DNA Mixture Interpretation:

Principles and Practice in Component Deconvolution and Statistical Analysis \qquad

Real Case Example Importance of Properly Stating Your Conclusions

\qquad
\qquad
\qquad

- Case Example (adjudicated 2006 case)
\qquad
- Sexual assault case
- Semen on anal swab
- Differential extraction with clear sperm fraction separation
\qquad
- DNA profile c/w two semen contributors
- Importance of Conclusions
- Inclusions (frequency calculation provided)
- Exclusion
- Inconclusive \qquad
- Complex Case Experiment
- Transition from major profile to inclusion to inconclusive \qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mixture Calculations

\qquad

- Can do peak height ratio (PHR) calculations to
\qquad determine which allele pair combinations meet expectations.
- The expectations for allele pairs are based on parameters determined in a lab's validation studies. For example we expect allele pairs to be \qquad within a range of equal to 70%.
\qquad

Profiler Plus Calculations

\qquad
\qquad
D3-4 peaks 14, 16, 17, 19

- 16,17 PHR @ 91\% - meets the expectation of allele pairing
- 17,19 PHR @ 40\% - does not meet the expectation of allele pairing
\qquad
\qquad
\qquad
\qquad
\qquad

Mixture Calculations (cont'd)

\qquad

- Expectations for shared peaks are based on the \qquad difference between contributor proportions.
- Estimates of contributor proportions are based on information considered from non-shared \qquad alleles at the same locus and at other loci across
\qquad the entire profile.

Profiler Plus Calculations

\qquad

D21 - 3 peaks (one shared) 29, 30, 31.2 \qquad

- 30,30 is not probable as the peak height is too \qquad low (9% of the smaller of the two stronger peaks and the overall minor contributor proportion is \qquad about 30% or just under 33% which corresponds to a ratio of 1 part to 3 parts) \qquad
\qquad

D21-3 peaks (one shared) 29, 30, 31.2 (continued) \qquad

- Unshared 29,31.2 is possible with a peak height \qquad ratio of 82% however if allele 29 is shared and the expected shared portion (30 @ 455 rfu) is subtracted away the PHR works out to 98%.
- The virtual PHR percentage of 98% for the major in combination with the virtual peak height ratio \qquad of 100% for the minor component supports a
\qquad 29,31.2 major and a 29,30 minor.
\qquad
\qquad
\qquad

Profiler Plus Calculations

\qquad

FGA - 3 peaks (none shared) 20, 21, 22 \qquad

- 22,22 is probable as the peak height is within \qquad minor contributor proportion expectations (33\% of the smaller of the two stronger peaks and the overall minor contributor proportion is about \qquad $30 \%)$.
- 20,21 is probable as the PHR percentage of 71% is within expectations.

CASE EXAMPLE - Sperm Fraction; COfiler

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Add in reference sample genotypes last

\qquad

- Mixture Analysis Worksheet - Profiler Plus + \qquad
- Mixture Analysis Worksheet - COfiler +

A distinct quantitative difference allowing unambiguous deduction of major contributor.

Conclusions

\qquad

- The DNA typing profile obtained from the anal \qquad swab (item\#) is mixed in origin consistent with originating from three individuals. \qquad
- a. The male component is mixed in origin consistent with originating from two individuals. The DNA profile \qquad of the major component matches that of the reference sample from suspect (item \#). The estimated probability of selecting an unrelated individual at \qquad random from the U.S. population with a matching profile is 1 in 620 quadrillion (note; most conservative reported out). \qquad
\qquad

Source attribution example
- Specimen No. \quad reacts as a mixture. Within
a reasonable degree of scientific certainty, is identified as the source of the major/minor DNA profile obtained.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Conclusions (cont'd)

- b. "Victim's boyfriend name" is included as a possible contributor to the male component. Based on the U.S. population, it is estimated that 1 in 8.9 million individuals is a potential contributor to this profile. (note: most conservation estimate reported for IP)
- c. The female component matches the DNA profile from the victim. (Does a calculation need to be reported from victim on an intimate swab? Do you need to compare to the victim's reference?)

Alternative IP example

\qquad

- Based on the loci which include all of the alleles \qquad from <SUSPECT>, the number of people who cannot be excluded as having contributed to this \qquad mixture is approximately:
- 1 in
of the African American population
- 1 in __ of the Caucasian population
- 1 in __ of the Hispanic population
\qquad

Useful wording for the reporting of an incomplete profile.

