
Mathematical Programming manuscript No.
(will be inserted by the editor)

Robert D. Carr · Harvey J. Greenberg ·
William E. Hart · Goran Konjevod ·
Erik Lauer · Henry Lin · Tod
Morrison · Cynthia A. Phillips

Robust Optimization of Contaminant
Sensor Placement for Community Water
Systems
the date of receipt and acceptance should be inserted later

Abstract We present a series of related robust optimization models for plac-
ing sensors in municipal water networks to detect contaminants that are ma-

Robert D. Carr
Discrete Algorithms and Math Department
Sandia National Laboratories
E-mail: rdcarr@sandia.gov

Harvey J. Greenberg
Mathematics Department
University of Colorado at Denver
E-mail: Harvey.Greenberg@cudenver.edu

William E. Hart
Discrete Algorithms and Math Department
Sandia National Laboratories
E-mail: wehart@sandia.gov

Goran Konjevod
Computer Science Department
Arizona State University
E-mail: goran@asu.edu

Erik Lauer
Electrical and Computer Engineering Department
University of New Mexico
E-mail: elauer@sandia.gov

Henry Lin
University of California at Berkeley
E-mail: henrylin@eecs.berkeley.edu

Tod Morrison
Mathematics Department
University of Colorado at Denver
E-mail: tmorriso@math.cudenver.edu

Cynthia A. Phillips
Discrete Algorithms and Math Department Sandia National Laboratories
E-mail: caphill@sandia.gov

liciously or accidentally injected. We formulate sensor placement problems as
mixed-integer programs, for which the objective coefficients are not known
with certainty. We consider a restricted absolute robustness criteria that is
motivated by natural restrictions on the uncertain data, and we define three
robust optimization models that differ in how the coefficients in the objective
vary. Under one set of assumptions there exists a sensor placement that is
optimal for all admissible realizations of the coefficients. Under other assump-
tions, we can apply sorting to solve each worst-case realization efficiently, or
we can apply duality to integrate the worst-case outcome and have one in-
teger program. The most difficult case is where the objective parameters are
bilinear, and we prove its complexity is NP-hard even under simplifying as-
sumptions. We consider a relaxation that provides an approximation, giving
an overall guarantee of near-optimality when used with branch-and-bound
search. We present preliminary computational experiments that illustrate
the computational complexity of solving these robust formulations on sensor
placement applications.

1 Introduction

Combinatorial optimization techniques need to address modeling and data
uncertainties in many applications. As early as the 1950s, Dantzig [7] intro-
duced stochastic programming to deal with aleatory uncertainty, which de-
scribes the inherent variation associated with the system being modeled [10,
16,17].

More recently, researchers have developed robust optimization methods [12]
to deal with epistemic uncertainty, which describes our lack of knowledge
about information in our model [10,16,17]. For example, a common assump-
tion is that the coefficients in the objective function of the problem are uncer-
tain in the sense that they each can assume any value within a finite interval.
Interval data occurs often in practice [8,12], and when quantitative param-
eters have a subjective nature, interval values can be used interactively to
provide more intuition about the model.

Robust optimization methods generally seek a solution that minimizes
some measure of worst performance with respect to the uncertainty in the
data. Commonly studied criteria for robust optimization are absolute robust-
ness (or minimax), and robust deviation (or minimax regret). Yaman, Kara-
son and Pinar [23] survey recent research for these methods and observe that
many absolute robust formulations of problems with interval uncertainties
can be solved with little more difficulty than the deterministic case. Bert-
simas and Sim [5,6] adopt the interval model of uncertainty and consider
a restricted version of the absolute robustness criterion. This model of ro-
bustness limits the conservativeness of the robust solution by arguing that
it is quite unlikely that all data elements will assume their worst possible
values simultaneously; both the absolute robustness and robust deviation
criteria may find solutions that have this property. Furthermore, solving a 0-
1 mixed-integer linear program (MILP) under this model is no more difficult
than solving the original problem.

In this paper we consider a version of the absolute robustness criterion
that is naturally restricted by properties of the uncertain data. Specifically,
we consider the case where the uncertain coefficients sum to a constant
value. This restricted absolute robustness criterion is motivated by our re-
cent work with MILP formulations for sensor placement in water distribution
networks [4,3,21]. These MILPs rely on information like attack probabilities
and water consumption statistics that are difficult to assess in detail, but
for which we have good aggregate estimates. For example, water utilities
have little information about the water consumption within a given house-
hold at a given hour, but they have accurate information about total water
consumption within the entire water distribution network.

We analyze three cases of this restricted absolute robustness criterion that
are motivated by this water security application:

– unweighted uncertainty: the objective has the form
∑

ij αixij , for un-
certain coefficients αi;

– linearly weighted uncertainty: the objective has the form
∑

ij αipjxij ,
for uncertain coefficients αi (pj known with certainty); and,

– bilinearly weighted uncertainty: the objective has the form
∑

ij αiδjxij ,
for uncertain coefficients αi and δj .

We argue that the constant-sum constraints on the uncertain parameters
make the solution to these problems more realistic than formulations with
a simple absolute robustness criterion. Furthermore, these problem formula-
tions do not require a user-defined parameter to restrict the data uncertain-
ties, so the robustness trade-off in this problem is more intrinsic than the
trade-offs considered in the restricted absolute robustness models developed
by Bertsimas and Sim [5,6].

The rest of this paper is organized as follows. Section 2 describes and
motivates the three robust MILP formulations. The subsequent three sections
analyze these models and present some preliminary computational experience
using them. We conclude with a discussion of avenues for further research.
The mathematical programming terms are generally defined here as needed,
but one can consult the Mathematical Programming Glossary [9].

2 Motivation for Robust MILP Models

Recent terrorist attacks have heightened concerns about whether commu-
nity water systems are sufficiently well protected to ensure a safe and reli-
able supply of drinking water in the United States and around the world.
Consequently, there is growing interest in the use of contaminant sensors
to provide ongoing monitoring of water quality. A good sensor placement
maximizes the information available for contamination control and remedi-
ation across a wide range of possible contamination scenarios, so that the
fewest users consume contaminated water. A variety of MILP formulations
have been developed to identify good sensor placement configurations [4,3,
14,21]. Berry et al. [4,3] have recently solved moderately large MILP models
of sensor-placement problems.

