Topics in Electroweak and Top quark Physics

Laura Reina

Aspen Winter Conference, February 2006

Outline

- Electroweak (EW) physics
 - $\triangleright\,$ EW precision physics: tensions and predictions.
 - ▷ Hadron colliders: W/Z production, W/Z rapidity distributions, W/Z + jj and $W/Z + b\bar{b}$ production.
- Top quark physics
 - \triangleright m_t : crucial to EW precision fits.
 - $\triangleright t\bar{t}$ cross section: matching Monte Carlos to NLO QCD calculations.
 - \triangleright top quark couplings: single top production, $t\bar{t}h$ production.

with emphasis on the status of theoretical predictions

Precision EW Physics ...

LEP, SLD, and Run I+II of the Tevatron have and are thoroughly testing the Standard Model (SM) of EW interactions (see LEP EWWG web page)

... tests the consistency of the SM and constrains M_H

"old": early Summer 2005 $m_t = 178.0 \pm 4.3 \text{ GeV}$ "new": late Summer 2005 $m_t = 172.7 \pm 2.9 \text{ GeV}$

strong correlation between M_W (sin θ_W^{eff}), m_t and M_H

$$M_W/(\text{GeV}) = 80.409 - 0.507 \left(\frac{\Delta \alpha_h^{(5)}}{0.02767} - 1\right) + 0.542 \left[\left(\frac{m_t}{178 \text{ GeV}}\right)^2 - 1\right] - 0.05719 \ln \left(\frac{M_H}{100 \text{ GeV}}\right) - 0.00898 \ln^2 \left(\frac{M_H}{100 \text{ GeV}}\right)$$

A. Ferroglia, G. Ossola, M. Passera, A. Sirlin, PRD 65 (2002) 113002
 W. Marciano, hep-ph/0411179

The muon g - 2 collaboration PRL 92 (2004) 161802

$$\sin^{2} \theta_{W}(M_{Z})_{\overline{MS}} = 0.23101 + 0.00969 \left(\frac{\Delta \alpha_{h}^{(5)}}{0.02767} - 1\right) - 0.00277 \left[\left(\frac{m_{t}}{178 \,\text{GeV}}\right)^{2} - 1\right] + 0.0004908 \ln \left(\frac{M_{H}}{100 \,\text{GeV}}\right) + 0.0000343 \ln^{2} \left(\frac{M_{H}}{100 \,\text{GeV}}\right)$$

$$\left(\sin\theta_W^{eff}\right) = \sin\theta_W(M_Z)_{\overline{MS}} + 0.00028$$

Low energy measurements of $\sin^2 \theta_W$

J. Erler, M. J. Ramsey-Musolf Prog.Part.Nucl.Phys. 54 (2005) 351

- \longrightarrow Running of $\sin^2 \theta_W$ not unsatisfactory;
- \longrightarrow NuTeV (DIS) almost 3σ deviation still a puzzle.

Precision crucial to disentangle new physics

- \longrightarrow SM main uncertainty: Higgs boson mass.
- \longrightarrow MSSM main uncertainty: unknown masses of SUSY particles.

Experimental uncertainties, estimate

	Present	Tevatron	LHC	\mathbf{LC}	GigaZ
$\delta \sin^2 \theta_W^{eff} (\times 10^{-5})$	14	63	14-20	6	1.3
$\delta(M_W)({ m MeV})$	34	27	10-15	7-10	7
$\delta(m_t)~({ m GeV})$	5.1	2.7	1.0	0.2	0.13
$\delta(M_H)/M_H$ (indirect)	60%	35%	20%	15%	8%

U. Baur, LoopFest IV, August 2005

Intrinsic theoretical uncertainties

 $\longrightarrow \delta M_W \approx 4$ MeV: full $O(\alpha^2)$ corrections computed.

M. Awramik, M. Czakon, A. Freitas, G. Weiglein

 $\longrightarrow \delta \sin^2 \theta_W^{eff} \approx 5 \times 10^{-5}$: full fermionic $O(\alpha^2)$ corrections computed, bosonic $O(\alpha^2)$ in progress.