Exclusion or Inconclusive

\qquad from Specimen No. , it can be used only for exclusionary purposes.

For Example:

\qquad

- Mr "A" can be excluded.
- Inconclusive for Mr "B". (he could not be \qquad excluded and no stat given so inconclusive)

Blood on money experiment

\qquad

- Dilutions of blood on circulated dollar bill
- Swabbing versus cutting
- Transition from major profile to inconclusive on \qquad complex background to blend in with background
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Summary: For all mixture cases

- Prepare a mixture analysis worksheet in table format for all loci and include:
\qquad
- the alleles above threshold (quantitative/match/true allele),
- peaks above detection threshold,
- the corresponding peak heights and
- add the reference genotypes after determining the major and minor contributions
- Have wording example guidelines for conclusions to report matches, inclusions and their corresponding statistics.
- Peer technical review is important in process

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Case \#\#\#\#\#\# Sample Anal SF Date \qquad 5/11/06 Analyst \qquad NAB Pg 52 of 70 Mixture Analysis Worksheet - Profiler Plus

Locus			Allele Call	Base Pair	Peak Height	$\begin{gathered} <150 \\ \text { rfu } \end{gathered}$	Calculations	
D3			$\begin{aligned} & \hline 14 \\ & 16 \\ & 17 \\ & 19 \\ & \hline \end{aligned}$		$\begin{aligned} & 1114 \\ & 3054 \\ & 3329 \\ & 1240 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 14,19 / 16,17 \\ & \hline 3054 / 3329=91 \% \\ & 1114 / 1240=89 \% \\ & 1240 / 3054=40 \% \end{aligned}$	
vWA			$\begin{aligned} & 16 \\ & 17 \\ & 18 \end{aligned}$		$\begin{aligned} & 827 \\ & 3105 \\ & 2767 \end{aligned}$	-	$\begin{aligned} & \frac{\mathbf{1 6 , 1 7} / \mathbf{1 7}, 18}{3105-827}=2278 \\ & 2278 / 2767=82 \% \\ & 827 / 2767=36 \% \end{aligned}$	$\begin{aligned} & \mathbf{1 6 , 1 6 ~ / ~ 1 7 , 1 8} \\ & 2767 / 3105=89 \% \\ & 827 / 2=413.5 \\ & 413.5 / 2767=14 \% \end{aligned}$
FGA			$\begin{aligned} & \hline 20 \\ & 21 \\ & 22 \end{aligned}$		$\begin{aligned} & 2681 \\ & 1911 \\ & 1290 \end{aligned}$	-	$\begin{aligned} & \hline \frac{\mathbf{2 2 , 2 2} / 20,21}{1911 / 2681=71 \%} \\ & 1290 / 2=645 \\ & 645 / 1911=33 \% \end{aligned}$	$\begin{aligned} & \hline \mathbf{2 0 , 2 2 ~ I ~ 2 0 , 2 1} \\ & \hline 2681-1290=1391 \\ & 1391 / 1911=72 \% \\ & 1290 / 1911=67 \% \end{aligned}$
Amelo.			$\begin{aligned} & X \\ & Y \end{aligned}$		$\begin{aligned} & 4770 \\ & 4254 \end{aligned}$	-	$\frac{\mathbf{X}, \mathbf{Y}}{4254 / 4770}=89 \%$	$\begin{aligned} & \frac{\mathbf{X}, \mathbf{X} / \mathbf{X}, \mathbf{Y}}{4770-4254}=516 \\ & 516 / 2=258 \\ & 258 / 4254=6 \% \end{aligned}$
D8			$\begin{aligned} & 10 \\ & 11 \\ & 13 \\ & 14 \end{aligned}$		2798 628 769 2979	-	$\begin{aligned} & \hline \mathbf{1 1 , 1 3} / \mathbf{1 0 , 1 4} \\ & \hline 628 / 769=81 \% \\ & 2798 / 2979=93 \% \\ & 769 / 2798=27 \% \end{aligned}$	
D21			$\begin{aligned} & 29 \\ & 30 \\ & 31.2 \end{aligned}$		$\begin{aligned} & 2800 \\ & 455 \\ & 2321 \end{aligned}$	-	$\begin{aligned} & \mathbf{2 9 , 3 0 ~ / ~ 2 9 , 3 1 . 2 ~} \\ & \frac{2800-455=2345}{2321 / 2345=98 \%} \\ & 455 / 2321=19 \% \end{aligned}$	$\begin{aligned} & \hline \mathbf{3 0 , 3 0} / 29,31.2 \\ & 2321 / 2800=82 \% \\ & 455 / 2=227.5 \\ & 227.5 / 2321=9 \% \end{aligned}$
D18			$\begin{aligned} & 12 \\ & 15 \\ & 16 \\ & 22 \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline 617 \\ 619 \\ 2199 \\ 1880 \\ \hline \end{array}$	-	$\begin{aligned} & \mathbf{1 2 , 1 5 ~ I 1 6 , 2 2} \\ & \hline 617 / 619=99 \% \\ & 1880 / 2199=85 \% \\ & 619 / 1880=32 \% \end{aligned}$	
D5			$\begin{gathered} \hline 7 \\ 10 \\ 11 \\ 13 \end{gathered}$		$\begin{aligned} & 2556 \\ & 544 \\ & 2569 \\ & 770 \end{aligned}$	-	$\begin{aligned} & \frac{10,13 ~ / ~ 7,11}{544 / 770=76 \%} \\ & \text { or 2556/2569= } 99 \% \\ & 770 / 2556=30 \% \end{aligned}$	
D13			$\begin{aligned} & 12 \\ & 13 \end{aligned}$		$\begin{aligned} & 901 \\ & 3482 \end{aligned}$	-	$\frac{\mathbf{1 2 , 1 2 ~ / ~ 1 3 , 1 3}}{901 / 3482=25 \%}$	$\begin{aligned} & \frac{12,13 / 13,13}{3482-901=2581} \\ & 2581 / 2=1290.5 \\ & 901 / 1290.5=69 \% \end{aligned}$
D7			$\begin{aligned} & 10 \\ & 12 \\ & 13 \end{aligned}$		$\begin{gathered} 1749 \\ 315 \\ 1424 \end{gathered}$	-	$\begin{aligned} & \frac{\mathbf{1 0 , 1 2} / \mathbf{1 0 , 1 3}}{1749-315=1434} \\ & 1424 / 1434=99 \% \\ & 315 / 1424=22 \% \end{aligned}$	$\begin{aligned} & \hline \mathbf{1 2 , 1 2 ~ / ~ 1 0 , 1 3} \\ & \hline 1424 / 1749=81 \% \\ & 315 / 2=157.5 \\ & 157.5 / 1424=11 \% \end{aligned}$

