Corrections and clarifications for FITS WCS papers I \& II

M. R. Calabretta ${ }^{1}$ and E. W. Greisen ${ }^{2}$
${ }^{1}$ Australia Telescope National Facility, PO Box 76, Epping, NSW 1710, Australia
${ }^{2}$ National Radio Astronomy Observatory, PO Box O, Socorro, NM 87801-0387, USA

12 August 2004
Abstract. One significant correction and several minor corrections and clarifications for the FITS World Coordinate System (WCS) papers have come to light since they were published in December 2002.

1. Corrections for Paper I

Corrections for Paper I (Greisen \& Calabretta 2002):

1. The s subscript on the keywords in Fig. 1 should be a.
2. Table 2 gives the binary table form of the PV i_ma keywords as $i \mathrm{~V} n _m a$, and the pixel list form as TV $n _m a$.
However, the forms $i \mathrm{PV} n _m a$ and TPV $n _m a$ are also permitted if the number of characters occupied by i, n, m, and a do not cause the keyword name to exceed the eight character limit. This also applies for i PS $n _m a$ and TPS $n _m a$. This is consistent with the usage in Tables 9 and 10 of Paper II which give 2PV5_1, 2PV5_1A, and TPV3_1 as examples.

2. Corrections and clarifications for Paper II

Corrections and clarifications for Paper II (Calabretta \& Greisen 2002):

1. In Sect. 2.2, the default value of LONPOLE a must be modified with the addition of ϕ_{0} :

- For $\delta_{0} \geq \theta_{0}$, the default for LONPOLE a is ϕ_{0}.
- For $\delta_{0}<\theta_{0}$, the default for LONPOLE a is $\phi_{0}+180^{\circ}$.

Normally ϕ_{0} is zero unless a non-zero value has been set for it in the $\mathrm{PV} i_{-} 1 a$ card associated with the longitude axis. This default applies for all values of θ_{0}, including $\theta_{0}=90^{\circ}$, although use of non-zero values of ϕ_{0} are discouraged in that case.
2. In Sect. 2.2, for $\delta_{0}=\theta_{0}$ it would have been better if LONPOLE a had defaulted to $\phi_{0}+180^{\circ}$ rather than ϕ_{0}.
For $\delta_{0}=\theta_{0} \neq \pm 90^{\circ}$ the two values for ϕ_{p} (i.e. $\phi_{0}+180^{\circ}$ and ϕ_{0}) have identical effects; the spherical coordinate transformation becomes a simple change in origin of longitude such that the celestial meridian through α_{0} coincides with the native meridian through ϕ_{0}.
However, in the particular case where $\delta_{0}=\theta_{0}= \pm 90^{\circ}$, this condition only applies when LONPOLE a is equal to
$\phi_{0}+180^{\circ}$. For the standard default, ϕ_{0}, the celestial meridian through α_{0} coincides with the native meridian through $\phi_{0}+180^{\circ}$. This is an undesirable exception to what would otherwise be a useful general rule.
Thus, when $\delta_{0}=\theta_{0}= \pm 90^{\circ}$, it may be desirable to set LONPOLE a explicitly to $\phi_{0}+180^{\circ}$ rather than let it default to ϕ_{0}. Such a change in ϕ_{p} by 180° must be compensated by incrementing $\alpha_{0}\left(=\alpha_{\mathrm{p}}\right)$ by 180°.
3. In Sect. 2.3, it should be clarified that ($\phi_{\mathrm{p}}, \theta_{\mathrm{p}}$) and ($\alpha_{\mathrm{p}}, \delta_{\mathrm{p}}$) refer to different points; the common " p " subscript simply indicates that they refer to the "pole", but not the same pole. ($\phi_{\mathrm{p}}, \theta_{\mathrm{p}}$) are the native coordinates of the celestial pole, and ($\alpha_{\mathrm{p}}, \delta_{\mathrm{p}}$) are the celestial coordinates of the native pole, and generally the native and celestial poles do not coincide. On the other hand, $\left(\phi_{0}, \theta_{0}\right)$ and $\left(\alpha_{0}, \delta_{0}\right)$ do refer to the same, fiducial, point, usually the reference point of the projection.
4. In Sect. 2.4, it is stated incorrectly that Eqs. (8), (9), and (10) are derived from Eqs. (6) and (7).

