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Abstract: 

Saliva provides the principal protective milieu for teeth by modulating oral microbial ecosystems 

and reversing the initial phases of caries development.  Patients with inadequate salivary 

function are at increased risk for dental decay. Therefore, it is likely that therapies that increase 

overall fluid output of these individuals will reverse early carious lesions.  The most common 

causes of salivary dysfunction are medication usage, autoimmune exocrinopathy, Sjögren’s 

syndrome, and damage of salivary parenchyma during therapeutic irradiation.  For patients with 

remaining functional acinar tissue, treatment with the parasypathomimetic secretogogues 

pilocarpine and Cevimeline may provide relief.  However, these medications do not benefit all 

patients.  The possibilities of using gene therapy and tissue engineering to develop treatments for 

those with severe salivary dysfunction are discussed. 
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Saliva provides the principal protective milieu for teeth by modulating oral microbial 

ecosystems, reversing the initial phases of caries development, aiding in the preparation of the 

food bolus, lubricating oral tissues, and supporting other critical functions.1  Patients with 

inadequate salivary function are at increased risk for dental decay, oral and mucosal infections, 

gastrointestinal complications, and a decreased quality of life.2,3   

Patients with significantly decreased salivary output have an increased prevalence of 

dental caries.4,6  Therefore, therapies that increase overall salivary flow in these individuals are 

believed to have the potential of reversing early carious lesions.  Though this has not been 

established in humans, studies with rats demonstrated that restoration of salivary function with 

the cholinergic agonist, pilocarpine, decreased new caries formation in animals whose salivary 

flow was reduced by partial salivary gland removal.7  

 

CAUSES OF SALIVARY DYSFUNCTION 

Many systemic diseases are associated with alterations in salivary output. The most 

pronounced salivary dysfunction occurs in patients taking medications that interfere with 

salivary secretory processes,8,9  those who have received therapeutic irradiation to eradicate head 

and neck malignancie,9-11 and patients with Sjögren’s syndrome (SS; ref. 10-11). Salivary 

hypofunction secondary to medication usage is likely the most common cause of these 

conditions.8,9   

Medications often inhibit cholinergic signaling pathways in salivary tissues and thereby 

decrease the fluid output of the gland.  Interference with other peripheral and central signaling 

pathways can also reduce salivary output and alter salivary composition. While 300 to 400 

medications are believed to interfere with salivary secretion,8,9 the specific inhibitory 
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mechanisms are defined only for small subsets of drugs.  The permanent impact of prolonged 

anticholinergic medication usage on salivary tissues still requires definition.  Often, the only 

treatment for these patients is to change the medication to a less-xerogenic type or decrease the 

medication dose below that leading to oral dryness while maintaining the required therapeutic 

effect.  However, this is not possible in many situations.  Further, prescription use in the United 

States likely will continue to increase.12,13  At present, elders (> 65 years of age) use an average 

of about three prescription and two over-the-counter medications per day,14,15 and salivary flow 

decreases as the numbers of medications a patient takes daily increases.16-17  Given that the 

number of elders is increasing, we can expect an increase in patients with compromised salivary 

function secondary to systemic diseases and their treatments.  The best solution to this problem 

would be the development of more specific pharmaceutical agents that selectively act on target 

tissues (such as vessels) while sparing others, such as salivary glands.  In addition, clinical 

studies are needed to determine if salivary flow rates influence a dental restoration’s length of 

service.    

Salivary hypofunction after gland irradiation is very difficult to treat, as salivary 

parenchyma within the radiation field is damaged permanently.18,19  Head and neck cancer 

affects 30,000 - 40,000 new patients each year, most of whom are treated with therapeutic 

irradiation. These patients are typically middle-aged males and often individuals from 

economically disadvantaged backgrounds.20,21 Radiation treatment of oral and pharyngeal 

malignancies typically includes salivary tissue within the field.  At doses above 50 Gy, patients 

can lose all salivary function if the salivary glands are totally within the radiation field.22 The 

reasons for the extreme radiosensitivity of human salivary tissues remain undefined.18,22   
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Sjögren’s syndrome affects about one million persons in the U.S., currently estimated to 