We model an attack as the release of a large volume of harmful contami-
nant at a single junction in the network. For any particular attack, we assume
that all points downstream of the release point can be contaminated. Let R
be the set of pairs of junctions (i, j) such that junction j is downstream of
junction i.1 The primary decision variables for optimization are where to
place each of a given number of sensors. Secondary binary decision variables
are xij , for (i, j) ∈ R, where xij = 1 if a contaminant injected at junction
i can reach junction j without passing a sensor. (As will be evident, these
secondary variables are completely determined by the sensor placements, but
they appear as decision variables from a computational view.) Let X denote
the set of feasible 0-1 x-values.

Consider the following parameter vectors over the nodes: (1) αi is the
probability of an attack at junction i, and (2) δi is the number of people
who consume water at junction i. Note that α is not a probability in the
classical sense and is sometimes called an attack weight. It is estimated from
expert judgement about the vulnerabilities in the network. We estimate δ
from census data. If the node i represents a contracted sub-network, then
δi is the sum of the estimated population numbers for all nodes in the sub-
network. We assume that all people at a contaminated node are potentially
exposed.

The following two problems illustrate the data uncertainties that arise in
these applications:

1. Minimize the expected extent of network contamination, as defined by
the number of pipe junctions that become contaminated

NC : min
x∈X

∑
(i,j)∈R

αixij ,

2. Minimize the expected population exposed

PE : min
x∈X

∑
(i,j)∈R

αiδjxij .

In practice, we do not know the values of α and δ. Although water utilities can
accurately estimate the total population served by their water distribution
network, most utilities do not currently maintain detailed statistics about the
fraction of the population that is consuming water at each junction. Similarly,
risk assessment methodologies provide a coarse assessment of attack weights.

Let α̂ and δ̂ denote specified values of α and δ, respectively. These are
sometimes called the central values (viz., most likely values, or best esti-
mates). The central MILP is thus: min

x∈X

∑
(i,j)∈R α̂iδ̂jxij . As we let α and δ

deviate from their central values, their possible values are limited by constant-
sum constraints,

∑
i αi =

∑
i α̂i = 1 and

∑
j δj =

∑
j δ̂j , respectively.

In the next two sections, we consider robust formulations for an absolute
robustness criterion that is restricted in this sense. For objectives like NC,

1 To simplify our presentation, we assume a stable flow pattern for water in this
paper. In particular, the models that we describe do not explicitly account for
temporal effects. Berry et al. [4,3] describe more detailed IP models.

we show that the solution to a specific class of restricted absolute robustness
problems is exactly the solution to the central MILP. More complex objec-
tives, like PE, contain terms with products of uncertain parameters (αiδj).
The PE model is less complex if population values are presumed known,
which is what we consider in Section 3.

We use the following notation in the next sections to define the domain
of the robust optimization problems:

B(ĉ, L, U) = {c : L ≤ c ≤ U,
∑

k ck =
∑

k ĉk} ,

where we suppose L ≤ ĉ ≤ U . The set B(ĉ, L, U) defines a multidimensional
interval of uncertainty about a central value, ĉ, where c can be α or δ.

3 Linearly Weighted Uncertainty

Consider the PE problem with known population values at the nodes. The
following robust optimization formulation applies our restricted absolute ro-
bustness criteria:

min
x∈X

max
α∈B(α̂, α, α)

∑
(i,j)∈R

αiδjxij , (1)

where δ is presumed known. Since each uncertain term is weighted by a
constant value, we say that this absolute robustness criteria uses linearly
weighted uncertainty.

We can apply duality to reformulate problem (1) as follows:

min π + µα− λα : x ∈ X

λ, µ ≥ 0

π + µi − λi =
∑

j∈J(i)

δjxij for all i,

where J(i) = {j : (i, j) ∈ R}. The dual variable π is associated with the
primal constant-sum constraint, and λ, µ are associated with the lower and
upper bounds, respectively.

Thus, we can cast a linearly weighted robust optimization as a single
MILP, having replaced the max with min. In particular, this is an augmented
MILP formulation, which simply includes an extended objective and some
additional side-constraints on dual variables from the maximization subprob-
lem.

Alternatively, instead of casting problem (1) as one MILP, we can decom-
pose it and solve the inner maximization problem to obtain α∗(x) for each
x in the outer minimization. The inner maximization problem can be solved
simply by sorting the coefficients, which requires no more than O(|R| ln |R|)
time. This may be computationally more efficient than the integrated formu-
lation.

4 Unweighted Uncertainty

Consider the NC problem with interval uncertainties on the attack proba-
bilities. The following robust optimization formulation applies our restricted
absolute robustness criteria:

min
x∈X

max
α∈B(α̂, α, α)

∑
(i,j)∈R

αixij . (2)

We can solve this problem using the methods described in Section 3 (letting
δj = 1 for all j), but in this section we consider the restricted case where we
have intervals of uncertainty that are proportional to the central value vector.
Let P(ĉ, ε) = B(ĉ, (1−ε)ĉ, (1+ε)ĉ) for ε ∈ [0, 1). Given this restricted notion
of interval uncertainty, we prove that the sensor placement decision for the
central attack weight values α̂ remains optimal for any allowed variation.

Let Q(ε) denote a generalized robust optimization problem:

min
x∈X

max
c∈P(ĉ,ε)

cx,

where X is any subset of binary vectors. The following theorem demonstrates
that the solution to the central MILP (where ĉ is the coefficient of x) is the
solution to a robust formulation that allows percentage deviations within a
constant proportion of its central value. Consequently, no additional compu-
tational effort is needed to generate a robust solution for these problems.

Theorem 1 Let ε ∈ [0, 1). Then, x∗ is an optimal solution to Q(0) if, and
only if, x∗ is an optimal solution to Q(ε).