- Eq. (8) is derived from the second of Eqs. (2).
- Eq. (9) is derived from the second of Eqs. (6) (or the second of Eqs. (7) which is identical).
- Eq. (10) is derived from the second of Eqs. (5).

5. In Sect. 2.4, in computing α_{p} for non-polar (ϕ_{0}, θ_{0}), it should be clarified that if $\delta_{0}= \pm 90^{\circ}$ then $\alpha_{\mathrm{p}}=\alpha_{0}$ regardless of the value of δ_{p}.
That is, if $\delta_{0}= \pm 90^{\circ}$ and $\delta_{\mathrm{p}}= \pm 90^{\circ}$, then condition (1) applies, not (2).
6. In Sect. 2.4, in condition (6), if $\delta_{0}=\theta_{0}=0$ and $\phi_{\mathrm{p}}-\phi_{0}=$ $\pm 90^{\circ}$, then δ_{p} is not determined and LATPOLE a specifies it completely.
It is stated that "LATPOLE a has no default value in this case." This should be interpreted to mean that LATPOLE a may legitimately take any value in the range $\left[-90^{\circ},+90^{\circ}\right]$ and WCS header writers are obliged to specify it.
However, values of LATPOLE a outside this range should be interpreted as usual, i.e. values of LATPOLE a greater than $+90^{\circ}$ denote $\delta_{\mathrm{p}}=+90^{\circ}$, and values of LATPOLE a less than -90° denote $\delta_{\mathrm{p}}=-90^{\circ}$.
7. In Sect. 3, the term "IAU 1984" used in Table 2, and also later in Sects. 7.3.1, and 7.3.2, and Tables 5, 7, 9, and 10, is not strictly correct as there was no corresponding resolution of the IAU General Assembly in that year. It refers to the IAU 1976 resolution, with the 1980 nutation theory, which came into force in 1984.0.
8. In Sect. 3.1, a variant of the RADESYS a keyword, RADECSYS, appeared in early drafts of Paper II and was used in some data. It should be recognized as being equivalent to RADESYS for the primary coordinate description.
9. In Sect. 5.6.3, for the QSC projection, the equation for S following Eq. (178) should have $S=+1$ for $\eta=|\xi|$, hence

$$
S=\left\{\begin{array}{l}
+1 \text { if } \xi>|\eta| \text { or } \eta \geq|\xi| \\
-1 \text { otherwise }
\end{array}\right.
$$

In computing the inverse, the equation for ξ should be
$\xi= \pm \sqrt{\frac{1-\zeta^{2}}{1+\omega^{2}}}$,
where the positive or negative solution is chosen so that ξ has the same sign as $x-\phi_{\mathrm{c}}$. Likewise, the equation for η should be
$\eta= \pm \sqrt{\frac{1-\zeta^{2}}{1+\omega^{2}}}$,
where the positive or negative solution is chosen so that η has the same sign as $y-\theta_{\mathrm{c}}$.

3. Timestamps

The original version of this document was dated 2004/01/23.
Erratum 1.2 was added on 2004/04/27.
Erratum 2.7 was added on 2004/08/12.
Erratum 2.8 was added on 2004/06/08.
Erratum 2.9 was added on 2004/06/01.
Acknowledgements. We thank David Berry (U.K. Starlink) for pointing out the significant correction (2.1) for Paper II.

Patrick Wallace (Starlink/HMNAO) pointed out the anomalous reference to IAU 1984 (2.7).

Dan Stahlke (Geophysical Institute, Uni. of Alaska) provided the corrections (2.9) to the QSC equations.

The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO.

The National Radio Astronomy Observatory is a facility of the (U.S.) National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

References

Calabretta, M. R., \& Greisen, E. W. 2002, A\&A, 395, 1077 (Paper II)
Greisen, E. W., \& Calabretta, M. R. 2002, A\&A, 395, 1059 (Paper I)

