# Mercury: the good, the bad, and the export ban

Edward J. Balistreri and Christopher M. Worley

ebalistr@mines.edu

Colorado School of Mines September 2007



# **Bottom-line Contribution**

- Numeric model of US and World Mercury Markets
- Welfare analysis of Export Ban
- Alternative Policy: Direct Purchase and Retire
- Export Ban is inferior (or equivalent) if
  - Social benefits of domestic sequestration greater than about 1¢/100tonnes/household/year
  - (equivalent only if there is no price response)



## Overview

- Background
- Analytical Model
- Computational Model
- Policy Simulation Results
- Conclusion



# Mercury: the good, and the bad

- Mercury is a useful resource
  - Science
  - Industry
- Mercury is a toxic heavy metal
  - Bioaccumulates
  - Global *transboundary* pollutant
  - Special RCRA Laws



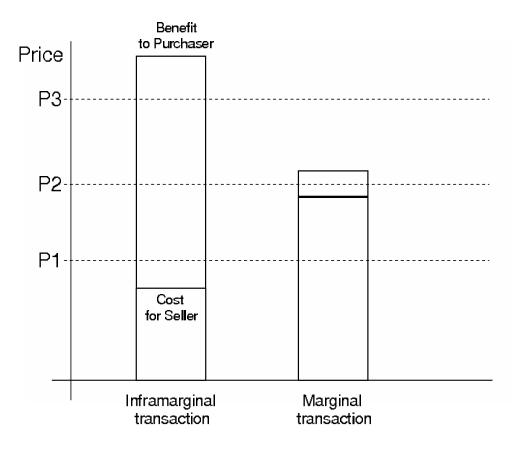
# **Commodity Mercury in the US**

- Mercury demand is on a steady decline in the US
  - High environmental valuations
  - Inexpensive knowledge capital
  - Substitute technologies
- Mercury supply is high

Exports

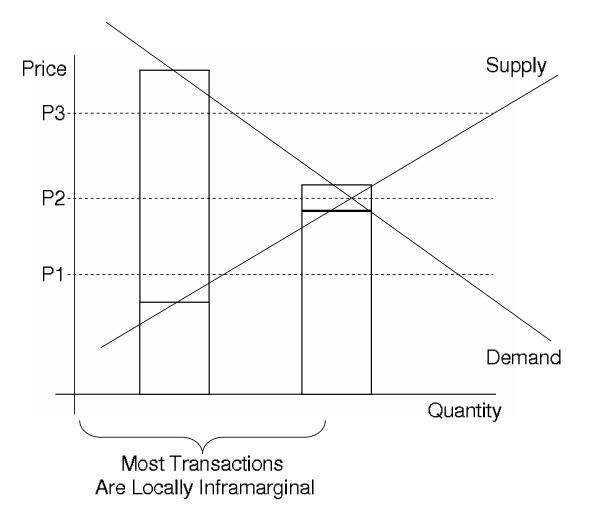
- Byproduct Mercury: 50%
- Chlor-alkali industry: 25% (annualized)
- Recycled and recovered: 25%
- At current prices we are looking at about 200 tonnes of output and about 100 tonnes of consumption




- Foreign Artisanal Miners
- The Public
  - Multilateral Policies
  - Unilateral Policies
- Other Market Players
  - Kyrgystan, China, Artisanal Hg Miners
  - Gold Mining
  - Chlor-alkali, and PVC in China
  - Dental, Batteries, Switches, Instruments, etc.



- Equity versus Efficiency
- Weak Law of Demand
- Weak Law of Supply
- …all else equal
- Normalized Mercury Transaction