Proof We begin with some notation and general observations. Let S =
∑

j ĉj .
Let σ(x) = {j : xj 6= 0} (called the “support set” of x). Also, let 1 denote
the vector of all ones: (1, 1, . . . , 1)T. The following identities follow from the
definitions of S and σ: ĉx =

∑
j∈σ(x) ĉj = S −

∑
j 6∈σ(x) ĉj , and ĉ(1 − x) =

S − ĉx =
∑

j 6∈σ(x) ĉj . Let L = (1− ε) and U = (1 + ε).
The dual of maxc∈P(ĉ,ε)cx is

min πS + Uµĉ− Lλĉ : λ, µ ≥ 0,
π + µj − λj = xj for all j = 1, . . . , n.

The dual variable π is associated with the constant-sum constraint, and λ, µ
are associated with the lower and upper bound constraints on c, respectively.

Let x0 be an optimal solution to Q(0) and let xε be an optimal solution to
Q(ε). Our proof divides into two cases, depending on whether ĉx0 is greater
or less than 1

2
S.

Case 1. ĉx0 ≥ 1
2
S.

Consider the dual solution π = 1, µ = 0, and λT = 1 − x0. This is
dual-feasible, where λ ≥ 0 because x0 ≤ 1. The dual objective value is

πS + Uµĉ− Lλĉ = S − Lĉ(1− x0) = S − L(S − ĉx0) = εS + Lĉx0.

Therefore, we have

max
c∈P(ĉ,ε)

cx0 ≤ εS + Lĉx0. (3)

Now we define cε
j = Lĉj for j 6∈ σ(xε). Since we assume that ĉx0 ≥ 1

2
S, it

follows that ĉxε ≥ 1
2
S, which implies that ĉ(1− xε) ≤ 1

2
S. Consequently, we

have

cεxε = S −
∑

j 6∈σ(xε) cε
j

= S − L
∑

j 6∈σ(xε) ĉj

= S − L(S − ĉxε) = εS + Lĉxε,

which gives us the bound:

max
c∈P(ĉ,ε)

cxε ≥ εS + Lĉxε. (4)

Using (3) and (4), we then obtain the following chain of inequalities:

maxc∈P(ĉ,ε)cx
ε ≥ εS+Lĉxε ≥ εS+Lĉx0 ≥ maxc∈P(ĉ,ε)cx

0 ≥ maxc∈P(ĉ,ε)cx
ε.

Thus, equality must hold throughout. This establishes the following two re-
sults:

maxc∈P(ĉ,ε)cx
0 = maxc∈P(ĉ,ε)cx

ε (first = last expression)
ĉx0 = ĉxε (second = third expression and L > 0),

which completes this case.

Case 2. ĉx0 ≤ 1
2
S.

The dual objective value of any dual-feasible solution is an upper bound
on the primal value, cx0. Choose π = 0, µT = x0, and λ = 0. This is clearly
dual-feasible, and its dual objective value is Uĉx0. Therefore,

max
c∈P(ĉ,ε)

cx0 ≤ Uĉx0. (5)

Now consider the value of ĉxε. Suppose ĉxε ≤ 1
2
S. Then define cε

j = Uĉj

for j ∈ σ(xε), and note that cε ∈ P(ĉ, ε). This is feasible (i.e., cε ∈ P(ĉ, ε))
because cεxε ≤ 1

2
S. It follows that cεxε = Uĉxε, so we have max

c∈P(ĉ,ε)
cxε ≥

Uĉxε. On the other hand, suppose if ĉxε > 1
2
S. Then, define cε

j = Lĉj for
j 6∈ σ(xε), and note that cε ∈ P(ĉ, ε). It follows from our analysis in Case 1
that max

c∈P(ĉ,ε)
cxε ≥ εS + Lĉxε. Taken together, this gives us the bound:

max
c∈P(ĉ,ε)

cxε ≥ min {Uĉxε, εS + Lĉxε} . (6)

Using Equations (5) and (6), we then obtain the following chain of inequali-
ties:

maxc∈P(ĉ,ε)cx
ε ≥ min {Uĉxε, εS + Lĉxε} ≥ min

{
Uĉx0, εS + Lĉx0

}
= Uĉx0 ≥ maxc∈P(ĉ,ε)cx

0 ≥ maxc∈P(ĉ,ε)cx
ε.

The equality in this chain follows from our assumption that ĉx0 ≤ 1
2
S.

We conclude that equality must hold throughout, and maxc∈P(ĉ,ε)cx
0 =

maxc∈P(ĉ,ε)cx
ε. Furthermore, this shows that Uĉx0 = min {Uĉxε, εS + Lĉxε}

(fourth expression = second), so either Uĉx0 = Uĉxε or Uĉx0 = εS + Lĉxε.
In the former case, we have immediately that ĉx0 = ĉxε. In the latter case,
we have the following chain of inequalities:

Uĉx0 ≤ εS + Lĉx0 ≤ εS + Lĉxε = Uĉx0,

from which it follows that ĉx0 = ĉxε. Consequently, we conclude ĉx0 = ĉxε.

In terms of the sensor placement problem, this result implies that we can
solve problem (2) by solving the central MILP,

min
x∈X

∑
(i,j)∈R

α̂ixij ,

because every optimal solution remains optimal for any variation allowance
on the attack weights that are bounded by a common proportion of the
central value, α̂. This is because the α-maximization increases the objective
by a proportion of S, independently of x. This is what is revealed in the
proof and highlights the simplicity of the robust model.

While we have let attack weights (α) be the uncertain parameters, we
could let it be population (δ) if we assume a uniform distribution on attack
location. This is the case when there is no risk analysis, and one fixes αi = 1

n
for all i = 1, . . . , n, where n is the number of nodes. In that case we also
have the unweighted model, but the meaning of the objective changes to the
max-expected population contamination.

Following Yaman et al. [22], this result may be called a permanent solu-
tion. They found a spanning tree that remains optimal within interval data;
we have a sensor placement that remains optimal under fixed-proportionate
interval data and a constant-sum constraint. In our case, the fixed proportion
is necessary — Theorem 1 is not true if we consider the more general set of
uncertainties defined by B(ĉ, c, c).

