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Science roots: the 60’s

1. 1961: First 1020 eV cosmic ray air shower observed
– John Linsley, Volcano Ranch, Utah

2. 1962: G. Askaryan predicts coherent radio Cherenkov from showers
– His applications? Ultra-high energy cosmic rays & neutrinos

3. 1965: Penzias & Wilson discover the 3K echo of the Big Bang  
– (while looking for bird dung in their radio antenna)

4. 1966: Cosmic ray spectral cutoff at 1019.5 eV predicted
– K. Greisen (US) & Zatsepin & Kuzmin (Russia), independently
– Cosmic ray spectrum must end close to ~1020 eV

“GZK cutoff ” 
process

p, γ + γ(3Κ) pions, e+e-

GZK neutrinos
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(Ultra-)High Energy Physics of Cosmic rays & Neutrinos

Neither origin nor acceleration 
mechanism known for cosmic rays 
above 1019 eV, after 40 years!

A paradox: 
No nearby sources observed 
distant sources excluded due to 
GZK process

Neutrinos at 1017-19 eV required
by standard-model physics* 
through the GZK process--
observing them is crucial to 
resolving the GZK paradox

galactic

Extra-
galactic

10 TeV 100 TeV 1000 TeV30 TeV 300 TeV

Center of mass energy on nucleon targets

* Berezinsky et al. 1971.
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Neutrinos: The only long-range messengers 
at PeV energies and above

Photons lost above 30 TeV:
pair production on IR & 
µwave background 
Charged particles: scattered by 
B-fields or GZK process at all 
energies
BUT: Sources known to 
extend to 109  TeV, maybe 
further if limited only by GZK

=> Study of the highest energy 
processes and particles 
throughout the universe 
requires PeV-ZeV neutrino 
detectors

Region not 
observable
In photons or
Charged particles
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Particle Physics: Energy Frontier & Neutrinos

Well-determined GZK ν spectrum becomes a useful neutrino beam
10-1000 TeV center of momentum weak-interaction particle physics 
study large extra dimensions at scales beyond reach of LHC

ν Lorentz factors of γ=1018-21 assuming 0.01 eV masses

Measured flavor ratios νe:νµ:ντ --deviations from 1:1:1 are interesting!
identify non-standard physics at sources (GRBs: Kashti & Waxman astro-ph/0507599)

Sensitive to sterile ν admixtures & anomalous ν decays (eg. Beacom et al PRL/PRD 2003)

Std. model

Large extra
dimensions

Anchordoqui et al. Astro-ph/0307228
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GZK ν Particle Astrophysics/Cosmology

Cosmic ray sources & maximum acceleration energy
Most of GZK ν flux is from z > 1, sources several Gpc away; every 
GZK neutrino effectively points to a GZK cosmic ray source!

UHECR flux vs. redshift to z = 15-20, eg. WMAP early 
bright phase, re-ionization 

Independent sensitivity to dark energy density
GZK Source function depends on ΩΛ, probes larger range of z than 
other tracers

Exotic (eg. Top-down) sources; GUT-scale decaying 
relics or topological defects
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What is needed for a GZK ν detector?

Standard model GZK ν flux: <1 per km2 per day over 2π sr
Interaction probability per km of water = 0.2%
Derived rate of order 0.5 event per year per cubic km of water or ice

A teraton (1000 km3 sr) target is required!
Problem: how to scale up from current water Cherenkov detectors

One solution: Askaryan effect: coherent radio Cherenkov 
emission

Particle showers in solid dielectrics yield strong radio impulses
Neutrinos can shower in many radio-clear media: air, ice, rock-salt, etc.

Economy of scale for radio (antenna array + receivers) is 
very competitive for hypergiant detectors
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Radio vs. optical Cherenkov detection

RF signal grows quadratically with shower energy, dominates above PeV
Both RF & optical have high SNR at E>PeV, but transmissivity of target 
materials (ice, salt, etc.) is much higher in RF  ==> RF owns HE regime
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Askaryan Effect: SLAC T444 (2000)

simulated 
Shower curve

2GHz data

Sub-ns pulse,
Ep-p~ 200 V/m!