reflect a 9:1, female: male ratio.23,24 In most patients, the diagnosis is established when the 

patient is between 40 and 50 years of age.  SS is a systemic autoimmune disorder primarily 

affecting the salivary and lacrimal glands in which clusters of infiltrating lymphocytes replace 

the parenchyma of the glands.25  During the last decade, many studies have examined the 

influences of inflammatory proteins on salivary tissue health and function.26-27 Autoantibodies 

were identified in the circulation and saliva of SS patients over forty years ago.28  Passive 

transfer of these autoantibodies can reduce salivary output in the nonobese diabetic (NOD) 

mouse model of SS,29,30 possibly by blocking cholinergic M3 receptors. Other studies in the last 

decade have examined autoantibodies to alpha-fodrin31 and programmed cell death (apoptosis) in 

SS.32-35 Still undefined are the events that trigger initial lymphocytic infiltrates and perpetuate 

the disease. 

 

TREATMENT OF SALIVARY DYSFUNCTION 

Both irradiation and Sjögren’s syndrome lead to the loss of salivary acinar cells, the only 

cell type in the glands capable of fluid movement. These conditions exhibit considerable 

heterogeneity. Some patients experience minimal parenchymal cell loss, while others may have 

glands entirely replaced by connective tissue and inflammatory cells.  Treatment of patients with 

remaining functional acinar tissue is possible with a parasypathomimetic secretogogue.  

The first such drug approved in the U.S. was pilocarpine. Pilocarpine possesses modest,  

non-specific muscarinic and weak β-adrenergic agonist activity. Its effectiveness in increasing 

salivary output was demonstrated in several studies of patients with radiation-induced salivary 

hypofunction and Sjögren’s syndrome (Table 1).36-40  Recently, the FDA approved a second 
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secretogogue, cevimeline.41,42 Cevimeline is a more specific drug, with a preference for 

activation of the primary muscarinic receptor sub-type responsible for fluid flow from salivary 

glands, the so-called M3 receptor. This medication has not been tested to date in post-radiation 

patients.  In general, secretory agents do not address either the underlying inflammatory 

processes of SS or the lack of functional acinar cells after radiation therapy, and will have very 

limited success in those with advanced salivary dysfunction.  Likewise, the interaction of a 

cholinergic agonist with other medications precludes the use of pilocarpine in many patients with 

medication-induced salivary dysfunction. 

Prevention of salivary damage during radiation therapy should be a goal in oncology.  

Radiation damage to salivary glands can be limited by pre-radiation planning (conformal and 

static, multi-segmental intensity modulated technique, IMRT) that spares as much salivary tissue 

as possible from the radiation field.43  Use of the oxygen radical scavenger amifostine during 

radiation treatment may decrease damage to glands.44 Surgically repositioning of submandibular 

salivary glands to the submental space before radiation has been used to maintain gland 

function.45   

Several anti-inflammatory medications have been tested for the treatment of Sjögren’s 

syndrome (Table 2),46-52 but only interferon alpha and prednisolone irrigation increased salivary 

output.51,52  One reason for this generalized treatment failure is that the doses of medications 

used in most trials were anti-inflammatory, and not immunosuppressive. The increased risk of 

serious side effects have discouraged investigators and patients from testing more potent 

regimens of drugs such as prednisone, cylcosporine and azathioprine. However, new anti-

inflammatory and immune-mediating agents are continually being tested as treatments for 

Sjögren’s syndrome.  
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FUTURE TREATMENTS 

There is currently no conventional therapy to enhance salivary secretion for patients with 

extensive gland damage. This circumstance provided the impetus approximately 10 years ago for 

the application of gene transfer technology to repair irradiation- or autoimmune-damaged 

salivary glands. The initial goal of these studies was to re-engineer the function of the surviving 

non-fluid secreting ductal cells in damaged glands to a secretory phenotype.  