5 Bilinear Weighted Uncertainty

Consider the PE problem with interval uncertainties on both the attack
weights and population. Although the total population remains fixed, in
practice we may not have complete knowledge of the population’s geographic
distribution. Consequently, there may be uncertainties in the values of the δi.
The following robust optimization formulation applies our restricted absolute
robustness criteria considering uncertainties in both α and δ:

min
x∈X

max
α∈B(α̂, α, α)

δ ∈ B(δ̂, δ, δ)

∑
(i,j)∈R αiδjxij . (7)

We say that this absolute robustness criteria uses bilinearly weighted un-
certainty because we have a bilinear maximization problem for the inner
maximization.

This is a special case of the bilinear fractional program considered by
Malivert [15]. The general problem is NP-hard, but this inner bilinear pro-
gram has several simplifications. The main simplification is that the polyhe-
dron separates for the two sets of variables, and each polyhedron (the ball)
is much simpler than the general case — just one equation with bounds on
the variables.

In Section 5.1, we show that the inner bilinear optimization problem
remains NP-hard with this special structure and even with further special
structure related to sensor placement in water networks. Section 5.2 gives a
straightforward algorithm that reaches a solution that need not be a global
maximum. Section 5.3 gives a constant-approximation algorithm, whose error
is proportional to the square of the radius of the ball (ε).

5.1 Complexity

In this section we prove that the inner bilinear optimization problem is NP-
hard. We consider the restricted version of the problem:

max
α∈P(α̂, ε)

δ ∈ P(δ̂, ε)

∑
(i,j)∈R αiδjxij , (8)

where both intervals have the same ε, and x satisfies the following two prop-
erties of our system:

1. The water networks we consider are directed acyclic graphs (dags) — we
cannot have (i, j) ∈ R and (j, i) ∈ R.

2. x satisfies transitive closure — if there is a path from i to j with no sensors
(xij = 1) and there is a path from j to k with no sensors (xjk = 1), then
there is a path from i to k with no sensors (xik = 1).

We further note our special structure:

3. The domain is separable, P(α̂, ε)× P(δ̂, ε).
4. Each domain is defined by simple bounds and one constant-sum con-

straint.

We prove NP-hardness by reduction from the clique problem. In particular,
given a graph G = (V,E) with |V | = n and n even, we prove that one can
determine whether this graph has an n/2 clique by solving a bilinear program
with our special structure on a transitively closed dag.

Given G, we construct a bipartite dag G′ = (A ∪ P,E′) as follows. For
each vertex vi ∈ V , create two sets of nodes and define the centers α̂ and δ̂:

Attack nodes. A =
⋃n

i=1 Ai, where Ai = {aij : 1 ≤ j ≤ n} for 1 ≤ i ≤ n,
with α̂aij

= 1 and δ̂aij
= 0 for all i, j.

Population nodes. P =
⋃n

i=1 Pi, where Pi = {pij : 1 ≤ j ≤ n} for 1 ≤ i ≤ n,
with α̂pij = 0 and δ̂pij = 1 for all i, j.

(Defining the centers in this way requires the modification of the constant-
sum constraint on α to n2, rather than 1. For the sake of keeping the notation
simple, we invoke a simple scaling argument to allow this.) To build the
arc set of G′, for each vi ∈ V we add arcs forming a complete directed
bipartite subgraph between the associated attack and population nodes: put
(aij , pik) ∈ E′ for j = 1, . . . , n and k = 1, . . . , n. These are structural edges
that relate vertices associated with the same node in G. Further, for each edge
(vi, vj) ∈ E, we add arcs (aij , pji) and (aji, pij) in E′. These are graph edges
that reflect the structure of the given graph G (in which we are searching for
an n/2 clique). There is at most one graph edge adjacent to any node in G′.

Thus, G′ is a bipartite dag. Further, G′ is transitively closed because all
arcs go from A to P . The x of our bilinear problem is the n2 × n2 adjacency
matrix of an n × n bipartite graph. Let M = [map] be defined by map = 1
if, and only if, (a, p) ∈ E′ (and map = 0 otherwise) for all a ∈ A, p ∈ P .
Finally, we set ε = 1−1/n3 to complete the definition of the bilinear problem.

Figure 1 shows a 6-node graph G and the constructed graph G′ with 72
nodes (6 attack and 6 population per vi for i = 1, . . . , 6).

1 2 3

4 5 6

G

A P A A P4 P4 5 5 6 6

A P A A P1 1 2 P2 3 3

Fig. 1 Example graph with induced constructed graph.

Summarizing the construction, we have two sets of n2 nodes each, and
two sets of arcs, all directed from a ∈ A to p ∈ P . One set of arcs (structural
edges) have the form (aij , pik), so xaijpik

= 1 for all vi ∈ V , j, k = 1, . . . , n.
(In figure 1 they appear as one thick arc from Ai to Pi.) The other set of
arcs (graph edges) have the form (aij , pji) and (aji, pij) for (vi, vj) ∈ E, so
xaijpji

= xajipij
= 1 for all (vi, vj) ∈ E. For all other f, g ∈ A ∪ P , xfg = 0.

