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Amino acids: building blocks of proteins
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PrPc 88-231 primary: structure
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Currently exploring Cu?* binding by histidine and neighbor
amino acids in C-terminal region of prion fibrils.
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Cu?* binding could inhibit conformational change
associated with diseased form of PrP (PrP>)

FIGURE 1 Potential copper binding motifs in the converting

region of the normal (PrP®) mouse prion protein, which are
consistent with ESR data (1) are shown in panels a and b. The
corresponding copper-free stretch of the left-handed p-helix
model of the infectious (PrP°) protein from Govaerts et al. (4)
is shown in panel c.

Difference
w between PrPc

- and PrP is
= confor mational

Calculations by D. Cox, J. Pan
and R. Singh predict structural
change when Cu?* binds to core
region (sequence 92-96
GGGTH) of PrPc. Bending is
not compatible with the straight
b-strand backbone structure
associated with PrP=,



PrP¢ 88-231 primary structure
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C-termina & N-terminal left
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Conversion of PrP to amyloid fibrils involves disruption
of a-helices enabling Cu?* binding at this stage or
refolding to b-structure.




Sequence 175-177 FVH in human PrP*
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Candidate structure for seguence 17/5-177 FVH:
Cu?* coordination by N atoms of HFV backbone, H
Side chain and O atoms of H,O:
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Candidate structures
created using visualization
software
(e.g. VMD, PyMal,
Swiss-PDB).

Local structure
(geometry) minimized
using quantum
mechanical -Density
Functional Theory
calculations (SIESTA).



Goal: estimate energetics o Cu-PrP binding




Which calculations will predict binding?

Studied PrP¢ sequence 92-96 GGGTH, known
experimentally to be a strong Cu?* binding site:

* Molecular Dynamics (MD) calculations alone (using implicit
solvent) DO NOT predict Cu?* binding .

e Quantum Mechanical (QM) calculations (in vacuum) predict
unphysically large binding energies.

Same outcome for the sequence 175-177 FVH.

Embedded QM calculationsin MD simulations

using the Generalized Born (GB) approximation as
Implicit solvent.




Energies from QM calculations:

» Electrostatic energy (Coulomb interactions)
between each atom of the system, which include
exchange and correlation interactions between

electrons.
* Total kinetic energy.

Energiesfrom MD simulations:
e Vander Waalsinteractions A
e Solvation energy.

[
' » ._th ..fi’t
" - d
eSS S iR
. O u‘;‘h
/ B
-~ \s o
- . A ]
2+ | L
Cu ./ . } ‘
8 .

Cu?*- GGGTH - H,0O complex



Results obtained by embedding QM
calculations in MD simulations

PrP sequence 92-96 GGGTH:
Binding energies of about 2.4 eV.

PrP sequence 1/5-177 FVH:
Binding energies of about 3.0 eV.

Prion protein sequence 175-177 FVH predicted
to bind Cu?* at least as strongly as the 92-96
GGGTH region.




More results

Explored the binding affinity of other transition metal
lons to HGGGW of the octarepeat region of PrP:

Cu?t: 1.8 eV
Ni%*: 1.6 eV
Zn%: 1.3 eV
Mn2*: Non-binding.

™

>

—

Some unresol ved Issues.
e Lack of good force-field parameters for most transition metals.

 Na', Cl-ionsincluded in MD simulation may generate environment
that differs from physiological salt concentrations in the brain.

Follows trend observed
experimentally, however ...



Future work

e Explore other possible metal ion binding sites of the
prion protein.

e Study Cu?* binding to multiple His residues, as
opposed to isolated binding motifs, to different
regions of the PrP.

 |Investigate both isolated and cooperative transition
metal ion binding to proteins associated with other
neurodegenerative diseases, e.g., amyloid-b
(Alzheimer’ s Disease), a-synuclein (Parkinson’s
Disease).
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Summary of Calculation M ethod

. Construction of candidate structure for the complex and each
fragment.

. QM calculations for the complex and each fragment. Obtain
minimized local structure, electrostatic potential and QM
energy contribution.

. Create parameters for the Cu?* bound residues and metal ion.
Need atom-centered point charges for the complex and peptide
fragment (derived by fitting electrostatic potential).

. MD simulations for the complex and each fragment. Obtain
non-bonded interactions and energies of solvation.

. Calculate the total energy of the complex and each fragment
by adding QM and MD contributions.

. Estimate binding energy:

Ebinding: Ecomplex' Efragments



Construction of candidate structures:
Visualization software (VMD, PyMol, Swiss-PDB)

Quantum mechanical calculations:
Kohn-Sham self-consistent density functional
method in the local density or generalized gradient
approximation (SIESTA implementation).

o Geometry relaxation, total and partial energies, atomic
forces, electron densities.

Molecular dynamics calculations:
Package of molecular ssimulation programs (AMBER)
e Molecular mechanics, normal mode analysis, molecular

dynamics and free energy calculations to elucidate the
structures and energies of molecules.
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Amino acids with electrically dharged side chains
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B, Awino aoids with polar bt wncharged side cfiins C. Sprewl cises
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D, Amino acids with hydraphobic side chains
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