes: Analytical Chemistry, v. 69, p. 4508–4514.

Ferrer, I., Thurman, E.M., and Barcelo, D., 1997b, Identification of ionic chloroacetanilide—Herbicide metabolites in surface water and groundwater by HPLC/MS using negative ion spray: Analytical Chemistry, v. 69, p. 4547–4553.

Fishman, M.J., and Friedman, L.C., 1989, Methods for determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chapter A1, 545 p.

Fletcher, J.S., Pfleeger, T.G., and Ratsch, H.C., 1993, Potential environmental risks associated with the new sulfonylurea herbicides: Environmental Science & Technology, v. 27, p. 2250–2252.

Flury, M., Leuenberger, J., Studer, B., and Fluhler, H., 1995, Transport of anions and herbicides in a loamy and a sandy field soil: Water Resources Research, v. 31, p. 823–835.

Furlong, E.T., Burkhardt, M.R., Gates, P.M., Werner, S.L., and Battaglin, W.A., 2000, Routine determination of sulfonylurea, imidazolinone, and sulfonamide herbicides at nanogram-per-liter concentrations by solidphase extraction and liquid chromatography/mass spectrometry: Science of the Total Environment, v. 248, no. 2–3, p. 135–146.

Goetz, A.J., Lavy, T.L., and Gbur, E.E., 1990, Degradation and field persistence of imazethapyr: Weed Science, v. 38, p. 421–428.

Goolsby, D.A., and Battaglin, W.A., 1995, Occurrence and distribution of pesticides in rivers of the midwestern United States, *in* Leng, M.L., Leovey, E.M.K., Zubkoff, P.L., eds., Agrochemcial environmental fate—State of the art: Boca Raton, Florida, CRC Press Inc., p. 159–173.

Goolsby, D.A., Boyer, L.L., and Battaglin, W.A., 1994, Plan of study to determine the effect of changes in herbicide use on herbicide concentrations in midwestern streams, 1989–94: U.S. Geological Survey Open-File Report 94–347, 14 p.

Harvey, J., Dulka, J.J., and Anderson, J.J, 1985, Properties of sulfometuron methyl affecting its environmental fate—Aqueous hydrolysis and photolysis, mobility and adsorption on soils, and bioaccumulation potential: Journal of Agricultural and Food Chemistry, v. 33, p. 590–596.

Helsel, D.R., and Hirsch, R.M., 1992, Statistical methods in water resources: Elsevier, New York, 522 p.

Hooper, R.P., Goolsby, D.A., Rickert, D.A., and McKenzie, S.W., 1997, NASQAN—A program to monitor the water quality of the Nation's large rivers: U.S. Geological Survey Fact Sheet FS–055–97, 6 p. Hostetler, K.A., and Thurman, E.M., 1999, Determination of chloroacetanilide herbicide metabolites in water using high-performance liquid chromatography-diode array detection and high-performance liquid chromatography/mass spectrometry, *in* Morganwalp, D.W., and Buxton, H.T., eds., U.S. Geological Survey Toxic Substances Hydrology Program—Proceedings of the Technical Meeting, Charleston, South Carolina, March 8–12, 1999—v. 2 of 3—Contamination of Hydrologic Systems and Related Ecosystems: U.S. Geological Survey Water-Resources Investigations Report 99–4018B, p. 345–354.

Kalkhoff, S.J., Kolpin, D.W., Thurman, E.M., Ferrer, I., and Barcelo, D., 1998, Degradation of chloroacetanilide herbicides—The prevalence of sulfonic and oxanilic acid metabolites in Iowa groundwaters and surface waters: Environmental Science & Technology, v. 32, p. 1738–1740.

Kolpin, D.W., Burkart, M.R., and Thurman, E.M., 1994, Herbicides and nitrate in near-surface aquifers in the midcontinental United States, 1991: U.S. Geological Survey Water-Supply Paper 2413, 34 p.

Kolpin, D.W., Kalkhoff, S.J., Goolsby, D.A., Sneck-Fahrer, D.A., and Thurman, E.M., 1997, Occurrence of selected herbicides and herbicide degradation products in Iowa's ground water, 1995: Groundwater, v. 35, p. 679–688.

Kolpin, D.W., Thurman, E.M., and Linhart, S.M., 1998, The environmental occurrence of herbicides—The importance of degradates in ground water: Archives of Environmental Contaminant Toxicology, v. 35, p. 385–390.

LaCorte, S., and Barcelo, D., 1996, Determination of parts per trillion levels of organophosphorus pesticides in groundwater by automated on-line liquid-solid extraction followed by liquid chromatography/atmospheric pressure chemical ionization mass spectrometry using positive and negative modes of ionization: Analytical Chemistry, v. 68, p. 2464–2470.

Larson, S.J., Capel, P.D., and Majewski, M.S., 1997, Pesticides in surface waters—Distribution, trends, and governing factors: Chelsea, Michigan, Ann Arbor Press, Inc., 373 p.

Leahy, P.P., and Thompson, T.H., 1994, The National Water-Quality Assessment Program: U.S. Geological Survey Open-File Report 94–70, 4 p.

Meister, R.T., 1999, Farm chemicals handbook '99: Willoughby, Ohio, Meister Publishing Company, various pagination.

Michael, J.L., and Neary, D.G., 1993, Herbicide dissipation studies in southern forest ecosystems: Environmental Toxicology and Chemistry, v. 12, p. 405–410.

Obrigawitch, T.T., Cook, G., and Wetherington, J., 1998, Assessment of effects on non-target plants from sulfonylurea herbicides using field approaches: Pesticide Science, v. 52, p. 199–217. Okamoto, Y., Fisher, R.L., Armbrust, K.L., and Peter, C.J., 1998, Surface water monitoring survey for bensulfuron methyl applied in paddy fields: Pesticide Science, v. 23, p. 235–240.

