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Why do we care about ETG modes?

• Ion Thermal barriers w/o
corresponding electron
thermal barrier

• Electron thermal transport
doesn’t always turn off
with ion transport
fi Mechanisms which

transports electrons only:
• Broken flux surfaces
• Paleo-classical transport
fiInstabilities with l ~ re

Ion
Thermal
barrier
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Electron Temperature Gradient (ETG)
Turbulence has l ~ re << ri

• Electron Heat Transport
through ion thermal barriers
– Need

• Isn’t ETG transport too weak?
– (nearly) Isomorphic to ITG

but 60¥ smaller …

Can ce0 >> 1 for ETG???
weak zonal flows Æ strong turbulence?

• Previous simulations:
fi Jenko & Dorland, PRL 89, 225001 (2002)

flux-tube continuum GK-simulation
(nearly) Cyclone base-case-like ETG

 ce0≈13 Æ  ce≈1 m2/s
increases with s,—T …

– Labit & Ottaviani, Phys. Plasmas 10, 126 (2003)
“global” simulations, but  a/ri ~ 1-2 dominated by profile

        variations; model eqs. not full gyro-fluid eqs.
 ce0 >> ci0 (but “small”)

– Li & Kishimoto, Phys. Plasmas 11, 1493 (2004)
slab and flux-tube gyro-fluid simulation

       model eqs. not full gyro-fluid eqs
  ce0 increases with s, —T

fi Lin et al, 2004 IAEA Mtg. (for example)
http://www.cfn.ist.utl.pt/20IAEAConf/presentations/T5/2T/5_H_8_4/Talk_TH_8_4.pdf
global PIC GK simulation
Cyclone base-case-like ETG

 ce0≈ 3 Æ  ce≈0.2 m2/s
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• For ITG, typically ci0 < 1
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Cyclone base-case-like ETG Turbulence

• Plasma operating point
[after Dimits et al, Phys. Plasmas 7, 969 (March, 2000)]

† 

R0

LT

= 6.9              q =1.4

R0

Ln

= 2.2              ˆ s ≡ r
q

dq
dr

= 0.79

Te

Ti

=1.0

r
R0

Ê 

Ë 
Á 

ˆ 

¯ 
˜ = 0               r

R0

Ê 

Ë 
Á 

ˆ 

¯ 
˜ ª 0.18

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  0.1  0.2  0.3  0.4  0.5  0.6

r/R=0.18
 r/R=0.0

Linear growth rate
with (r/R0)=0.18 and without (r/R0)=0

magnetic trapping

(Lin)(J&D)

k^re

g (
L T/v

te
)



5

Why do Jenko & Dorland (ce0≈13) get
different results than Lin et al (ce0≈3)?

• Different operating point???

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  0.1  0.2  0.3  0.4  0.5  0.6

r/R=0.18
 r/R=0.0

Linear growth rate
with (r/R0)=0.18 and without (r/R0)=0

magnetic trapping

k^re

g (
L T/v

te
)



6

Why do Jenko & Dorland (ce0≈13) get
different results than Lin et al (ce0≈3)?

• Different operating point???
• Global vs. flux tube???
• PIC vs. Continuum???

– Same codes get ci0 within ±30%
for Cyclone ITG  benchmark

Cyclone ITG Benchmark
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Why do Jenko & Dorland (ce0≈13) get
different results than Lin et al (ce0≈3)?

• Different operating point???
• Global vs. flux tube???
• PIC vs. Continuum???