M. Awramik, M. Czakon, A. Freitas, G. Weiglein

Summary at a glance

Combined theoretical constraints

C. Kolda and H. Murayama, JHEP 0007:035,2000

Light Higgs consistent with low Λ : new physics at the TeV scale.

Discovering a Higgs boson more crucial then ever LHC

Signal significance

10²

10

1

Tevatron

In low mass region:

120

100

 $\int \mathbf{L} \, d\mathbf{t} = 30 \, \mathrm{fb}^{-1}$ (no K-factors)

ATLAS

- $\longrightarrow WH \text{ and } ZH \text{ associated production} \\ \longrightarrow Hb\bar{b} \text{ in MSSM-like models } (y_b = \tan\beta y_b^{SM})$
- \longrightarrow weak boson fusion

140

160

 $\longrightarrow t\bar{t}H$ associated production

 $\begin{array}{l} \mathbf{H} \rightarrow \gamma \gamma \\ \textbf{tt} \mathbf{H} \ (\mathbf{H} \rightarrow \textbf{bb}) \end{array}$

 $\begin{array}{l} H \rightarrow ZZ^{(*)} \rightarrow 41 \\ H \rightarrow WW^{(*)} \rightarrow IvIv \end{array}$

 $qqH \rightarrow qq WW^{(*)}$

Total significance

180

200

 $m_{\rm H} ({\rm GeV/c}^2)$

 $qqH \rightarrow qq \tau \tau$

 \longrightarrow inclusive with $H \rightarrow \gamma \gamma$

Theoretical predictions: overview

QCD predictions for total cross sections to Higgs production processes are under good theoretical control:

Caution:

- \triangleright uncertainties only include μ_R/μ_F dependence
- ▷ uncertainties from PDF's are not included (but should improve)

Of direct interest to the Tevatron

 \triangleright WH and ZH: QCD corrections at NNLO

O. Brien, A. Djouadi, R. Harlander, PLB 579 (2004) 149

▷ $Hb\bar{b}$: QCD corrections at NLO in both 4FNS $(q\bar{q}, gg \rightarrow Hb\bar{b})$ and 5FNS $(bg \rightarrow bH \text{ and } b\bar{b} \rightarrow H)$: very good agreement.

J. Campbell, K. Ellis, F. Maltoni, S. Willenbrock, PRD 67 (2003) 095002

S. Dawson, C. Jackson, L.R., D. Wackeroth, PRD 69 (2004) 074027, PRL 94 (2005) 031802

S. Dittmaier, M. Krämer, M. Spira, PRD 70 (2004) 074010

First measurements already constrain MSSM parameter space

Tevatron/LHC : single W/Z boson production

• QCD corrections to W/Z boson total cross sections known at NNLO

R. Hamberg, W. L. van Nerveen, T. Matsuura, NPB 359 (1991) 343,

W. L. van Neerven and E. B. Zijlstra, NPB 382 (1992) 11

• $W/Z p_T$ distributions include resummed QCD corrections

C. Balazs, J. W. Qiu, C. P. Yuan, PLB 355 (1995) 548

• Rapidity distributions of the Z boson calculated at NNLO

- At the percent level (≈ 1%) EW corrections become important. In particular if:
 - \triangleright QCD corrections are small (ex.: W/Z cross section ratio);
 - ▷ enhanced by large logs:
 - $\longrightarrow \ln(\hat{s}/m_f^2)$ (collinear logs, near W/Z resonance),
 - $\longrightarrow \ln(\hat{s}/M_{W/Z}^2)$ (Sudakov logs, when l^+l^- or $l\nu$ have large invariant mass);
 - \triangleright precision measurement (M_W, M_Z, \ldots) .
 - $O(\alpha)$ corrections to $W\!/Z$ production fully calculated.
 - S. Dittmaier and M. Krämer, PRD 70 (2002) 073007
 - U. Baur, D. Wackeroth, PRD 70 (2004) 073015

MRSTQED2004 \longrightarrow contain QED corrections.