The bilinear program has the following objective value:∑
(f,g)∈R αfδgxfg =

∑
(a,p)∈E′ αaδpxap

=
∑

(a,p)∈E′ αaδp

=
∑

vi∈V

∑n
j=1

∑n
k=1 αaij

δpik

+
∑

(vi,vj)∈E

(
αaij

δpji
+ αaji

δpij

)
The first equality follows from the fact that E′ = R ⊂ A×P , and the second
equality follows from the fact that xap = 1 for (a, p) ∈ E′. The α and δ values
missing from the expression above (viz., αp for p ∈ P and δa for a ∈ A) are
required to be zero anyway, because we defined α̂P = 0 and δ̂A = 0. We prove
that an optimal solution to our bilinear program over G′ with ε = 1− 1/n3

answers the question of whether G has an n/2 clique.
As defined above, let M be the bipartite incidence matrix for G′, so its

rows correspond to A and its columns to P . Because only attack nodes can
have nonzero α and only population nodes can have nonzero δ, a feasible
solution to the bilinear problem can redistribute α values only among the
attack nodes (rows of M), and the δ values only among the population nodes
(columns of M). In other words, α is constrained by P(α̂, ε) to satisfy 1−ε ≤
αaij

≤ 1 + ε for each row aij of M . Similarly, δ is constrained by P(δ̂, ε) to
satisfy 1− ε ≤ δpkl

≤ 1 + ε for each column pkl of M .
Given a feasible solution (α, δ) to the bilinear program, we say that a row

or column of the matrix M is selected if respectively the α or δ value is 1+ ε.
We say that an entry of the matrix is selected if both its row and column are
selected. We consider only those feasible solutions that set each variable to
one of its bound values, so the number of rows (columns) selected is always
n2

2 to satisfy the constant-sum constraints. This is illustrated in figure 2.

selected columns
δ = 1 + ε δ = 1− ε

selected rows ↑
α = 1 + ε selected n2

2
↓
↑

α = 1− ε n2

2
↓

←− n2

2
−→ ←− n2

2
−→

Fig. 2 Partition of M upon selecting rows, columns, and elements.

Further, we say that a vertex vi ∈ V (G) is selected if all rows and all columns
associated with it (all aij ∈ Ai and pik ∈ Pi) are selected. Finally, vi is
partially-selected if at least one row or column associated with it is selected
and at least one such row or column is not selected.

In what follows, let K = 1
2
n3 + n

2 (n
2 − 1).

Lemma 1 If there is an n/2 clique in G, the optimal value of the bilinear
program is at least K(1 + ε)2.

Proof Assume there is an n/2 clique in G. Select all the vertices in the clique,
so that αaij

= δpij
= 1 + ε for all vi in the clique and all j = 1, . . . , n, and

αakj
= δpkj

= 1−ε for all vk not in the clique and all j = 1, . . . , n. Now count
the ones in M among the selected elements. Each of the n/2 selected vertices
contributes n2 structural edges to G′, so there are 1

2
n3 ones in M from the

structural edges. The clique has 1
2

n
2 (n

2 −1) edges, and each edge corresponds
to two arcs (graph edges), so there are another n

2 (n
2 − 1) ones among the

selected elements of M . Altogether, this gives K ones in the selected portion
of M , so the value of the objective function must be at least K(1 + ε)2.
(The other terms in the objective, corresponding to ones in the other three
portions of M , have value (1−ε)2 or (1−ε)(1+ε), contributing a nonnegative
amount.)

Lemma 2 There is an extreme point optimal solution to our bilinear problem
in which every α and δ is 1+ε or 1−ε, and both αs and δs split evenly between
the two extremes.

Proof It is already known [15] that the bilinear program has a solution at an
extreme point of its domain. In our case, each extreme point is the Cartesian
product of an extreme point of P(α̂, ε) and one of P(δ̂, ε). An extreme point
of P(α̂, ε) has every variable, except at most one, at a bound value. Because
n is even, the number of nodes in G′ with nonzero bounds in P(α̂, ε) is even;
the same applies to P(δ̂, ε). The constant sum constraint then requires an
even split between variables at 1 + ε and those at 1− ε.

Lemma 3 If an extreme point optimal solution attains a value of at least
K(1 + ε)2, at least K matrix elements with value 1 (edges of G′) have been
selected.

Proof Assume an extreme point attains a value of at least K(1 + ε)2. The
entire matrix has at most n3 + n(n − 1) ones. Recall K = 1

2
n3 + n

2 (n
2 − 1).

So, selecting K − 1 ones leaves at most 1
2
n3 + n

2 (3n
2 − 1) + 1 unselected ones.

For any n ≥ 2, 1
2
n3 + n

2 (3n
2 − 1) + 1 < n3. Therefore, fewer than n3 ones

would be unselected, and each contributes a value of at most (1 + ε)(1 − ε)
to the objective. But, n3(1 − ε) = 1 by definition of ε, so the total value of
the unselected ones is at most (1 + ε) < (1 + ε)2. Finally, the bilinear value
is at most

(K − 1)(1 + ε)2 + (1 + ε) < (K − 1)(1 + ε)2 + (1 + ε)2 = K(1 + ε)2

if there are fewer than K selected ones in the extreme point.

Theorem 2 The bilinear problem has a maximum value of at least K(1+ε)2
if, and only if, there is an n/2 clique in G.

Proof Lemma 1 establishes the “if” direction. Assume that G contains an n/2
clique. To prove the “only if” direction, we prove that if there is an optimal

extreme point with K selected ones, there is an optimal extreme point with
K selected ones and n/2 selected vertices. Then, the claim of the theorem
follows.

Indeed, if there are K selected ones and n/2 selected vertices, there must
be a clique: the n/2 selected vertices give us n3/2 selected ones. That leaves
no other selected rows or columns, and n

2 (n
2 −1) selected ones from the edges,

which is all the possible arcs, hence a clique.
To prove that if there is an optimal extreme point with K selected ones,

there is an optimal extreme point with K selected ones and n/2 selected
vertices, we use induction on the size of the counterexample. In other words,
we consider a minimal counterexample and then show that it can be made
smaller still, thus proving that a counterexample cannot exist.

We define the minimal counterexample as one with the fewest partially-
selected vertices. If there are multiple such counterexamples, we take one
that has a partially-selected vertex with the smallest number of selected
rows plus selected columns. (Every counterexample must have at least one
partially selected vertex.)

Let vi be a partially-selected vertex with the fewest selected rows and
columns.