– Same codes get ci0 within ±30%
for Cyclone ITG  benchmark

fi Compare both Jenko/Dorland
and Lin et al with PG3EQ
– LLNL/UCLA code

• Flux tube
• PIC

– PG3EQ agreed with GTC, GS2
in Cyclone ITG benchmark

Cyclone ITG Benchmark
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PG3EQ Convergence tests
without magnetic trapping (r/R0=0)

250re¥62.5re; 16 particles/cell
125re¥125re  ;   8 particles/cell
125re¥125re  ;   4 particles/cell
125re¥125re  ;   2 particles/cell
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PG3EQ Convergence tests
without magnetic trapping (r/R0=0)

250re¥62.5re; 16 particles/cell
125re¥125re  ;   8 particles/cell
125re¥125re  ;   4 particles/cell
125re¥125re  ;   2 particles/cell

Jenko/Dorland
result (r/R0=0)
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PG3EQ Convergence tests
with magnetic trapping (r/R0=0.18)

500re¥125re ; 16 particles/cell
500re¥125re  ;   4 particles/cell
500re¥125re  ;   2 particles/cell

250re¥62.5re; 16 particles/cell
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PG3EQ Convergence tests
with magnetic trapping (r/R0=0.18)

500re¥125re ; 16 particles/cell
500re¥125re  ;   4 particles/cell
500re¥125re  ;   2 particles/cell

250re¥62.5re; 16 particles/cell

Jenko/Dorland
result (r/R0=0)
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PG3EQ Convergence tests
with magnetic trapping (r/R0=0.18)

500re¥125re ; 16 particles/cell
500re¥125re  ;   4 particles/cell
500re¥125re  ;   2 particles/cell

250re¥62.5re; 16 particles/cell

*GTC curve after Slide #13 of Z. Lin’s IAEA presentation, which can be found at:
  http://www.cfn.ist.utl.pt/20IAEAConf/presentations/T5/2T/5_H_8_4/Talk_TH_8_4.pdf

Jenko/Dorland
result (r/R0=0)GTC?*
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The mid-plane potential
 (r/R0=0.18; 250re¥62.5 re; 16 particles/cell)
• Starts out looking like we’ve

verified results of Lin et al:
– Characteristic ETG “streamers”
– Cascade to long wave length
– ce0≈3 (at late times)

radius
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The mid-plane potential
 (r/R0=0.18; 250re¥62.5 re; 16 particles/cell)
• Starts out looking like we’ve

verified results of Lin et al:
– Characteristic ETG “streamers”
– Cascade to long wave length
– ce0≈3 (at late times)

• Ends up looking like somebody
disconnected the TV antenna

fi Perhaps we’re seeing discrete
particle noise?

radius
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What’s known about
discrete particle noise in df PIC codes?

• The major source of controversy
between PIC and Continuum
GK-simulation communities

• It’s quantifiable — a literature on
particle discreteness in PIC codes:

– Langdon ‘79 –  Birdsall&Langdon ‘85
– Krommes ‘93 –  Hammett ‘05

fi We can develop objective criteria
to determine when discrete particle
noise is a problem

• Can be a problem for:
– Cyclone base-case-like ETG
– Some Cyclone base-case ITG

(mainly longer simulations)

Cyclone base-case-like ETG
Mid-plane potential
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(mainly longer simulations)

Cyclone base-case-like ETG
Mid-plane potential
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Why Particle Weights Grow in Time
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ª= entropy balance in steady state
 W.W. Lee & W. Tang 88
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Clever d f algorithm to reduce noise:  f = smooth f0 + particles d f 
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f = constant along particle’s trajectory.  But as particle moves to position where local
f0 is different than the f where particle started, weight grows to represent difference.
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Simple Estimate of Noise: Randomly Positioned Particles

Fourier conventions:
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Quasineutrality:     Adiabatic species +  polarization density = “bare” guiding center contribution
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Simple Estimate of Noise: Randomly Positioned Particles (II)
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Noise scales with 1/(Number of particles per smoothing volume)
Vsmooth ~ 150 cells ~ (5.3)3 cells for Dimits’ smoothing parameters
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Quantifying Particle Discreteness (2)
(a partially correlated fluctuation spectrum)

• More detailed calculation following Krommes93 gyrokinetic test-particle 
superposition calculation, including dielectric shielding in kinetic response, 
numerical filtering/interpolation factors,  resonance broadening renormalization: 