Peterson, H.G., Boutin, C., Martin, P.A., Freemark, K.E., Ruecker, N.J., and Moody, M.J., 1994, Aquatic phytotoxicity of 23 pesticides applied at expected environmental concentrations: Aquatic Toxicology, v. 28, p. 275–292.

Phillips, P.J., Wall, G.R., Thurman, E.M., Eckhardt, D.A., and Vanhoesen, J., 1999, Metolachlor and its metabolites in tile drain and stream runoff in the Conajoharie Creek watershed: Environmental Science & Technology, v. 33, p. 3531–3537.

Rodriguez, M., and Orescan, D.B., 1998, Confirmation and quantitation of selected sulfonylurea, imidazolinone, and sulfonamide herbicides in surface water using electrospray LC/MS: Analytical Chemistry, v. 70, p. 2710–2717.

Sabater, C., and Carrasco, J.M., 1997, Effects of chlorsulfuron on growth of three freshwater species of phytoplankton: Bulletin of Environmental Contaminant Toxicology, v. 58, p. 807–813.

Scribner, E.A., Goolsby, D.A., Thurman, E.M., and Battaglin, W.A., 1998, A reconnaissance for selected herbicides, metabolites, and nutrients in streams of nine Midwestern States, 1994–95: U.S. Geological Survey Open-File Report 98–181, 44 p.

Scribner, E.A., Goolsby, D.A., Thurman, E.M., Meyer, M.T., and Battaglin, W.A., 1996, Concentrations of selected herbicides, herbicide metabolites, and nutrients in outflow from selected Midwestern reservoirs, April 1992 through September 1993: U.S. Geological Survey Open-File Report 96–393, 128 p.

Scribner, E.A., Thurman, E.M., Goolsby, D.A., Meyer, M.T., Mills, M.S., and Pomes, M.L., 1993, Reconnaissance data for selected herbicides, two atrazine metabolites, and nitrate in surface water of the Midwestern United States, 1989–90: U.S. Geological Survey Open-File Report 93–457, 77 p.

Shelton, L.R., 1994, Field guide for collection and processing stream-water samples for the National Water-Quality Assessment Program: U.S. Geological Survey Open-File Report 94–455, 42 p.

Steinheimer, T.R., Pfeiffer, R.L., Scoggin, K.D., and Battaglin, W.A., 2000, Reconnaissance survey of sulfonamide, sulfonylurea, and imidazolinone herbicides in surface streams and groundwater of the Midwestern United States, *in* Steinheimer, T., Ross, L., and Spittler, T., eds., Agrochemical fate and movement—Perspective and scale of study: American Chemical Society, Symposium Series 751, p. 248–271.

- Thurman, E.M., Goolsby, D.A., Meyer, M.T., and Kolpin, D.W., 1992, A reconnaissance study of herbicides and their metabolites in surface water of the midwestern United States using immunoassay and gas chromatography/mass spectrometry: Environmental Science Technology, v. 26, p. 2440–2447.
- U.S. Department of Agriculture, 1991–99, Agricultural chemical usage—1990–1998 field crops summary:
 U.S. Department of Agriculture, NASS, ERS, Washington, D.C., published annually [variously paged].
- U.S. Environmental Protection Agency, 1996a, Test methods for evaluating solid wastes, SW–846, volume 1B, laboratory manual, physical/chemical methods—Method 8321a—A solvent extractable nonvolatile compounds by high performance liquid chromatography/thermospray/mass spectrometry (HPLC/TS/MS) or ultraviolet (UV) detection, revision 1, p. 8321A1–8321A49.
- ——2000, ECOTOX data base, U.S. Environmental Protection Agency, Office of Research and Development, accessed 9/2000 at URL http://www.epa.gov/ ecotox/
- U.S. Geological Survey, 2000, United States NWIS-W data retrieval page, accessed 6/2000 at URL http://waterdata.usgs.gov/nwis-w/US/
- Veeh, R.H., Inskeep, W.P., Roe, F.L., and Ferguson, A.H., 1994, Transport of chlorsulfuron through soil columns: Journal of Environmental Quality, v. 23, p. 542–549.

- Volmer, D. and Wilkes, J., 1996, Multiresidue analysis of pesticides by electrospray LC-MS and LC-MS-MS: LC GC-Magazine of Separation Science, v. 14, p. 216–224.
- Warner, K.L., and Schmidt, A.R., 1994, National Water-Quality Assessment Program—The lower Illinois River basin: U.S. Geological Survey Fact Sheet FS–94–018, 2 p.
- Wei, L., Yu, H., Sun, Y., Fen, J., and Wang, L., 1998, The effects of three sulfonylurea herbicides and their degradation products on the green algae chlorella pyrenoidosa: Chemosphere, v. 37, p. 747–751.
- Whitcomb, C.E., 1998, An introduction to ALS-inhibiting herbicides: Toxicology and Industrial Health, v. 15, p. 231–239.
- Zaugg, S.D., Sandstrom, M.W., Smith, S.G., and Fehlberg, K.M., 1995, Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of pesticides in water by C-18 solid-phase extraction and capillary-column gas chromatography/mass spectrometry with selectedion monitoring: U.S. Geological Survey Open-File Report 95–181, 49 p.
- Zimmerman, L.R., and Thurman, E.M., 1999, Method of analysis by the U.S. Geological Survey Organic Geochemistry Research Group—Determination of triazine and chloroacetanilide herbicides in water by solid-phase extraction and capillary-column gas chromatography/mass spectrometry with selectedion monitoring: U.S. Geological Survey Open-File Report 98–634, 21 p.