• Tev4LHC EW working group: "tuned comparison" of existing calculations: HORACE,WGRAD/ZGRAD, WINHAC/ZINHAC, RESBOS, PYTHIA+PHOBOS, ...

W/Z production with jets: W/Z + jj and $W/Z + b\bar{b}$

- W/Z + jj and $W/Z + b\bar{b}$ important background to W/Z + H and single top production.
- NLO QCD corrections to W/Z + jj and $W/Z + b\bar{b}$ (in the $m_b \to 0$ limit) known and coded in MCFM (now version 4.2)

J. Campbell, R. K. Ellis, S. Veseli, see mcfm.fnal.gov

• NLO QCD corrections to $Wb\bar{b}$ including full m_b effects soon available

F. Febres-Cordero, L.R, D. Wackeroth Preliminary

Zbb: in preparation

$t\bar{t}$ production: very refined prediction

M. Cacciari, S. Frixione, M. Mangano, P. Nason, JHEP 04 (2004) 68

 \rightarrow NLO QCD corrections to heavy quark production well established

P. Nason, R. K. Ellis, S. Dawson, NPB 303 (1988) 607

W. Beenakker, H. Kujif, W. L. van Nerveen, J. Smith, PRD 40 (1989) 54

 \longrightarrow Resummed soft QCD corrections at NNLO and NLL or NNLL:

R. Bonciani, S. Catani, M. Mangano, P. Nason, NPB 529 (1998) 424

N. Kidonakis and R. Vogt, PRD 68 (2003) 1140014

Single top production: measuring V_{tb}

- \triangleright Direct measurement of V_{tb}
- \triangleright s-channel and t-channel have distinct signatures
- NLO QCD corrections calculated for total cross section and distributions
 - B. W. Harris, E. Laenen, L. Phaf, Z. Sullivan, S. Weinzierl, PRD 66 (2002) 054024 Z. Sullivan, PRD 70 (2004) 114012
 - J. Campbell, R. K. Ellis, F. Tramontano, PRD 70 (2004) 094012

Q.-H. Cao, R. Schwienhorst, C.-P. Yuan, PRD 71 (2005) 054023

TheoryCDFDØs-channel $(0.88 \pm 0.14) \,\mathrm{pb}$ $< 13.6 \,\mathrm{pb}$ $< 6.4 \,\mathrm{pb}$ t-channel $(1.98 \pm 0.30) \,\mathrm{pb}$ $< 10.1 \,\mathrm{pb}$ $< 5.0 \,\mathrm{pb}$

$t\bar{t}H$ production: measuring the top Yukawa coupling

At the LHC : $q\bar{q}, gg \to t\bar{t}H$ with

•
$$M_H \leq 130 \text{ GeV}: H \rightarrow b\bar{b}, \tau\tau$$

• $M_H \ge 130 \text{ GeV}: H \to WW$

M. Dührssen et al., PRD 70 (2004) 113009, hep-ph/0407190; A. Belyaev, L.R., JHEP 0208 (2002) 041 D. Zeppenfeld et al., PRD 62 (2000) 013009 $\delta y_t/y_t \approx 10\text{--}20\%$

At a LC : $\delta y_t / y_t \approx 5\% \ (\sqrt{s} = 800 \text{ GeV})$

NLO QCD corrections fully calculated: th. uncertainty reduced to 15-20%

W. Beenakker, S. Dittmaier, Plümper, M. Spira, P. Zerwas

S. Dawson, C. Jackson, L. Orr, L.R., D. Wackeroth

Summary

- EW precision fits still not conclusive: need prove/disprove the existence of a Higgs boson.
- EW physics (as well as top physics) now played at hadron colliders:
 - \longrightarrow QCD corrections well under control;
 - \longrightarrow Many interesting new measurements (Z-rapidity, single top, ...);
 - \longrightarrow matching of higher order calculations with event generators under construction/testing;
 - \longrightarrow huge statistics coming with the LHC;
 - \longrightarrow EW corrections may become important soon.

Great potential!

• Next stage: the ILC (see Snowmass working group reports).