• Only difference with simple fully uncorrelated spectrum is factor of 2 at
long wavelengths from Debye shielding by discrete particles:
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In df PIC simulations ·w2Ò and
the discrete particle noise increase in time

• Computing ·fk(t)2Ònoise requires:
– Information about the code

•  SG(k) • S(k)
• G0(k^

2r2) • d||(k)
– Information about the run

• Np • NG

– The time-series ·w2Ò(t)
(which quantifies the “noise”)

• Best to get ·w2Ò(t) from the code
(as in all examples shown here)

• If unavailable, can use the
Lee/Tang Entropy theorem:

† 

w2 (t) ª
2
LT

2 ce(t)dt
0

t
Ú

† 

w2 (t)

(2/LT
2) Ú cedt
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Simulation Verification (1)
The Transverse (to B) Fluctuation Spectrum

Requires:
• From Simulation,

– Fluctuation data in plane ^ to B
– The time-series ·w2Ò(t)
– Numerical details about the field-solve

• A mixed representation, ·ÙfkyÙ
2Òx,z
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Cyclone base-case-like ETG
Mid-plane potential

fi Predicted noise spectrum fits the data
fi This simulation has a noise problem!
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Simulation Verification (1)
The Transverse (to B) Fluctuation Spectrum

Requires:
• From Simulation,

– Fluctuation data in plane ^ to B
– The time-series ·w2Ò(t)
– Numerical details about the field-solve

• A mixed representation, ·ÙfkyÙ
2Òx,z=0

Cyclone base-case-like ETG
Mid-plane potential

fi Predicted noise spectrum fits the data
fi This simulation has a noise problem!† 
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Simulation Verification (2)
The Fluctuation Intensity
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A less computationally intensive
diagnostic

Typical V(H)
shield ~ 150 DxDyDz for

Dimits PIC filtering parameters
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Simulation Verification (3)
The E¥B Energy Density
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Cyclone base-case-like ETG
E¥B EnergyE¥B energy density may be a 

more relevant diagnostic:
• Closely related to transport coefficient

D ≈ ·VExB
2Òtcorr
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Discrete Particle Noise Suppresses ETG
turbulence and associated transport???

• What happened in simulations?
– Burst of ETG turbulence
– Discrete particle noise grows

(as measured by ·w2Ò)
– ETG turbulence goes away

• Nevins at TTF Mtg.:
“Discrete particle noise suppresses
""ETG turbulence”

fi As np increases burst lasts longer, but
disappears at same noise level, ·w2Ò/nP

• Lin at TTF Mtg.:
Decay of ETG turbulence has nothing
to do with discrete particle noise

fi Proof:  Bolton/Lin “noise test"

kyr=0.1

kyr=0.3

kyr=0.2
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The Bolton/Lin “Noise Test”

• Select reference simulation:
– r/R0=0.18
– 250re¥62.5 re

– 16 particles/cell

• Determine ·w2Ò at end of simulation
( ·w2Òfinal =7.8¥104 )

• Restart simulation with:
– Same physics operating point
– Same simulation parameters
– New particle positions
– New particle weights, {wi} chosen by

random number generator such that new
·w2Òinitial proportional to old ·w2Òfinal

fi Only “memory”  in GK simulations
encoded in particle weights/positions

– If noise suppresses of ETG:
• ·w2Òinitial = ·w2Òfinal

– ·f2Ò ≈ constant
–   ce   ≈ constant

• ·w2Òinitial  <  ·w2Òfinal
– Exponential growth of ·f2Ò
– g increases as ·w2Òinitial decreases
– ce starts low, grows with ·f2Ò

– If noise does not suppress ETG:
• No dependence on ·w2Òinitial

• New runs similar to previous run:
– Bust of ETG turbulence
– ce independent of ·w2Òinitial
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The Bolton/Lin “Noise Test”:
Discrete particle noise suppresses ETG transport