Case 1. Suppose vertex vi has no rows selected. Then we can find a partially-
selected vertex vj with at least one selected row and fewer than n selected
columns. To see that such a vj must exist, consider two sets: V1, contain-
ing all v with all columns selected, and V2, containing all v with at least
one selected row. Since in an extreme point solution there are exactly
n2/2 selected rows and n2/2 selected columns, we have |V2| ≥ n/2. Fur-
thermore, vi has at least one column selected so |V1| < n/2. Therefore
V2 ∩ (V \ V1) 6= ∅ and we choose a vj from this set.
We now unselect a column in vertex vi and select a column in vertex vj .
This unselects at most one 1 (corresponding to the edge for the column
originally selected), and selects at least one 1 (in the submatrix for vertex
vj), so we still have at least K selected ones. In a single row or column
swap, all the newly-selected ones now contribute the greatest value of
(1 + ε)2 to the objective (previously they contributed the middle value
of (1− ε2)). All unselected ones previously contributed the greatest value
and now contribute the middle value. Therefore, as long as the number
of selected ones after the swap does not decrease, the objective function
also does not decrease. Thus, we obtain a smaller counterexample.

Case 2. Symmetrically, if the minimal vertex vi has no selected columns,
swap a row associated with a partially-selected vertex with at least one
column selected and room to select another row. Therefore, the minimal
vertex has at least one row and one column selected.

Case 3. Suppose the minimal vertex vi has ri ≥ 1 rows selected and ci ≥
1 columns selected. Suppose there is a partially-selected vertex vj with
rj > ri selected rows. If vj has fewer than n selected columns, we can
swap a column from vi to vj and get a smaller counterexample. If vj has
n selected columns, swapping a row from vi to vj again gives a smaller
counterexample provided ci < n. If ci = n, then ri is the smallest among
all partially-selected vertices (that is, all other partially-selected vertices

vj have rj ≥ ri). There must be at least n/2 + 1 partially-selected or
selected vertices. These cannot all have n selected columns. Therefore,
there exists a vertex vj with cj < n. We must also have rj > ri because if
rj = ri and cj < n, then vj would be the minimal vertex (recall ci = n). A
similar argument holds if there is a vj with more than cj columns selected.
Therefore, in any counterexample all partially-selected vertices have the
same number of rows and columns selected as our minimal vertex vi, say
n > k ≥ 1 rows and n > ` ≥ 1 columns. We know k < n because otherwise
(if k = n), there are exactly n/2 vertices with all rows selected and exactly
n/2 vertices with no row selected. Since no partially-selected vertex can
have zero rows selected (from Case 1), we can select only those columns
corresponding to the n/2 vertices that have a row selected. Because we
must select n2/2 columns, we must select all columns for all these vertices
and in fact no vertices are partially selected. A similar argument shows
that ` < n.
Pick one partially-selected vertex vj , unselect a row and a column of vi,
and select at the same time a row and a column of vj . Consider the
submatrices Mvi

and Mvj
of M , defined by the rows and columns of vi

and, respectively, vj . By unselecting a row of vi, we unselect ` ones in Mvi
,

and unselect at most one edge. Then, unselecting the column unselects at
most k − 1 ones in Mvi

, and unselects at most one edge. When we select
a row of vj , we select ` ones in Mvj . When we select a column of vj , we
select k+1 ones (including the 1 for the new row and column) in Mvj

. So,
we have unselected at most k + ` + 1 ones, and selected at least k + ` + 1
ones, yielding a smaller counterexample.

We have shown that in all cases, it is possible to reduce our counterexample
to a smaller one with at least as many ones. This implies that there is no
counter-example, and thus proves the theorem.

We have thus established that our inner bilinear optimization problem
is NP-hard despite the simple domain. Our proof used ε arbitrarily close to
1. In practice, we generally have ε ≤ κ for some κ < 1, such as κ = 1

4
.

In such a case our proof does not apply, and the NP-hardness remains an
open question. Further, this is a theoretical result, and it remains to examine
some real applications to determine how difficult it is to solve this problem
in practice (see §6).

5.2 Alternating Ascent

Although we have shown that the inner bilinear program (7) is NP-hard, we
may still need to solve this in a practical manner. We consider a heuristic
search strategy for solving the inner bilinear program for a given set of x
values, which could be used as an inner loop for a general-purpose search
strategy (e.g., meta-heuristic methods).

Figure 3 describes a simple local search strategy for solving the bilinear
program for given values of x. Given x, one way to seek a solution is to
alternate between α and δ, solving an LP in each iteration. Each maximiza-
tion is a linear program, the same as the inner maximization of the linearly

weighted case. Since each instance has different weights, we may need to sort
each time. After a finite number of iterations, we terminate with extreme
point optimal solutions to each polytope.

Alternating Ascent Algorithm

0. Initialize. Choose α0 ∈ B(α̂, α, α), and set k = 0.
1. Solve for δ. Given αk, compute

δk ∈ argmax
nP

(i,j)∈R αk
i δjxij : δ ∈ B(δ̂, δ, δ)

o

2. Solve for α. Given δk, compute

αk+1 ∈ argmax
nP

(i,j)∈R αiδ
k
j xij : α ∈ B(α̂, α, α))

o

3. Increment k ← k + 1 and repeat steps 1–3 until δk = δk−1

(k > 0, step 1) or αk+1 = αk (step 2).

Fig. 3 An alternating ascent algorithm for the bilinear program (7), for a given
value of x.

The bilinear program has an optimal solution among the extreme points
of B(α̂, α, α) and B(δ̂, δ, δ). This follows from elementary theory of LP and
noting a necessary condition for (α∗, δ∗) to be optimal [15]:

α∗ ∈ argmax
{∑

(i,j) αiδ
∗
j xij : α ∈ B(α̂, α, α)

}
δ∗ ∈ argmax

{∑
(i,j) α∗i δjxij : δ ∈ B(δ̂, δ, δ)

}
.

Unfortunately, this is not sufficient. If we terminate the algorithm with
(α∗, δ∗), all we can say is that this satisfies the above necessary condition. We
cannot rule out the possibility that a simultaneous change in α and δ would
increase the objective value. We call a point that satisfies these necessary
conditions an alternating ascent solution.

