Binding Mechanisms of Metal Ions in Prion Proteins

Cynthia S. Trevisan and Daniel L. Cox Department of Physics, University of California, Davis

California APS, LBNL October 26-27, 2007

Amino acids: building blocks of proteins

Anti-parallel β -sheet

PrP^C 88-231 primary structure

Currently exploring Cu²⁺ binding by histidine and neighbor amino acids in C-terminal region of prion fibrils.

Why?

- Breakdown of metal homeostasis as key factor in many neurodegenerative diseases.
- Debate about whether binding of metals plays a neuroprotective or neurodegenerative role in disease.

Cu²⁺ binding could inhibit conformational change associated with diseased form of PrP (PrP^{Sc})

FIGURE 1 Potential copper binding motifs in the converting region of the normal (PrP^C) mouse prion protein, which are consistent with ESR data (1) are shown in panels *a* and *b*. The corresponding copper-free stretch of the left-handed β -helix model of the infectious (PrP^{Sc}) protein from Govaerts et al. (4) is shown in panel *c*.

Difference between PrP^C and PrP^{Sc} is <u>conformational</u>

Calculations by D. Cox, J. Pan and R. Singh predict structural change when Cu^{2+} binds to core region (sequence 92-96 GGGTH) of PrP^C. Bending is *not* compatible with the straight β -strand backbone structure associated with PrP^{Sc}.

PrP^C 88-231 primary structure

Currently exploring Cu²⁺ binding by histidine and neighbor amino acids in C-terminal region of prion fibrils.

Why?

- Breakdown of metal homeostasis as key factor in many neurodegenerative diseases.
- Debate about whether binding of metals plays a neuroprotective or neurodegenerative role in disease.

Cu²⁺ *will NOT* bind to α -helical structure of PrP.

C-terminal & N-terminal left handed β -Helix (LH β H) models for prion fibril.

Conversion of PrP to amyloid fibrils involves disruption of α -helices *enabling Cu*²⁺ *binding at this stage* or refolding to β -structure.

Sequence 175-177 FVH in human PrP^C

Candidate structure for sequence 175-177 FVH: Cu^{2+} coordination by N atoms of HFV backbone, H side chain and O atoms of H₂O.

Candidate structures created using visualization software (e.g. VMD, PyMol, Swiss-PDB).

Local structure (geometry) minimized using quantum mechanical -Density Functional Theory calculations (SIESTA).

Goal: estimate energetics of Cu-PrP binding $(E_{binding} = E_{complex} - E_{fragment})$

Peptide (FVH) fragment

Complex

Cu²⁺- H₂O fragment

Which calculations will predict binding?

Studied PrP^C sequence 92-96 GGGTH, known experimentally to be a strong Cu²⁺ binding site:

- Molecular Dynamics (MD) calculations alone (using implicit solvent) DO NOT predict Cu²⁺ binding .
- Quantum Mechanical (QM) calculations (in vacuum) predict unphysically large binding energies.

Same outcome for the sequence 175-177 FVH.

Embedded QM calculations in MD simulations using the Generalized Born (GB) approximation as implicit solvent.

Energies from QM calculations:

• Electrostatic energy (Coulomb interactions) between each atom of the system, which include exchange and correlation interactions between electrons.

 Cu^2

• Total kinetic energy.

Energies from MD simulations:

• Van der Waals interactions

Cu²⁺- GGGTH - H₂O complex

• Solvation energy.

Results obtained by embedding QM calculations in MD simulations

PrP sequence 92-96 GGGTH: Binding energies of about 2.4 eV.

PrP sequence 175-177 FVH: Binding energies of about 3.0 eV.

Prion protein sequence 175-177 FVH predicted to bind Cu²⁺ at least as strongly as the 92-96 GGGTH region.

More results

Explored the binding affinity of other transition metal ions to HGGGW of the octarepeat region of PrP:

Cu²⁺: 1.8 eV Ni²⁺: 1.6 eV Zn²⁺: 1.3 eV Mn²⁺: Non-binding.

Follows trend observed experimentally, however...

Some unresolved issues:

- Lack of good force-field parameters for most transition metals.
- Na⁺, Cl⁻ ions included in MD simulation may generate environment that differs from physiological salt concentrations in the brain.

Future work

- Explore other possible metal ion binding sites of the prion protein.
- Study Cu²⁺ binding to multiple His residues, as opposed to isolated binding motifs, to different regions of the PrP.
- Investigate both isolated and cooperative transition metal ion binding to proteins associated with other neurodegenerative diseases, e.g., amyloid-β (Alzheimer's Disease), α-synuclein (Parkinson's Disease).

Supplementary Slides

References

- D. L. Cox, J Pan and R. R. P. Singh, *Biophys. Lett.* 91 L11
 L13 (2006).
- C. S. Burns et. al., *Biochemistry* **42**, 6794 6803 (2003)
- C. Govaerts, C. H. Wille, S. B. Prusiner and F. E. Cohen, *Proc. Natl. Acad. Sci. USA* **101**:8342 8347 (2004)

Summary of Calculation Method

- 1. Construction of candidate structure for the complex and each fragment.
- 2. QM calculations for the complex and each fragment. Obtain minimized local structure, electrostatic potential and QM energy contribution.
- Create parameters for the Cu²⁺ bound residues and metal ion. Need atom-centered point charges for the complex and peptide fragment (derived by fitting electrostatic potential).
- 4. MD simulations for the complex and each fragment. Obtain non-bonded interactions and energies of solvation.
- 5. Calculate the total energy of the complex and each fragment by adding QM and MD contributions.
- 6. Estimate binding energy:

 $E_{binding} = E_{complex} - E_{fragments}$

Construction of candidate structures: Visualization software (VMD, PyMol, Swiss-PDB)

Quantum mechanical calculations:

Kohn-Sham self-consistent density functional method in the local density or generalized gradient approximation (SIESTA implementation).

• Geometry relaxation, total and partial energies, atomic forces, electron densities.

Molecular dynamics calculations:

Package of molecular simulation programs (AMBER)

• Molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to elucidate the structures and energies of molecules.

Amino Acids Cheat Sheet

19