

UTS PRICE \$ 3.00 XEROX MICROFILM \$.3

WT 20-576

TEST OF THE SPACE-GENERAL NIKE-IROQUOIS MODEL IN THE JPL 20-INCH SUPERSONIC WIND TUNNEL

Maurice J. Argoud

Bain Dayman, Jr.

Bain Dayman, Jr., Chief Aerodynamic Facilities Section

JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA

i.

May 4, 1964

CONTENTS

.

I.	Introduction	l
п.	Model Description	l
ш.	Wind Tunnel and Instrumentation	1
IV.	Test Procedure	2
v.	Data Reduction	2
VI.	Results	3
Non	nenclature	4
Refe	erences	6
Tab	les	7
Figu	ires	
Plot	ts	

TABLES

1.	Average aerodynamic parameters	 •	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	7
2.	Coefficient repeatability	 •	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	7

FIGURES

1. Model installation in the 20-in. supersonic wind tunnel (SWT)

2. Sign conventions

JPL WT 20-576

PLO'	TS
------	----

Î

Plot No.	Run No.	Config	uration	φ (deg)	Mach No <i>.</i>	q (psia)		
1	120	в ₁	F ₂	0	3.0	4 . 0		
	133		F ₃					
	143		F ₄					
	150		F ₅					
▼	103		F ₆	♥				
2	144		F ₄	15.0				
	151		F ₅					
¥	104		F ₆	♥				
3	145		F ₄	22.5				
	152		F ₅					
♥	105		F ₆	♥				
4	146		F ₄	30.0				
	153		F ₅					
♥	106		F ₆	¥				
5	147		F ₄	37.5				
	154		F ₅					
¥	107		F ₆	♥				
6	148		F ₄	45.0				
	155		F ₅					
¥	108		F ₆	V				
7	149		F ₄	60.0				
	156		F ₅	1				
¥	109	¥	F ₆	¥	♥	♥		

I. INTRODUCTION

Wind-tunnel Test 20-576 was a test of the Space-General Corporation (El Monte) <u>Nike-Iroquois</u> model. The purpose of the test was to obtain aerodynamic characteristics and basic data in support of a theoretical investigation of the effects of interactions, between a body-shed vortex system and stabilizing surfaces, in producing induced vehicle rolling moments at higher Mach numbers. The approximate aerodynamic parameters for the test were Mach No. 1.4 to 3.0 and Reynolds No./in. from 0.27 x 10^6 to 0.11 x 10^6 . The test variables and ranges were angle of attack from -4 to +16 deg and angle of roll from 0 to +60 deg.

The model configuration comprised a 29.4-in.-long centerbody with a 20-deg included-angle conical nose and six different afterbodies differing in the planform geometry of the attached stabilizing fins and, in one case, having a slight flare at the rear of the afterbody. Forces and moments were obtained for the complete configuration.

The test^{*} was conducted at the Jet Propulsion Laboratory (JPL) from November 11 through November 15, 1963, with the Space-General Corporation represented by Mr. J.P. Taylor.

II. MODEL DESCRIPTION

The model is shown in Fig. 1. A more detailed description of the model and components is contained in Ref. 1.

III. WIND TUNNEL AND INSTRUMENTATION

Reference 2 describes the construction and operating conditions of the 20-in. supersonic wind tunnel. The wind tunnel has a nominal test-section size of 20 in. square, a Mach range from 1.3 to 5.0, a flexible-plate nozzle, and operates with continuous flow. Table 1 presents representative values of the test-section flow parameters for the Mach numbers at which this test was conducted.

^{*}Symbols used in this Report are defined in the Nomenclature Section.

A six-component, internal, strain-gage balance was used to measure force-and-moment data.

IV. TEST PROCEDURE

Prior to actual test operations, measurements were made to determine the position of the model, the deflection constants, and the balance tares. During the test, data points were obtained at successive values of angle of attack. These data points were plotted vs load, and any data which appeared questionable were checked before the conclusion of the run. At least one data point was checked even if all data appeared correct.

V. DATA REDUCTION

The force-and-moment data were reduced to dimensionless coefficients in coordinates specified by the Space-General Corporation. The coefficients were obtained as follows:

force coefficient =
$$\frac{\text{force}}{q A}$$

moment coefficient =
$$\frac{\text{moment}}{\text{q Ad}}$$

where

q = free-stream dynamic pressure (psi)

A = reference area = 1.327 (in.²)

d = reference length = 1.300 (in.)

and the point about which the moments were measured was 14.393 in. from the model base, on the model centerline.

The chord-force coefficient was corrected to eliminate the base-drag increment due to the differential between base pressure and free-stream static pressure. The coefficients were obtained on a digital computer by a standardized series of formulas as indicated in Ref. 3. The repeatability of the coefficient data is indicated in Table 2.

The coefficients are defined in the Nomenclature, and the coefficient sign conventions are shown in Fig. 2.

VI. RESULTS

The results of this test have been reduced to dimensionless coefficients and are presented in Plot Series 1 a-f through 7 a-f.^{*} No attempt was made in this Report to interpret the results. The aerodynamic measurements obtained at Mach 1.4 and 2.4 are not presented in this Report. Shock-wave reflections from the walls were intersecting the model at these low Mach numbers. These data were no longer representative of free-flight conditions.