An alternating ascent solution is a KKT point (i.e., satisfies the first-
order, Karush-Kuhn-Tucker conditions for optimality). Further, if the algo-
rithm goes one iteration, the alternating ascent solution cannot be a mini-
mum. It can, however, be a saddle point.

We have found examples where the alternating ascent solution is not a
global maximum. Although the objective can not be improved by changing α
or δ, keeping the other fixed, we were able to increase the objective value with
a simultaneous change in α and δ (just to neighboring extreme points of their
respective polyhedra). We ran some experiments to see how often this occurs,
and the particular runs indicate that alternating ascent gets trapped at a
non-global-maximum point from relatively few starting points. In all cases,
an we found an improvement by combining neighbors of α in B(α̂, α, α) with
neighbors of δ in B(δ̂, δ, δ). While inconclusive, this indicates that it may be
possible to identify conditions under which such a search procedure would

reach the global maximum. The extreme points of the bilinear program are
easy to characterize, so it may be possible to exploit this information in some
cases to guide the local search. For example, it might be possible to jump to
a non-adjacent extreme point to avoid terminating at a solution that is not
a global maximum.

5.3 Linear Programming Relaxation

In this section we describe a linear relaxation of the bilinear case, using
McCormick’s bounds, commonly used by the αBB method [2]. McCormick’s
bounds have been used to approximate a bilinear form, uTv, on a rectangle
[u, u]× [v, v] with linear functions using the simple inequalities [2,18]:

(u− u)T(v − v) ≥ 0, (u− u)T(v − v) ≥ 0

(u− u)T(v − v) ≤ 0, (u− u)T(v − v) ≤ 0.

These yield linear (affine) functions that bound uTv from below and above.
In our case, since we are maximizing, we use only the upper bounds in the
following LP relaxation which we call the McCormick Approximation:

max z : α ∈ B(α̂, α, α), δ ∈ B(δ̂, δ, δ),

z −
∑

(i,j)∈R
(
αi δj + αi δj

)
xij ≤ −

∑
(i,j)∈R αi δj xij

z −
∑

(i,j)∈R
(
αi δj + αi δj

)
xij ≤ −

∑
(i,j)∈R αi δj xij

More generally, the McCormick Approximation has a guaranteed error of
1
4
(α − α)T(δ − δ) times the optimal, established by Androulakis, et al. [2]

for just the rectangle, [α, α]× [δ, δ]. It is easy to extend this to account for
only the contaminated nodes, giving an approximation guarantee of 1

4
(α −

α)Tx (δ − δ). For example, if the uncertainties are proportional to epsilon
(α = (1 + ε)α̂, α = (1 − ε)α̂, δ = (1 + ε)δ̂ and δ = (1 − ε)δ̂) then it follows
that we have a 1 + ε2 approximation.

6 Preliminary Computational Study

In this section we report preliminary computational results for sensor place-
ment problems on two water networks. We explore the computational diffi-
culty of solving the full sensor placement problem, which we can solve for the
versions that involve MILPs. We also explore the difficulty of computing opti-
mal and approximate solutions to the bilinear inner optimization problem for
the case with uncertainty in both attack weights and population distribution.

We performed computations on two real water networks with 97 and 470
nodes respectively. Water networks for large cities have tens of thousands
of nodes, so these test cases are still about 2 orders of magnitude smaller

than many important sensor placement problems. However, these experi-
ments serve to illustrate performance difference even for problems of this
modest scale.

When we described the sensor placement problems earlier, we assumed
only one flow pattern. Most cities, however, have multiple normal demand
patterns cycling throughout each day. For example, desert cities may recharge
tanks at night and drain them during the day. Our water networks have
four daily demand patterns, which are used in our experiments. This makes
the computations more realistic and more difficult. Sensor placements must
protect against attacks that can have fundamentally different effects based
upon when they occur. The only changes required to the models is to add
an extra dimension to the input data. Attack weights and population are
now associated with each of the four patterns, and the expectation in the
objective is now taken over these patterns as well.

6.1 Linearly Weighted Uncertainties

Our first set of computational results considers the linearly weighted robust
formulation, which can be modeled as a MILP. Our “base case” is the cen-
tral value model, where we assume attack weights and population values are
exactly equal to their central values (no robustness modeling). Our exper-
iments illustrate how much additional computational effort is required to
obtain a robust solution. We proved that the incremental effort is zero for
the unweighted robust model, and we include computational results for two
linearly weighted cases:

1. attack weights are uncertain and populations are fixed at their central
values.

2. attack weights are fixed at their (non-uniform) central values and popu-
lations are uncertain.

In all experiments, we consider uncertainties that are proportional to the
central value.

Table 1 shows the total computation time for the central value model
(base case) and for robustly solving the sensor placement problem for our
two example networks. The time reported in the table is the CPU seconds
required to solve each problem running on a dual 3.06 GHz Intel©R XeonTM

processor, Linux 2.6.10 system with 2 GB RAM. The number of nodes, re-
ported just after the time, is the size of the search tree computed by cplex©R.

Table 1 Computational Results for Complete Sensor Placement Solutions†

Linearly Weighted
Network Central Value Population Attack weights

nodes arcs Ns ε time nodes time nodes time nodes
97 234 5 0.1 21.9 16 188.8 24 135.9 20

0.2 50.0 93 25.2 54
0.3 57.1 218 30.7 52

10 0.1 2.9 0 15.0 0 17.7 11
0.2 27.7 14 20.1 3
0.3 32.7 10 20.2 3

20 0.1 11.9 4 28.5 0 27.1 0
0.2 197.7 9 38.7 0
0.3 248.1 29 57.9 40

470 1198 5 0.1 165.5 0 145.1 0 504.2 0
0.2 463.5 0 546.7 0
0.3 450.8 0 479.6 0

10 0.1 69.9 2 678.7 2 549.9 2
0.2 790.3 9 617.8 2
0.3 892.5 13 764.2 4

20 0.1 69.8 21 75.4 13 1472.9 63
0.2 1335.6 27 1441.1 44
0.3 2482.0 165 1722.8 101

†These were solved with ampl©R and cplex.

