International Science Forum on Computational Toxicology Research Triangle Park, NC May 21-23, 2007

A quantitative understanding of dynamic cellular processes during detoxification in human hepatocytes

Matthias Reuss

Institute of Biochemical Engineering & Centre Systems Biology University of Stuttgart/Germany

Network Stuttgart

A Systems Biology Approach to Detoxification Processes in Hepatocytes

Network Systems Biology HepatoSys

Research under the Systems of Life – Systems Biology programme will focus on the hepatocyte system

DETOXIFICATION

Holistic analysis, mathematical modelling and simulation of the detoxification system of the human hepatocyte

12 research projects: Universities Stuttgart (IBVT, ITB, ISA), Tübingen (Microarry Facility, Centre of Bioinformatics) Erlangen (Chemoinformatics), Bochum (Proteomics), Dr. Margarete – Bosch Institute Clinical Pharmacology, Stuttgart, Charitee/Humbold-University Berlin, INSILICO biotechnolology, Bayer Technology Service)

Chemoinformatic, Molecular Modeling, Dynamic Modeling of Detoxification,

Microarrays, Proteomics, Metabolomics

Modeling and simulation of signaling, regulatory and metabolic networks

Projectpartners Network Detoxification, Stuttgart 2007 - 2009

Dynamic modeling and simulation of the drug metabolizing P450 network

By placing the entire integrated network, rather then individual CYPs at the centre of dynamic analysis, a systems behaviour may emerge which differs from the reductionistic kinetics of individual enzymes.

ROBUSTNESS/FRAGILITY

STRUCTURAL AND DYNAMIC ROBUSTNESS

"Robustness enables the system to maintain its functionality against external and internal perturbations" (*Kitano, 2004*)

Functionality: Drug detoxification

External perturbation: multitude of substrates (varying concentrations and drugs)

Internal perturbation: different enzyme expression levels; polymorphism, inter-individual variability —>phenotype plasticity

Drug Metabolism: First Line of Defense Against Xenobiotics

External perturbation

Internal perturbation

Pharmacogenetics

Individual variability in the efficacy and toxicity

of drugs due to polymorphisms of genes involved in their disposition and action

Nongenetic Factors and Drug Response

Age, body weight, sex, disease, diet, alcohol, smoking, drugs, hepatic and renal function

Karolisnska, Stockholm

Modeling: Pathway Identification

Substrate Propafenone (PF)

PF: Propafenone DPF: Desalkyl-Propafenone HPF: 5-OH-Propafenone CYP450: Cytochrome P450 monooxygenase

Multireactant isoenzyme system

Dextromethorphan

Propafenone

Quantitative LC-MS/MS Analysis of Drugs and Metabolites

CH

Zanger et al., Clinical Pharmacology, Rober Bosch, Stuttgart

- synthesis of reference compounds and of stable isotopelabeled analogs
- method development and validation for quantification from Hoc various biological sources
- simultaneous quantitative analysis of drugs and metabolites (phase I / II) by LC-MS/MS
- structure determination of unknown metabolites (LC-MSⁿ)

experimental approaches

complementary approach to human liver

primary hepatocytes

liver tissue bank (N=300)

recombinant systems

Experimental work with primary human hepatocytes - logistics

Mathematical Model

Dynamic Balance Equations

 $\frac{dc_j}{dt} = \sum_i v_{i,j} r_{i,j}(t) = f(c(t), p) \quad i = 1..N \quad \text{Enzymes, } j = \text{Metabolite}$

Reaction rates: irreversible MM with multiple competitive inhibitions through alternative substrates

Parameter Identification

Optimization workflow

Parameter Identification

Parameter Identification

Evolutionary Algorithm (JavaEva¹):

Generation of parameter set, (c)hildren from (p)arents, via random process

Parallel optimization with different random numbers (variation of parameters)

¹ Prof.A.Zell, Center of Bioinfomatics, University of Tübingen

Parameter Quality Isoenzyme Model

Total average of relative deviation of parameters82 %Average Fitness143705.3

Parameter Quality Isoenzyme Model

Parameter variation is very high => Indication of Robustness of the system

> Model reduction feasible?

Model Reduction

143705.3 -> 175253.4

Dynamic Analysis: Drug Detoxification

STRUCTURAL ROBUSTNESS

ELEMENTARY FLUX MODES

- Fulfil steady state condition
- Fulfil reversibility properties
- Cannot be decomposed into smaller modes (i.e. modes that involve less enzymes)

MINIMAL CUT SETS (MCS)

A MCS can be considered as a minimal set of events (loss of reactions) which – if these events occur together - leads to system failure, i.e. that the objective reactions cannot operate in a balanced fashion.

Liver must be extremely robust because of the inter-individual isoenzyme variability (internal perturbations) and multitude of subtrates to be tackled by the P450 network (external perturbations)

Stand-alone interpretation (kinetic modeling and simulation) of drug metabolism based on single isoenzyme activity (reductionistic pharmacokinetics) does not describe the system as a whole

OUTLOOK – ROAD MAP FOR FUTURE DIRECTIONS

Atorvastatin (Sortis®, Lipitor®) (AS)

Visualization with Insilico Discovery

Stoichiometric Model of the Hepatocyte

Metabolic Flux Analysis in HepG2

(1) Dynamics of gene regulation of the detoxification system

(Reverse engineering: Unraveling gene-gene interactions from Microarray data)

(2) Quantitative kinetics of drug induced interactions in the nuclear receptor network

- (3) Chemoinformatics modeling molecular modeling: from sequence to function
- (4) High throughput data: microarrays and proteomics

(5) Hierarchical multi scale modeling: Integration of single hepatocyte models with whole body (multi organe) models

Acknowledgements:

Joachim Bucher Tanja Saussele Ulrich Zanger

Klaus Maier Klaus Mauch

Funding:

Federal Ministry of Education and Resarch (BMBF): Funding Initiative: HepatoSys

Bundesministerium für Bildung und Forschung

Network Detoxification

Phase I Module

predictor set

CYP3A4 specific Predictors

Most Prominent Predictors for CYP3A4 – 37

Predictor

Percentage

PXR MAPK3 G6PT CDC14B3 RXR HNF 4 – alpha ERK1/2 MDR1 PRO0786 GST2 OATP2

% = No. of times a given predictor was used for a given target

(p48 protein)

Boolean to Probabilistic Boolean

0.XX – Connection Strength (Probabilities)

Principle of Autonomy

To achieve network autonomy, both of these strengths of connections should be high

The sensitivity of Y from the outside should be small

0.XX – Connection Strength (Probabilities)

Thomas Reichart, ITB, Uni Stuttgart

* from reverse (inverse) engineering to determinsitic modeling

* boolean modeling – probalistic- boolean modeling
 - deterministic modeling

* top-down/bottom-up/middle - out