Comments:

blue = putative major alleles
black $=$ minor alleles
\qquad

Case_\#\#\#\#\#\# Sample _Anal SF_Date 5/11/06 Analyst_NAB Pg 52 of 70
Mixture Analysis Worksheet - Profiler Plus +

Locus	Friend	Accused	Allele Call	Base Pair	Peak Height	$\begin{gathered} <150 \\ \text { rfu } \\ \hline \end{gathered}$	Calculations	
D3	14 19	$\begin{aligned} & 16 \\ & 17 \end{aligned}$	$\begin{aligned} & 14 \\ & 16 \\ & 17 \\ & 19 \end{aligned}$		$\begin{aligned} & 1114 \\ & 3054 \\ & 3329 \\ & 1240 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \frac{\mathbf{1 4 , 1 9} / \mathbf{1 6}, \mathbf{1 7}}{3054 / 3329=91 \%} \\ & 1114 / 1240=89 \% \\ & 1240 / 3054=40 \% \end{aligned}$	
vWA	$\begin{aligned} & 16 \\ & 17 \end{aligned}$	$\begin{aligned} & 17 \\ & 18 \end{aligned}$	$\begin{aligned} & 16 \\ & 17 \\ & 18 \end{aligned}$		$\begin{aligned} & 827 \\ & 3105 \\ & 2767 \end{aligned}$	-	$\begin{aligned} & \frac{\mathbf{1 6 , 1 7} ~ I ~ 17,18}{3105-827=2278} \\ & 2278 / 2767=82 \% \\ & 827 / 2767=36 \% \end{aligned}$	$\begin{aligned} & 16,16 / 17,18 \\ & 2767 / 3105=89 \% \\ & 827 / 2=413.5 \\ & 413.5 / 2767=14 \% \end{aligned}$
FGA	22	$\begin{aligned} & 20 \\ & 21 \end{aligned}$	$\begin{aligned} & 20 \\ & 21 \\ & 22 \end{aligned}$		$\begin{aligned} & 2681 \\ & 1911 \\ & 1290 \end{aligned}$	-	$\begin{aligned} & \hline \frac{\mathbf{2 2 , 2 2} / 20,21}{1911 / 2681=71 \%} \\ & 1290 / 2=645 \\ & 645 / 1911=33 \% \end{aligned}$	$\begin{aligned} & \hline \mathbf{2 0 , 2 2 ~ I ~ 2 0 , 2 1} \\ & \hline 2681-1290=1391 \\ & 1391 / 1911=72 \% \\ & 1290 / 1911=67 \% \end{aligned}$
Amelo.	$\begin{aligned} & X \\ & Y \end{aligned}$	$\begin{aligned} & X \\ & Y \end{aligned}$	$\begin{aligned} & X \\ & Y \end{aligned}$		$\begin{aligned} & 4770 \\ & 4254 \end{aligned}$	-	$\frac{\mathbf{X}, \mathbf{Y}}{4254 / 4770}=89 \%$	$\begin{aligned} & \frac{\mathbf{X}, \mathbf{X} / \mathbf{X}, \mathbf{Y}}{4770-4254}=516 \\ & 516 / 2=258 \\ & 258 / 4254=6 \% \end{aligned}$