From 
Saltzberg, 
Gorham, Walz
et al  PRL 2001

• Use 3.6 tons of silica sand, brem photons to 
avoid any charge entering target  

==> avoid RF transition radiation
• RF backgrounds carefully monitored

• but signals were much stronger!
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Cherenkov polarization tracking

Emission 100% linearly polarized in plane of shower

Radio Cherenkov: polarization 
measurements are 
straightforward

Two antennas at different parts 
of cone will measure different 
projected plane of E, S

Intersection of these planes 
defines shower track

Reflection from 
side wall

100%
polarized

In proper
plane
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Radio Ice Cherenkov Experiment (RICE)

RICE fiducial V ~100m radius

~6-8km~1km

Veff

• Large >EeV effective volume based on ice 
transparency:

• Latten ~ 1km at 300 MHz
• Best current limits in PeV-EeV energy range

Log (Eshower, PeV) ~ 0.2 Eν

Veff Ω ~ 3 km3 sr @ Eν ~1-2 EeV 

(normalized to 
2π sr acceptance)

~1 EeV 
Monte Carlo

Event vertices

RICE: testbed array of antennas embedded in 100-350m 
of ice above the AMANDA optical Cherenkov neutrino 

telescope at S. Pole--in operation since about 1998
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Goldstone Lunar Ultra-high energy neutrino Experiment 
(GLUE)-- A ZeV example…

Used NASA Deep Space Network 
antennas to search for Askaryan 
pulses from neutrinos interacting 
in lunar regolith

Used coincidence to beat RF 
interference

Askaryan suggested the moon; I. 
Zheleznykh (‘88) showed we 
don’t have to go there with 
antennas

Hankins & Ekers did first 
experiment with Parkes in 1996
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GLUE geometry & effective target volume 

Effective target volume: 30% of 20M km2

lunar surface down to of order 10 m depth
~100,000 cubic km water equivalent!!
Experiment completed in 2003 with 120hrs 
of total livetime (PRL 2004)--no candidates 
yet seen, but threshold was 100 EeV or more

RF pulse spectrum & shape

DSS14: 70m DSS13: 34m
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FORTE: An accidental space-based EHE neutrino detector

Fast On-orbit Recording of Transient Events

Pegasus launch in mid-1997, 800km orbit
Testbed for nuclear verification sensing
US DOE funded, LANL/Sandia ops
Scientific program in lightning & related 

atmospheric discharges

30-300 MHz (VHF) frequency range
~3M impulsive  triggers recorded  (End of 

mission in 2003)

FORTE data  used in 2003 to set first 
limits on UHE neutrinos in the  1022-24 eV 
energy range
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FORTE: Search for neutrino candidate events from 
Greenland ice sheet (N. Lehtinen et al., PRD 2004)

3.8 days total livetime 
over Greenland

Not designed for high 
efficiency

Threshold high: 1022.5 eV

Plots: frequency vs. time
Strong CW signals (earth 
transmitters) = horizonal 
bands
Impulses cross entire band, 
curvature due to 
ionospheric dispersion

1 candidate survives out of 
~2500 initial events 

Require high polarization, 
non-lightning, geolocation 
consistent w/ ice origin
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Antarctic Impulsive Transient Antenna--ANITA

ANITA
Gondola &
Payload

Antenna array

Overall height ~8m

Solar
panels

M
. R

osen, U
niv. of H

aw
aii Instantaneous balloon 

field of view

~320ps
Measured

impulse response

NASA start in 2003, first 
LDB launch in ‘06-07
Ultra-broadband antenna 
array, views large portion of 
ice sheet looking for 
Askaryan impulses

Quad-ridged-horn dual-pol antenna
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ANITA concept

Ice RF 
clarity:
1.2 km(!) 
attenuation
length

Effective “telescope” aperture: 
• ~250 km3 sr @ 1018.5 eV
• ~104 @ km3 sr 1019 eV

Area of Antarctica ~ area of Moon!

~4km deep ice!

Typical balloon
field of regard
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ANITA as a neutrino telescope

Pulse-phase  interferometer (150ps timing) gives intrinsic 
resolution of <1o elevation by ~1o azimuth for arrival 
direction of radio pulse

Neutrino direction constrained to ~<2o in elevation by 
earth absorption, and by ~3-5o in azimuth by polarization 
angle

2o

5o
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ANITA-lite Prototype flight 2004

Piggyback Mission of Opportunity on  the 03-04 
TIGER* flight, completed mid-January 04

ANITA prototypes & off-the-shelf hardware 
used

2 dual-pol. ANITA antennas w/ low-noise amps
4 channels at 1 GHz RF bandwidth, 2 GHz 
sampling

18.4 days flight time, 40% net livetime due to 
slow (4sec per event) GPS time readout

*Trans-Iron Galactic Element Recorder
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TIGER/ANITA-lite launch…

….flight… … & landing!
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ANITA-lite sensitivity calibration