The first peer-reviewed publication on gene transfer to salivary glands was published in 

1994.53  Since that report, several laboratories have transferred several different genes 

successfully to salivary glands.54 Most of these studies have utilized viral vectors, particularly 

adenoviral vectors, to mediate gene transfer. Viral vectors typically are extremely efficient at 

transferring genes, but can pose a safety risk and stimulate potent immune responses. An 

alternative means of gene transfer is to use non-viral methods. Perhaps the most successful form 

of non-viral gene transfer to salivary glands involves the use of cationic liposomes.55 While 

much less efficient than viral vectors, liposomes pose relatively little safety risk.  Current 

research is focusing on ways to optimize this method of gene transfer in salivary glands.  

In 1997, a study reported by Delporte et al.,56 described the “correction” of irradiation-

induced salivary hypofunction in rats through transfer of the cDNA encoding aquaporin 1, a 

mammalian water channel (permeability pathway). Gene transfer was accomplished using a 

replication-deficient, first generation, recombinant adenovirus. Irradiated rats administered a 

control adenovirus exhibited salivary flow rates approximately 65 percent lower than sham-

irradiated animals. Conversely, when animals were administered the aquaporin 1-encoding 

adenovirus four months after irradiation, salivary flow rates determined three days post-
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administration were statistically the same as control levels. The studies were continued in 

primates57 and were not as effective as the Delporte et al. rat study. Because of the small number 

of primates used (five), the reasons for the minimal success are not entirely clear and may have 

been technical. A larger study is now being conducted in pigs that will eventually lead to a 

clinical trial in humans.  

Thus, the specific value of aquaporin 1 gene transfer for irradiated salivary glands must 

be considered as hypothetical, and is not ready for clinical testing in humans. It is not known 

whether the simple insertion of a water channel into surviving ductal cells will correct glandular 

hypofunction. However, gene transfer without question can be readily accomplished in vivo in 

salivary glands and is potentially of considerable clinical value to enhance salivary secretions.  

Gene transfer can also be utilized to augment salivary secretions by transferring genes 

that encode secretory proteins into salivary glands.  The proteins are subsequently secreted in an 

exocrine manner. This was successfully accomplished in animal studies,58 with the transfer of the 

human histatin 3 cDNA to rat submandibular glands. Histatin 3, which normally is not secreted 

in rodent saliva, was secreted at high levels (up to 1 mg/ml) after gene transfer. Another potential 

clinical use of gene transfer to salivary glands is immunization via  DNA vaccination. Kawabata 

et al59 showed that delivery of the cDNA for the P. gingivalis fimbrial protein into murine 

salivary glands led to the production of secretory immunoglobulin A specific for this microbial 

protein.  This approach could be used to immunize humans against other oral microbes, such as 

mutans streptococcus.  Gene transfer can also be used to deliver anti-inflammatory proteins, such 

as Interleukin 10, to salivary glands.  This may have potential in the treatment of Sjögren’s 

syndrome.60 
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Gene transfer to repair damaged glands can only be an option if epithelial tissue survives 

either the irradiation or autoimmune damage. In the absence of any parenchymal cells, when a  

gland is fully replaced by fibrotic tissue, gene transfer cannot lead to an enhancement of saliva 

production since no system exists to produce and transport fluid into the mouth. Recently, to 

address this circumstance, we began initial studies directed at the development of an artificial 

salivary gland using well-established principles of tissue engineering coupled with genetic 

engineering.61   

The prototype design includes a biodegradable substratum shaped as a blind end tube 

(i.e., like a test tube), coated with a layer of purified extracellular matrix proteins involved in 

cellular organization, followed by a monolayer lining of polarized epithelial cells capable of 

unidirectional fluid secretion.62 Initial feasibility studies have been reported.63 Although 

considerably more work is required, based on the success of other groups with developing 

functional, complex fluid secreting bioartificial organs, notably bladder,64 it is reasonable to 

expect that an artificial salivary gland suitable for clinical testing can be achieved in 

approximately 10 years. The most immediate therapy in this area may be the use of autologous 

salivary tissues harvested from the individual, expanded ex vivo, and then re-implanted in an 

appropriate matrix to induce regrowth and repair.  For example, tissue could be harvested prior 

to a course of head and neck radiotherapy, and placed back into an individual following radiation 

and a healing period. 