·w2Òinitial=   1.0¥·w2Òfinal
·w2Òinitial=   1/2¥·w2Òfinal
·w2Òinitial=   1/4¥·w2Òfinal
·w2Òinitial=   1/8¥·w2Òfinal
·w2Òinitial= 1/32¥·w2Òfinal
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Why does discrete particle noise suppress ETG?
Discrete particle noise fi (computer) particle diffusion

• No velocity scattering
(“partially linearized” simulations)

• E¥B motion leads to diffusion:
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Predicted cnoise ≈ measured ce
for every ·w2Òinitial in “noise” test
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The Bolton/Lin “Noise Test”:
“Noise” suppresses linear growth of ETG modes

• Growth-rate of fastest-growing
mode can be measured after
each restart
– 1/2 slope of Ln(fky

2) vs. t
– Data of sufficient quality to

provide good estimates of gmax

• Clear trend:
– Increasing ·w2Òinitial

fi Decreasing gmax

• gmax≈ 0 for ·w2Òinitial= ·w2Òfinal
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Why does noise suppress growth of ETG modes?
fi  noise-induced particle diffusion

Data from GS2 kinetic solution of linear initial-value problem
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g(Dnoise
) ≈ g(Dnoise=0) – ky

2 Dnoise

Dnoise  ( (�/LT)�vte )

�max (vte/LT)gmax (vte/LT)

Dnoise ((re/LT)revte)
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Discrete particle noise is a problem in some
Cyclone base-case ITG turbulence simulations

EphiEphi

Enoise

Ephi

Enoise

(pg3eq 250x250 rho)
chii 

Ephi

Enoise

(pg3eq 250x250 rho)
chii 

(GTC a/rho=500)
chii 
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Summary:  discrete particle noise
• Computed fluctuation spectrum due to discrete particle noise

– Excellent agreement between computed noise spectrum and simulation
• Proposed five diagnostics for use in quantifying the noise level in

PIC simulations of plasma microturbulence
– The perpendicular fluctuation spectrum (noise vs. signal)
– The fluctuation intensity (noise vs. signal)
– The E¥B energy (noise vs. signal)
– The transport level (cnoise vs. signal)
– Noise decorrelation compared with growth rates (cnoise k^

2 vs. g(ky))
• Quantitative comparisons between simulation data and these diagnostics show

potentially serious issues for PIC simulations of:
– ETG turbulence

(resolution of the Jenko-Dorland vs. Lin ETG controversy)
– ITG turbulence

(may help to explain remaining discrepancies in CYCLONE base-case benchmark)
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Summary:  discrete particle noise
• Computed fluctuation spectrum due to discrete particle noise

– Excellent agreement between computed noise spectrum and simulation
• Proposed three diagnostics for use in quantifying the noise level in

PIC simulations of plasma microturbulence
– The perpendicular fluctuation spectrum (noise vs. signal)
– The fluctuation intensity (noise vs. signal)
– The E¥B energy (noise vs. signal)

• Quantitative comparisons between simulation data and these diagnostics show
potentially serious issues for PIC simulations of:

– ETG turbulence
(resolution of the Jenko-Dorland vs. Lin ETG controversy)

– ITG turbulence
(may help to explain remaining discrepancies in CYCLONE base-case benchmark)

fi Perhaps PIC code-development effort should focus on noise reduction?
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Conclusions
• Simple calculation of spectrum of noise

fluctuations due to random uncorrelated
particles, agrees within a factor of 2 of more
complicated derivation.

• Detailed calculation of noise spectrum
(extending Krommes 93 calculation to include
filters, etc.) agrees very well (no free
parameters) with observed  spectrum at late
times in Dimits’ gyrokinetic ETG simulations
(chosen with parameters similar to Z. Lin’s
simulations), confirming that noise grows to
dominate those ETG results.

•  Renormalized calculation of cnoise also agrees very well with PIC simulations.

•  ETG simulations require many more particles for convergence than ITG.
Motivates search for additional methods of reducing noise (such as the
Vadlamani-Parker weight resetting algorithm).  Have to be careful that the artificial
dissipation introduced by these methods isn’t too big…
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