Ground RF pulser used with GPS synch out 
to 200-300 km from McMurdo station

Galactic Center & solar thermal & non-
thermal RF emission provided realtime 
antenna sensitivity, along with onboard noise 
diodes for gain calibration

Aperture estimate by Monte-Carlo using ice 
thickness data & balloon trajectory

ANITA-lite

ANITA
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ANITA Engineering Flight, August 2005

August 29,2005, Ft. Sumner New Mexico
All subsystems represented (two dual-pol. antennas 
only, to limit landing damage)
8 m tall Gondola performed perfectly
No science possible due to EMI (Cannon AFB in 
nearby Clovis), but waveform recording worked well
Full ANITA payload now cleared for Antarctica

Av
er

ag
e 

po
w

er
Azimuth to Clovis, deg.
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Current Limits & projections

RICE limits for 3500 hours livetime
GLUE limits 120 hours livetime
FORTE limits on 3.8 days of livetime

ANITA-lite: 18.4 days of data, net 40% 
livetime with 60% analysis efficiency 
for detection

No candidates survive
Z-burst UHECR model (νν
annihilation -->hadrons) excluded: 

we expect 6-50 events, see none
Highest Toplogical defect models also 
excluded

ANITA projected sensitivity:
νe νµ ντ included, full-mixing 
assumed
1.5-2.5 orders of magnitude gain!

Strongest limits: all radio
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The Z-burst model

Original idea, proposed as a method of  Big-bang relic 
neutrino detection via resonant annihilation (T. Weiler 
PRL 1986):

1023 eV ν + 1.9K ν Z0 produces a dip in a cosmic 
neutrino source spectrum with a location dependent on 
the ν mass , 
IF one has a source of 1023 eV neutrinos!

More recently: Z0  decay into hadron secondaries gives 1020+ eV protons to 
explain any super-GZK particles, again 

IF there is an appropriate source of neutrinos at super-mega-GZK energies
(Many authors including Weiler have explored this revived version)

The Z-burst proposal had the virtue of solving three completely unrelated (and 
very difficult) problems at once: 

relic neutrino detection AND super-GZK cosmic rays AND neutrino mass
==> “ Nobel3 ”  physics…. ?  (No, but Nobel2 still possible!)

Z0

ν

50Mpc



PANIC Santa Fe 2005       P. Gorham 25

Saltdome Shower Array (SalSA) concept

Halite (rock salt):

• Lα(<1GHz) >500 m w.e.

• No known background

• >2π steradians possible

Antenna array

1

2

3

4

Depth 
(km)

Isacksen salt 
dome, Ellef 
Ringnes Island, 
Canada 8 by 
5km 

Salt domes: found throughout the world

Qeshm Island,
Hormuz strait, 
Iran, 7km 
diameter 

5

6

7

Pure Rock salt: density of 2.2 g/cc,  extremely low RF loss
typical: 50-100 km3 water equivalent mass (1g/cc) in top ~3.5km 

Up to 300-600 km3 steradians water equivalent per salt dome
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SalSA Events

K. Reil (SLAC) simulation, 10x10 strings in 2.5 km3 
12 clusters of 12 antennas each per string

SalSA100 E=1018.5eV
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High energy neutrino cross section

Embedded neutrino detectors measure 
model-independent cross section by fitting 
for interaction length in known 
overburden (eg. Alvarez-Muniz et al. PRD 65, 2002)

Requires only an isotropic or otherwise 
known source intensity distribution--as 
expected for EeV cosmogenic neutrinos

SalSA100  gets ∆σ/σ ~ 30% for 100 events

Factor of 2 better than current theory

zenithhorizonnadir

From A. Connolly, D. Saltzberg UCLA
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Existing Neutrino Limits and Future Sensitivity

RICE limits for 3500 hours livetime

GLUE limits 120 hours livetime

ANITA sensitivity, 45 days total:
~5 to 30 GZK neutrinos

IceCube: high energy cascades 
~1.5-3 GZK events in 3 years

Auger: tau neutrino decay events 
~1 GZK event per year?

SalSA sensitivity, 3 yrs live
70-230 GZK neutrino events



PANIC Santa Fe 2005       P. Gorham 29

Summary

Radio Cherenkov detection of cosmogenic neutrinos almost 
certain within 5 years!

Rich potential for particle physics/ particle astrophysics 

Next generation ring imaging Cherenkov detectors (eg. SalSA) 
can begin to do particle physics cosmogenic neutrinos

10-1000 TeV CM weak (or strong?!) interactions
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