We are presently experiencing a time of unparalleled biomedical scientific progress. The 

human genome has been sequenced, and functions are being identified for these newly 

discovered genes.  The challenge will be managing the great volume of information to make 

meaningful interpretations in real time that apply to therapy. For example, current European 
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studies are examining the genetics of SS by studying the presence of SS autoantibodies and 

different HLA alleles.65,66  Understanding the genetic basis of Sjögren’s syndrome should lead to 

earlier and more accurate diagnosis of this condition.  Major progress in cellular, developmental 

and molecular biology also will result in treatments of oral biological problems. Enhancing 

saliva will be but one of many such examples. 
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Table 1. Randomized, placebo-controlled trials evaluating pilocarpine treatment 
 
 
Author    Design Patient

diagnosis 
Number 
(n) 

Dose  Effect on salivary 
Flow (statistically) 

Comments 

Fox et al.(36) Placebo 1 
month, 
pilocarpine 5 
months 

Post-radiation (PR) 
Sjögren’s (SS) 
Idiopathic 
xerostomia (IX) 

PR = 12 
SS =  21 
IX = 6 

5 mg, tid, 
5 months 

↑ unstimulated parotid 
and submandibular 
flows 

 

Johnson et al. 
(37) 

Placebo vs 5 or 
10 mg 
pilocarpine 

PR  207 5 or 10 mg, 
tid 12 weeks 

↑ unstimulated whole 
salivary flow rates 

Increased 
incidence of side 
effects with 10 
mg dose 

Leveque et al. 
(38) 

Placebo vs fixed 
dose or dose 
titration 

PR 162 2.5 mg, 4 
weeks; 5.0 
mg, 4 weeks; 
10 mg, 4 
weeks 

↑ unstimulated whole 
and parotid salivary 
flow rates 

Best results with 
continuous 
treatment > 8 
weeks at doses > 
2.5 mg tid 

Rieke et al. (39) Placebo vs fixed 
dose or dose 
titration  

PR 369 2.5 mg, 4 
weeks; 5.0 
mg, 4 weeks; 
10 mg, 4 
weeks 

↑ unstimulated whole 
salivary flow rates 

Best results with 
continuous 
treatment > 8 
weeks at doses > 
2.5 mg tid 

Vivino et al. 
(40) 

Placebo vs 2.5 or 
5.0 mg 
pilocarpine 

SS 373 2.5 or 5.0 mg 
qid, 3 months 

↑ unstimulated whole 
salivary flows 
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Table 2. Salivary flow response of patients with Sjögren’s syndrome to treatment 
with immune modulating agents (controlled trials) 

 
 
 
Treatment Design Number (n) Dose  Effect on salivary 

Flow (statistically) 
Comments 

Cyclosporin A 
(46) 

Placebo vs active 
drug 

10 each group 5 mg/kg body 
weight, 6 months 

No change  

Nandrolone 
decanoate (47) 

Placebo vs active 
drug 

10 each group 100 mg biweekly, 6 
months 

No change  

Hydroxy- 
Chloroquine (48) 

2 yr, cross-over 
trial (all had drug 
and placebo) 

19 400 mg/day, 12 
months 

No change  

Piroxicam or 
Prednisone (49) 

Placebo vs active 
drug 

8 each group 30 mg qod 
(prednisone) or 20 
mg qd (piroxicam) 
for 6 months 

No change  

Azathioprine 
(50) 

Placebo vs active 
drug 

13 azathioprine 
12 placebo 

1 mg/kg body 
weight 

No change 6 patients, all taking 
azathioprine, withdrew 2° to 
side effects 

Prednisolone 
irrigation (51) 

Saline irrigation 
followed by 
active treatment 

28 2 mg / parotid 
gland, 1x / week for 
3 weeks 

↑ stimulated whole 
salivary flow 

Saline Tx for 8 weeks, then 
prednisolone Tx 

Interferon alpha 
lozenge (52) 

Placebo vs four 
doses of 
interferon alpha 

Placebo = 22; 
150 IU* qd = 21 
150 IU tid = 22 
450 IU qd = 23 
450 tid = 21 

150 IU qd or  
150 IU tid or 
450 IU qd or 
450 tid  
Tx  for 12 weeks 

↑ stimulated whole 
salivary flow only in 
the 150 IU tid group 

 

 
* IU = International Units 
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