Using OOF to Model Mechanical Behavior of Thermal Barrier Coatings

Mark R. Locatelli and Edwin R. Fuller, Jr. National Institute of Standards and Technology Gaithersburg , MD 20899-8521, U.S.A.

National Institute of Standards and Technology

Symposium on Advanced Ceramic Coatings Intl. Conf. on Advanced Ceramics & Composites Cocoa Beach, FL - January 15, 2002

Acknowledgments

- Stephen A. Langer, Information Tech. Lab., NIST
- Andrew C. E. Reid & Andrew R. Roosen, CTCMS, MSEL, NIST
- Andrew J. Allen, Jan Ilavsky, Jay S. Wallace, Ceramics Div., NIST
- Scott Terry & Carlos Levi,

Univ. of Calif. at Santa Barbara

Technical Issues for TBC's

- Correlate properties with microstructure
 - > to shorten materials development cycle
 - > to improve materials & processing
 - > to enable more reliable design
- Increase thermal protection
- Increase life
- Increase reliability,

i.e., predict life, or coating spallation

APPROACH: Develop computational tools for elucidating influences of stochastic microstructural features (e.g., porosity) on physical properties; and provide insights into mechanisms that lead to TBC spallation via predictive micro-mechanical models of reliability.

PPM2OOF Tool

- Convert micrograph to ".ppm" (portable pixel map) file
- Select & identify phases to create binary image
- Assign constitutive physical properties to each phase
- Mesh in PPM2OOF via "Simple Mesh" or "Adaptive Mesh" – multiple algorithms that allow elements to adapt to the microstructure

OOF Tool

Virtual Experiments: constrained cooling

Visualize & Quantify: normal residual stresses

Perform virtual experiments on finite-element mesh:

- To determine effective macroscopic properties
- To elucidate parametric influences
- To visualize microstructural physics

EB-PVD TBC Cross Sections:

Near interface microstructure

1.3 μ m from TGO/TBC interface

Surface microstructure 60 μ m from TGO/TBC interface

Young's Modulus of EB-PVD TBC's Modulus is anisotropic and position dependent

<60% modulus reduction due to intracolumnar porosity>

Effect of Temperature on Surface Morphology and Texture

$\frac{\mathbf{v}}{\mathbf{v}}$ - Rotating Substrates

 $T_{s} = 1100 \ ^{\circ}C$

8 RPM, ~0.9 μm/min (Flux ~ 3.2 μm/min)

 $T_{s} = 900 \ ^{\circ}C$

Young's Modulus of EB-PVD TBC's Modulus is anisotropic and position dependent

<60% modulus reduction due to intracolumnar porosity>

Section View of a ZrO₂ – 8 wt% Y₂O₃ Plasma Sprayed Thermal Barrier Coating

J. S. Wallace and J. Ilavsky, J. of Thermal Spray Tech., 7, [4], 521-526 (1998).

Calculating Average Elastic Properties of a Representative Region

Effective Elastic Young's Modulus Calculated From Microstructural Finite Elements

	Porosity (%)	Section Moduli (GPa)	Porosity (%)	Plan Moduli (GPa)
		E _x E _y		E _x E _y
Calc.:	12 ± 1	$39\pm10\ 13\pm7$	6	83 90
Expt.:	11	28	11	19

 $ZrO_2 - 8 wt\% Y_2O_3$: E = 214 GPa v = 0.310

How to Generate Effective Meshes?

Low Res. Mesh

$$E_x = 136 \text{ GPa}$$

 $E_y = 100 \text{ GPa}$
Nodes = 10,894

High Res. Mesh $E_x = 83 \text{ GPa}$ $E_y = 40 \text{ GPa}$ Nodes = 43,887

Modulus versus Mesh Resolution

Modulus versus Mesh Resolution

Critical Issues

Does the mesh resolution capture the essential features that affect behavior?

E.g., Does the mesh capture the essence of the fine cracks?

- If the mesh resolution is changed, does the simulated behavior also change?
- This there asymptotic behavior?
- Can these techniques be validated in a general manner?

Modeling Mechanical Behavior of TBC's

SUMMARY:

- Microstructure-based, finite-element simulations provide a new paradigm for property measurements of complex materials, such as, TBC's.
- Sample preparation & image analysis are critical for obtaining accurate, quantitative measures of behavior.
- Mesh resolution can have significant influences on determined properties.
- Finite-element simulations help to elucidate the influences of stochastic microstructural features (e.g., porosity) on the elastic behavior of complex TBC microstructures.