^TAlso numbered from 1 through 42 in the lower left-hand corner of the ozalid plot pages.

NOMENCLATURE

Model

- A₁ afterbody section; straight cylindrical section, 1.300 in. diam. and 6.559 in. long
- $\begin{array}{c} B_1 \\ C_1 \ (centerbody), \ and \ A_1 \ (afterbody) \end{array} \right. (nose), \ S_1 \ (spacer), \\ \end{array}$
- C₁ centerbody section; a straight cylindrical section, 1.300 in. diam. and 13.734 in. long; mounting pad for Space-General Corporation 0.75-in. task <u>Mark III</u>; water-cooled balance system is an integral part of C₁ centerbody.
- F₁ fin designation; a 9.32%-thick, blunted wedge section, aspect ratio (on exposed area and exposed span of two panels) of 2.644; span of 3.136 in., root chord of 3.250 in., taper ratio of 0.460, leading edge sweep of 48.7 deg, leading edge diam. to base thickness of 16.5%
- F_2 fin designation; similar to F_1 fin, except leading-edge sweep angle is 38.0 deg.
- F_3 fin designation; similar to F_1 fin, except root chord is 3.900 in., tip chord is 1.794 in., aspect ratio is 2.205.
- F_4 fin designation; similar to F_1 fin, except span is increased to 3.786 in., aspect ratio is 3.192.
- F_5 fin designation; similar to F_1 fin, except span is reduced to 2.486 in.; aspect ratio is 2.099.
- F_6 fin designation; similar to F_1 fin, except used with A_2 (flared) afterbody
- N₁ nose section; a 10-deg semivertex angle cone, blunted to a hemispherical tip, followed by a straight cylindrical section; diam. of hemispherical tip = 0.084 in.; over-all length 6.304 in.; base diam. = 1.300 in.
- S₁ body-spacer section; a straight cylindrical section, 1.300 in. in diam. and 2.600 in. long

NOMENCLATURE (Cont'd)

Data

F

ĺ

CA	axial-force coefficient
CL	rolling-moment coefficient
CMCG	pitching-moment coefficient
CN	normal-force coefficient
CNCG	yawing-moment coefficient
CY	side-force coefficient
M ₀	free-stream Mach number
q	free-stream dynamic pressure (psi)
ALPHA	angle of attack (deg)
ф	angle of roll (deg)

REFERENCES

- 1. Space-General Corporation. <u>Pre-Test Report for the Jet Propulsion</u> Laboratory 21-Inch Hypersonic Wind Tunnel, J. P. Taylor. El Monte, California, Space-General Corporation, Sept. 27, 1963. UNCLASSIFIED
- Jet Propulsion Laboratory, California Institute of Technology. <u>Wind-Tunnel Facilities at the Jet Propulsion Laboratory</u>, Wind-Tunnel Staff. Pasadena, California, JPL, April 18, 1961. (Technical Release No. 34-257) UNCLASSIFIED
- 3. Jet Propulsion Laboratory, California Institute of Technology. <u>Equations</u> for Wind-Tunnel-Force Data Reduction. Pasadena, California, JPL, April 19, 1957. (Internal Memorandum SWT G-T3) UNCLASSIFIED

	Mach No.					
Parameter	3.0					
Static pressure (psia)	0.63					
Stagnation pressure (psia)	23.50					
Dynamic pressure (psia)	4.00					
Reynolds number (per in. x 10 ⁻⁶)	0.27					

Table 1. Average aerodynamic parameters

Table 2. Coefficient repeatability

Mach			Coef	ficient*							
No.	CN	CMCG	СҮ	CNCG	CA	CL					
3.0	0.014	0.045	0.067	0.068	0.023	0.005					
*Based upon the following reference area and length: $A = 1.327$ and $d = 1.300$.											

NOTE:

ARROWS INDICATE POSITIVE DIRECTIONS OF ATTITUDE ANGLES, FORCES, AND MOMENTS

JPL WT 20-576

JPL WT 20-576

5

-

JPL WT 20-576

Ì

JPL WT 20-576

J

ľ

JPL WT 20-576

.

9

JPL WT 20-576

ľ

-

JPL WT 20-576

1

.

JPL WT 20-576

JPL WT 20-576

JPL WT 20-576

JPL WT 20-576

•

Į

JPL WT 20-576

ľ

JPL WT 20-576

•

i

JPL WT 20-576

JPL WT 20-576

Ē

I

JPL WT 20-576

ĺ

JPL WT 20-576

j

ł

Į

JPL WT 20-576

ľ

JPL WT 20-576

JPL WT 20-576

JPL WT 20-576

26

ĺ

ŀ

ļ

JPL WT 20-576

a se an and a second a second

.

JPL WT 20-576

JPL WT 20-576

JPL WT 20-576

j

5

JPL WT 20-576

ļ

JPL WT 20-576

5

•

33

JPL WT 20-576

ş

JPL WT 20-576

ľ

JPL WT 20-576

ł

JPL WT 20-576

I

Í

F

5

JPL WT 20-576

JPL WT 20-576

Į

Į

JPL WT 20-576

HO

Í

Į

. G