D8	$\begin{aligned} & 11 \\ & 13 \end{aligned}$	10 14	$\begin{aligned} & 10 \\ & 11 \\ & 13 \\ & 14 \end{aligned}$		$\begin{aligned} & 2798 \\ & 628 \\ & 769 \\ & 2979 \end{aligned}$	-	$\begin{aligned} & \frac{\mathbf{1 1 , 1 3} / 10,14}{628 / 769=81 \%} \\ & 2798 / 2979=93 \% \\ & 769 / 2798=27 \% \end{aligned}$	
D21	$\begin{aligned} & 29 \\ & 30 \end{aligned}$	$\begin{aligned} & 29 \\ & 31.2 \end{aligned}$	$\begin{aligned} & 29 \\ & 30 \\ & 31.2 \end{aligned}$		$\begin{aligned} & 2800 \\ & 455 \\ & 2321 \end{aligned}$	-	$\begin{aligned} & \hline \mathbf{2 9 , 3 0} 2800-455=29,31.2 \\ & 2321 / 2345=98 \% \\ & 455 / 2321=19 \% \end{aligned}$	$\begin{aligned} & \hline \frac{\mathbf{3 0}, \mathbf{3 0} / 29,31.2}{2321 / 2800=82 \%} \\ & 455 / 2=227.5 \\ & 227.5 / 2321=9 \% \end{aligned}$
D18	$\begin{aligned} & 12 \\ & 15 \end{aligned}$	$\begin{aligned} & 16 \\ & 22 \end{aligned}$	$\begin{aligned} & 12 \\ & 15 \\ & 16 \\ & 22 \\ & \hline \end{aligned}$		$\begin{aligned} & 617 \\ & 619 \\ & 2199 \\ & 1880 \end{aligned}$	-	$\begin{aligned} & \frac{\mathbf{1 2 , 1 5} / 16,22}{61 / / 619=99 \%} \\ & 1880 / 2199=85 \% \\ & 619 / 1880=32 \% \end{aligned}$	
D5	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	$\begin{aligned} & \hline 7 \\ & 11 \end{aligned}$	$\begin{gathered} 7 \\ 10 \\ 11 \\ 13 \end{gathered}$		$\begin{aligned} & 2556 \\ & 544 \\ & 2569 \\ & 770 \end{aligned}$	-	$\begin{aligned} & \hline \frac{10,13 / 7,11}{544 / 770=76 \%} \\ & \text { or } 2556 / 2569=99 \% \\ & 770 / 2556=30 \% \end{aligned}$	
D13	12	13	$\begin{aligned} & 12 \\ & 13 \end{aligned}$		$\begin{aligned} & 901 \\ & 3482 \end{aligned}$	-	$\frac{\mathbf{1 2 , 1 2 ~ / ~ 1 3 , 1 3}}{901 / 3482=25 \%}$	$\begin{aligned} & \frac{\mathbf{1 2 , 1 3} / 13,13}{3482-901=2581} \\ & 2581 / 2=1290.5 \\ & 901 / 1290.5=69 \% \end{aligned}$
D7	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \\ & 13 \end{aligned}$		$\begin{gathered} 1749 \\ 315 \\ 1424 \end{gathered}$	-	$\begin{aligned} & \frac{\mathbf{1 0 , 1 2} / \mathbf{1 0 , 1 3}}{1749-315=1434} \\ & 1424 / 1434=99 \% \\ & 315 / 1424=22 \% \end{aligned}$	$\begin{aligned} & \hline \mathbf{1 2 , 1 2 ~ / ~ 1 0 , 1 3} \\ & \hline 1424 / 1749=81 \% \\ & 315 / 2=157.5 \\ & 157.5 / 1424=11 \% \end{aligned}$