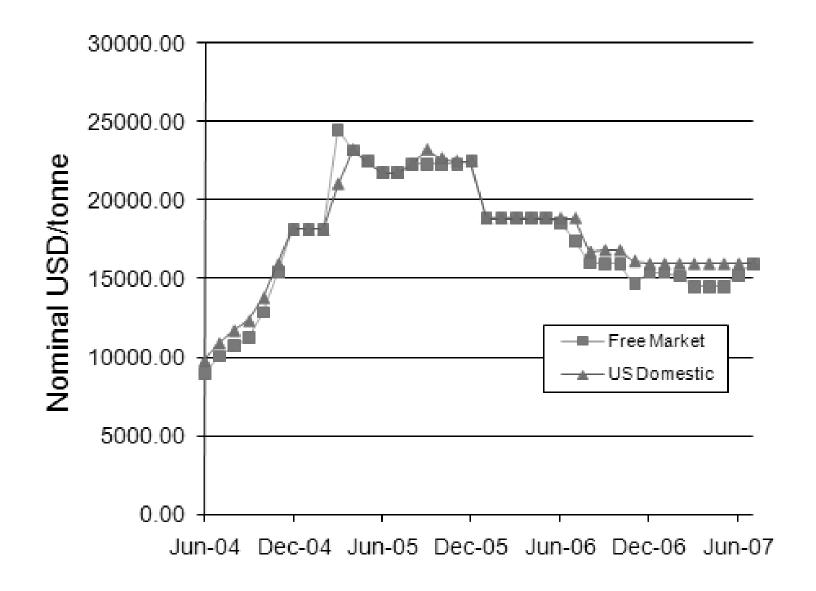



# Marginal vs. Inframarginal Trades



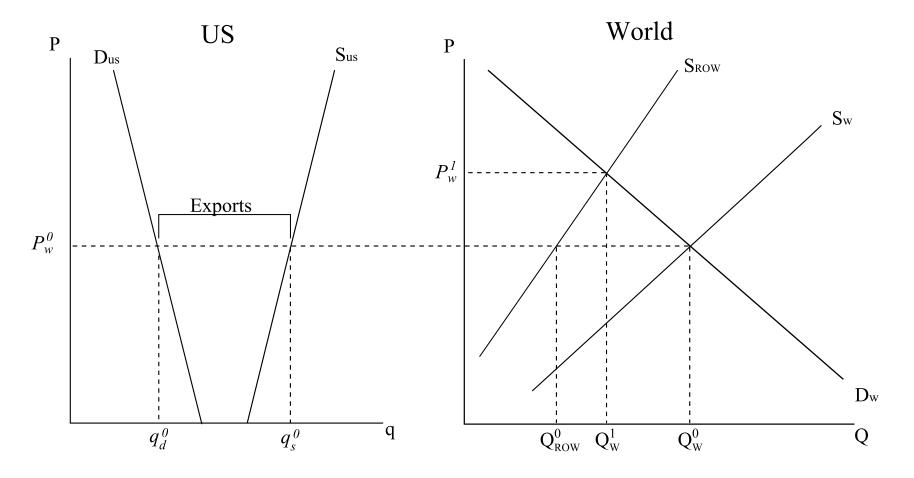


# Marginal vs. Inframarginal Trades



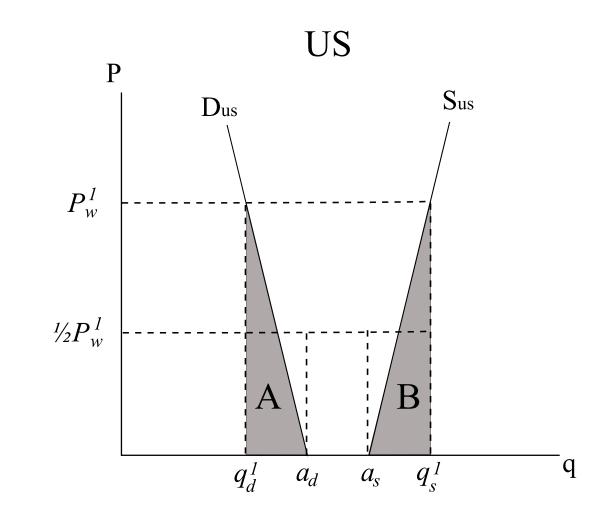



- Do mercury market participants respond to price?
- Is a market (economic) model appropriate?
- Higher or lower value shares do not indicate price response.
- Anecdotes about inframarginal transactions do not indicate a lack of price response.
- The price series for mercury looks just like any other market: shocks happen, prices react, and the market clears.




# **Recent Prices (compiled from Platts)**






# **US and World Mercury Markets**





### **US Market**





### Model

$$q_d = a_d + b_d P_{us}$$
$$q_s = a_s + b_s P_{us}$$
$$r_d = c_d + d_d P_w$$
$$r_s = c_s + d_s P_{,}$$



### Model cont.

US Market Clearance:

$$q_s - q_d - E - G \ge 0 \quad \bot \quad P_{us} \ge 0$$

World Market Clearance:

$$r_s + E - r_d \ge 0 \quad \perp \quad P_w \ge 0$$

Export Activity:

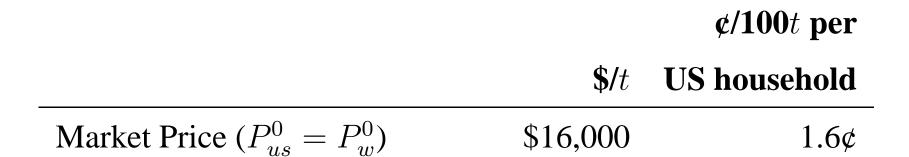
$$P_{us} - P_w \ge 0 \quad \bot \quad E \ge 0$$

Surplus tracking:

$$S - q_s + q_d + E + G \ge 0 \quad \bot \quad S \ge 0.$$

Purchase until the target is hit:

$$P_{us} - P_w^1 \ge 0 \quad \bot \quad G \ge 0.$$




## **Benchmark Reference Quantities**

|         |                         | tonnes (t)<br>of mercury |
|---------|-------------------------|--------------------------|
| US      |                         |                          |
| Demand  | $(q_{d}^{0})$           | 100                      |
| Supply  | $(q_s^0)$               | 200                      |
| Exports | $(q_{s}^{0}-q_{d}^{0})$ | 100                      |
| World   |                         |                          |
| Demand  | $(Q_{d}^{0})$           | 3000                     |
| Supply  | $(Q_s^0)$               | 3000                     |



# **Benchmark Unit-value Assumptions**



#### Annual Marginal Benefit of Domestic Sequestration ( $MB_{US}$ ) \$10,000 1.0¢

Annual Marginal Cost

of Sequestration

\$1,000

0.1¢



#### **Central Values of Key Response Parameters**

|                   |                  | Local      | Implied               |
|-------------------|------------------|------------|-----------------------|
|                   |                  | Elasticity | Intercept             |
| US                |                  |            |                       |
| Demand            | $(\eta_{US})$    | 0.1        | 110t                  |
| Supply            | $(\gamma_{US})$  | 0.1        | 180t                  |
| <b>Rest of Wo</b> | rld              |            |                       |
| Demand            | $(\eta_{ROW})$   | 0.5        | <b>45</b> 00 <i>t</i> |
| Supply            | $(\gamma_{ROW})$ | 0.2        | 2320 <i>t</i>         |



# **US Welfare Analysis (central case)**

|                       | Export Ban    | <b>Direct Purchase</b> |
|-----------------------|---------------|------------------------|
| Account               | (\$thousands) | (\$thousands)          |
| Consumer Surplus      | 1,680         | -77                    |
| Producer Surplus      | -3,040        | 154                    |
| Government            | 0             | -1,701                 |
| Sequestration         | -70           | -101                   |
| <b>US</b> Environment | -300          | 14                     |
| No Exports            | +X            | +X                     |
| Total                 | +X-1,730      | +X-1,711               |



|                | Supply Elasticity ( $\gamma_{ROW}$ ) |     |     |     |
|----------------|--------------------------------------|-----|-----|-----|
|                | 0                                    | 0.2 | 1.0 | 100 |
| Demand         |                                      |     |     |     |
| Elasticity     |                                      |     |     |     |
| $(\eta_{ROW})$ |                                      |     |     |     |
| 0.1            | 0                                    | 66  | 91  | 100 |
| 0.5            | 0                                    | 28  | 66  | 100 |
| 1.0            | 0                                    | 16  | 49  | 99  |



#### **Marginal Social Benefit of**

#### **Sequestration** ( $MB_{US}$ )

| \$ <b>5,</b> 000/ <i>t</i> | \$10,000/ <i>t</i> | \$20,000/ <i>t</i> | \$30,000/ <i>t</i> |
|----------------------------|--------------------|--------------------|--------------------|
|----------------------------|--------------------|--------------------|--------------------|

#### Elasticities

| $(\eta_{US},\gamma_{US})$ |      |    |     |       |
|---------------------------|------|----|-----|-------|
| (0.0, 0.0)                | 0    | 0  | 0   | 0     |
| (0.1, 0.0)                | -46  | 6  | 111 | 216   |
| (0.0, 0.1)                | -92  | 13 | 223 | 432   |
| (0.1, 0.1)                | -138 | 19 | 334 | 648   |
| (0.2, 0.1)                | -183 | 26 | 445 | 864   |
| (0.1, 0.2)                | -230 | 32 | 556 | 1,080 |
| (0.2, 0.2)                | -276 | 39 | 668 | 1,296 |



# Conclusion

- Quantitative framework is useful
- Elasticity estimation
- Environmental valuations
- Mercury problem is highly tractable
  - Sequestration cost is low
  - Eliminating exports is relatively cheap
- Export ban cannot generate incentives to
  - Curtail domestic mercury use
  - Intensify mercury recovery
- ...and will likely do the opposite

