

$$I(J^{P}) = 0(0^{-})$$

I, *J*, *P* need confirmation. Quantum numbers shown are quark-model predictions.

Mass $m_{B_s^0} = 5366.3 \pm 0.6$ MeV Mean life $\tau = (1.470^{+0.026}_{-0.027}) \times 10^{-12}$ s $c\tau = 441 \ \mu$ m

 $B_s^0 - \overline{B}_s^0$ mixing parameters

B⁰_s

$$\Delta m_{B_s^0} = m_{B_{sH}^0} - m_{B_{sL}^0} = (17.77 \pm 0.12) \times 10^{12} \ \hbar \ \mathrm{s}^{-1}$$
$$= (117.0 \pm 0.8) \times 10^{-10} \ \mathrm{MeV}$$
$$x_s = \Delta m_{B_s^0} / \Gamma_{B_s^0} = 26.1 \pm 0.5$$
$$\chi_s = 0.49927 \pm 0.00003$$

CP violation parameters in B_s^0

 $\begin{aligned} & \mathsf{Re}(\epsilon_{B_s^0}) \ / \ (1 + \big| \epsilon_{B_s^0} \big|^2) = (-0.75 \pm 2.52) \times 10^{-3} \\ & \textit{CP Violation phase } \beta_s \text{ in the } B_s^0 \text{ System} = 0.35^{+0.20}_{-0.24} \end{aligned}$

HTTP://PDG.LBL.GOV

These branching fractions all scale with $B(\overline{b} \rightarrow B_s^0)$, the LEP B_s^0 production fraction. The first four were evaluated using $B(\overline{b} \rightarrow B_s^0) = (10.7 \pm 1.2)\%$ and the rest assume $B(\overline{b} \rightarrow B_s^0) = 12\%$.

The branching fraction $B(B_s^0 \rightarrow D_s^- \ell^+ \nu_\ell \text{ anything})$ is not a pure measurement since the measured product branching fraction $B(\overline{b} \rightarrow B_s^0) \times B(B_s^0 \rightarrow D_s^- \ell^+ \nu_\ell \text{ anything})$ was used to determine $B(\overline{b} \rightarrow B_s^0)$, as described in the note on " $B^0 - \overline{B}^0$ Mixing"

For inclusive branching fractions, e.g., $B \rightarrow D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

B ⁰ DECAY MODES		Fraction (Γ _i /Γ)	Scale factor/ Confidence level	<i>р</i> (MeV/c)
D_c^- anything		(93	±25)%		_
$D_{-}^{-}\ell^{+}\nu_{\ell}$ anything		[a] (7.9	± 2.4) %		_
$D^{-}\pi^{+}$		(3.2	, ± 0.9) × 1	10 ⁻³ S=1.3	2320
$D_{s}^{s}\pi^{+}\pi^{+}\pi^{-}$		(8.4	± 3.3) × 1	10-3	2301
$D_{s}^{(*)+} D_{s}^{(*)-}$		(4.9	$^+$ 2.9 $^-$ 2.5) %	S=1.2	_
$D_{s}^{+}D_{s}^{-}$		(1.1	± 0.4) %		1823
$D_s^{*+} D_s^{-}$		< 12.1	%	CL=90%	1742
$D_{s}^{*+}D_{s}^{*-}$		< 25.7	%	CL=90%	1655
$J/\psi(1S)\phi$		(9.3	± 3.3) × 1	10 ⁻⁴	1587
$J/\psi(1S)\pi^0$		< 1.2	×	10^{-3} CL=90%	1786
$J/\psi(1S)\eta$		< 3.8	×	10^{-3} CL=90%	1733
$\psi(2S)\phi$		(4.8	± 2.2) × 1	10 ⁻⁴	1119
$\pi^+\pi^-$		< 1.7	×	10^{-6} CL=90%	2680
$\pi^0 \pi^0$		< 2.1	×	10^{-4} CL=90%	2680
$\eta \pi^0$		< 1.0	×	10^{-3} CL=90%	2653
$\eta\eta$		< 1.5	×	10^{-3} CL=90%	2627
$\rho^0 \rho^0$		< 3.20	×	10^{-4} CL=90%	2569
ϕho^{0}		< 6.17	×	10^{-4} CL=90%	2526
$\phi \phi$		(1.4	\pm 0.8) \times 1	10 ^{—5}	2482
$\pi^+ K^-$		< 5.6	×	10^{-6} CL=90%	2659
K^+K^-		(3.3	\pm 0.9) $ imes$ 1	10 ^{—5}	2637
$\overline{K}^{*}(892)^{0}\rho^{0}$		< 7.67	×	10^{-4} CL=90%	2550
$\overline{K}^{*}(892)^{0} K^{*}(892)^{0}$		< 1.681	×	10^{-3} CL=90%	2531
$\phi K^* (892)^0$		< 1.013	×	10^{-3} CL=90%	2507
р р		< 5.9	×	10^{-5} CL=90%	2514
$\gamma\gamma$	B1	< 5.3	×	10^{-5} CL=90%	2683
$\phi\gamma$		< 1.2	×	10^{-4} CL=90%	2586

HTTP://PDG.LBL.GOV

Lepton Family number (<i>LF</i>) violating modes or $\Delta B = 1$ weak neutral current (<i>B1</i>) modes									
$\mu^+\mu^-$	B1	<	4.7	imes 10 ⁻⁸	CL=90%	2681			
e ⁺ e ⁻	B1	<	5.4	imes 10 ⁻⁵	CL=90%	2683			
$e^{\pm}\mu^{\mp}$	LF	[b] <	6.1	imes 10 ⁻⁶	CL=90%	2682			
$\phi(1020)\mu^{+}\mu^{-}$	B1	<	3.2	imes 10 ⁻⁶	CL=90%	2582			
$\phi \nu \overline{\nu}$	B1	<	5.4	imes 10 ⁻³	CL=90%	2586			

$$I(J^{P}) = 0(1^{-})$$

I, J, P need confirmation. Quantum numbers shown are quark-model predictions.

> Mass $m = 5412.8 \pm 1.3$ MeV (S = 1.2) $m_{B_s^*} - m_{B_s} = 46.5 \pm 1.2 \text{ MeV}$ (S = 1.1)

B [*] _s DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$B_{s}\gamma$	dominant	-	
B _{s1} (5830) ⁰	$I(J^P) = \frac{1}{2}(1^+)$ I, J, P need confirmation.		
Mass $m=5829.4\pm0.7$	MeV		
$m_{B_{s1}^0}^{} - m_{B^{*+}}^{} = 504.41$	\pm 0.25 MeV		
B _{s1} (5830) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
B*+ K-	dominant	-	
$B_{s2}^{*}(5840)^{0}$	$I(J^P) = \frac{1}{2}(2^+)$ I, J, P need confirmation.		
Mass $m = 5839.7 \pm 0.6$	MeV		
$m_{B_{s2}^{*0}} - m_{B_{s1}^{0}} = 10.5 \pm$	0.6 MeV		
B [*] _{\$2} (5840) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
B^+K^-	dominant	252	

HTTP://PDG.LBL.GOV Page 3

NOTES

- [a] Not a pure measurement. See note at head of B_s^0 Decay Modes.
- [b] The value is for the sum of the charge states or particle/antiparticle states indicated.

HTTP://PDG.LBL.GOV