Comments:

blue = putative major alleles
black $=$ minor alleles
\qquad

Case_\#\#\#\#\#\# Sample _Anal SF_Date 5/11/06 Analyst_NAB Pg 53 of 70 Mixture Analysis Worksheet - COfiler

Locus		Allele Call	Base Pair	Peak Height	$\begin{gathered} <150 \\ \text { rfu } \\ \hline \end{gathered}$	Calculations
D3		$\begin{aligned} & 14 \\ & 16 \\ & 17 \\ & 19 \end{aligned}$		$\begin{gathered} 923 \\ 2805 \\ 3016 \\ 831 \end{gathered}$	-	$\begin{aligned} & \hline \mathbf{1 4 , 1 9 ~ / ~ 1 6 , 1 7} \\ & 2805 / 3016=93 \% \\ & 831 / 923=90 \% \\ & 923 / 2805=32 \% \end{aligned}$
D16		$\begin{aligned} & 9 \\ & 10 \\ & 13 \end{aligned}$		$\begin{aligned} & 1939 \\ & 1280 \\ & 1793 \end{aligned}$	-	$\frac{\mathbf{1 0 , 1 0}}{1793,13}$ $\frac{\mathbf{9 , 9} / 10,13}{128 / 1939=92 \%}$ $\mathbf{1 3 , 1 3 / 9 , 1 0}$ $1280 / 1793=71 \%$ $\frac{1280}{1280 / 1939=66 \%}$ $1280 / 2=640$ $1939 / 2=969.5$ $1793 / 2=896.5$ $640 / 1793=35 \%$ $969.5 / 1280=75 \%$ $896.5 / 1280=70 \%$
Amelo.		$\begin{aligned} & X \\ & Y \end{aligned}$		$\begin{aligned} & 3729 \\ & 3605 \end{aligned}$	-	$\frac{\mathbf{X}, \mathbf{Y}}{3605 / 3729}=96 \%$
TH01		$\begin{gathered} 7 \\ 9 \\ 9.3 \end{gathered}$		$\begin{aligned} & 2020 \\ & 2023 \\ & 1006 \end{aligned}$	-	$\begin{aligned} & \frac{9.3,9.3 ~ / ~ 7,9}{2020 / 2023=99 \%} \\ & 1006 / 2=503 \\ & 503 / 2020=24 \% \end{aligned}$
TPOX		$\begin{aligned} & \hline 8 \\ & 9 \end{aligned}$		$\begin{gathered} 5065 \\ 542 \end{gathered}$	-	
CSF		$\begin{aligned} & 10 \\ & 12 \\ & 13 \end{aligned}$		$\begin{gathered} 1262 \\ 2048 \\ 332 \end{gathered}$	-	$\mathbf{1 2 , 1 3} / \mathbf{1 0 , 1 2}$ $\mathbf{1 3 , 1 3} / \mathbf{1 0 , 1 2}$ $2048-322=1716$ $1262 / 2048=61 \%$ $1262 / 1716=73 \%$ $332 / 2=162$ $332 / 1262=26 \%$ $166 / 1262=13 \%$
D7		$\begin{aligned} & 10 \\ & 12 \\ & 13 \end{aligned}$		$\begin{gathered} 1500 \\ 383 \\ 1330 \end{gathered}$	-	$\mathbf{1 0 , 1 2 ~ / ~ 1 0 , 1 3}$ $\mathbf{1 2 , 1 2 ~ / ~ 1 0 , 1 3}$ $1500-383=1117$ $1330 / 1500=88 \%$ $1117 / 1330=83 \%$ $383 / 2=191.5$ $383 / 1117=34 \%$ $191.5 / 1330=14 \%$

Comments:
blue = putative major alleles
black = minor alleles
\qquad

Case \#\#\#\#\#\# Sample Anal SF Date \qquad 5/11/06 Analyst \qquad NAB Pg 53 of 70 Mixture Analysis Worksheet - COfiler +

Locus	Boyfriend	Susp	Allele Call	Base Pair	Peak Height	<150 rfu	Calculations	

Comments:
blue = putative major alleles
black $=$ minor alleles
\qquad