These results suggest that computational difficulty will generally increase
with the number of sensors, Ns, and the robustness tolerance, ε. The robust
formulation is almost always more difficult to solve than the central value
model. Furthermore, the results with the larger network show that this robust
formulation requires over an order of magnitude more time to solve in many
cases.

6.2 Bilinearly Weighted Uncertainty

Although we have shown that just the bilinear subproblem, itself, is NP-hard,
this result provides limited information about the practical comptuational
difficulty of this formulation. Unfortunately, no currently available system can
solve the bilinearly weighted formulation with global optimality confirmed.
Recall that this model has the form:

min
x∈X

max
α,δ

αTx δ

The minimand is a maximum, and no system can solve this at present. Al-
though methods like BARON [19] can solve the inner bilinear program with
confirmed optimality, we must combine that with an outer search strategy
on x. Designing and implementing an outer search coupled with BARON is
beyond the scope of this paper. The full sensor placement model could be
written as a semi-infinite program by replacing the maximand with z and
adding the infinite number of constraints:

z ≥ αTx δ for all α, δ.

Table 2 Computational Results for Bilinear Model for a Fixed Sensor Placement†

Central Alternating McCormick Global
Network Ns value ε Ascent Approx Value Time

1 5 4100 0.1 4949 4949 4949 49.91
0.2 5878 5878 5878 65.43
0.3 6887 6887 6887 68.51

10 3955 0.1 4777 4777 4777 37.87
0.2 5677 5677 5677 37.92
0.3 6654 6654 6654 38.35

20 3907 0.1 4721 4721 4721 27.94
0.2 5613 5613 5613 24.76
0.3 6582 6581 6582 22.49

2 5 134.54 0.1 158.62 158.61 158.62 2848.73
0.2 184.70 184.67 184.70 2953.75
0.3 212.81 212.70 212.81 2765.20

10 98.12 0.1 115.70 115.70 115.70 2289.35
0.2 134.75 134.72 134.75 2285.12
0.3 155.30 155.19 155.30 2275.44

20 70.13 0.1 82.55 82.54 82.55 1908.85
0.2 95.98 95.97 95.98 1901.59
0.3 110.46 110.40 110.46 1910.16

†Alternating Ascent and McCormick Approximation were computed
within matlab©R (m files available upon request). McCormick
Approximation used Mosek [1] to solve the LP. Global maxima were
computed by BARON [19,20]. The time reported is the CPU seconds
for BARON to compute the global maximum; the approximations took
no more than a few seconds each.

However, no currently available system can solve this model either.
Consequently, our computational experiments have focused on the time

required to solve the bilinear subproblem for a fixed sensor placement. Table 2
compares the value of the central value model with the values of solutions
for the bilinear subproblem. This subproblem is solved with the alternating
ascent heuristic, with the exact BARON solver, and it is approximated with
the McCormick approximation method. In these experiments, we set the
contamination array (x) for the bilinear experiments using the values from
the central value MILP model.

In all of these experiments, the BARON solver is one or more orders of
magnitude slower than the other methods, which should be expected be-
cause it is confirming global optimality. Remarkably, the alternating ascent
heuristic generates solutions with the same value in every case. This contrast
provides strong evidence that it is worth exploring the application of these
heuristics for assessing the robustness of solutions with bilinearly weighted
uncertainties. The approximation method was less effective than the alternat-
ing ascent heuristic overall, though the value of the solution that it generates
was often quite similar. Finally, it is noteworthy that the runtime for BARON
to solve the bilinear subproblem was often at least as long as the cost of solv-
ing the linearly weighted models. This suggests that a solver that can exactly

solve the entire bilinearly weighted model will be significantly more expensive
to solve than the MILP models for the linearly weighted uncertainties.

7 Discussion

There are many possible objectives for sensor placement that reflect various
costs and risks of an attack on a network [21]. Previous work has considered
problem formulations that minimize the volume of water consumed before
detection [11], minimize the time to detection [13], and minimize the popu-
lation exposed to contaminants before detection [4,14]. This paper presents
a foundation upon which these objectives, taken separately or multiply, can
be considered in a manner that addresses data uncertainties.

Robust optimization addresses a need to hedge against uncertainty, and
these uncertainties are a fundamental property of sensor placement problems.
Data like attack weights and population distribution are based on expert
judgement and incomplete source data. Furthermore, these data are expected
to vary during the years after sensors are deployed in an early warning system.
Although a number of criteria for robust optimization have been studied,
the interval data model, with a constant-sum constraint, fits these sensor
placement problems well.

The simplest case that we have considered is the unweighted uncertainty
model, which represents two cases: (1) only the attack weights are uncertain,
and the objective is the expected number of nodes that are contaminated
without detection; and, (2) the attack weights are uniform, and the objective
is the expected population that become contaminated without detection.
In this case, if the interval is restricted to a fixed proportion of the central
vector, we have shown this problem has a permanent solution. This is counter-
intuitive, as data uncertainties should affect our decision. However, we have
proven that robust solutions can be obtained from just the central value
(which may be the most likely realization). Thus, obtaining a robust solution
does not make the computation more difficult.

The next level of difficulty is the linearly weighted case: one set of param-
eters is fixed at their central values, while the other is uncertain. If we let the
population be uncertain, the attack weights are presumed non-uniform; oth-
erwise, the model reduces to the unweighted case. In our preliminary exper-
iments, the linearly weighted case added a modest amount of computational
effort to solve the overall problem.

Although the linearly weighted case can address robustness issues, the bi-
linear model is the most general by allowing uncertainty around non-uniform
central values of both attack weights and population. We proved that the
maximization subproblem is NP-hard, even with the simplifications of being
in a ball with fixed-proportionate bounds and one constant-sum constraint.
However, it is unclear whether this maximization subproblem remains NP-
hard if we require that ε ≤ κ for some κ < 1. Our NP-hardness proof requires
ε to be arbitrarily close to 1. Further, our computational experiments suggest
that we can obtain solutions for the bilinear subproblem, or at least provide
bound information in solving the master problem. However, we expect that

it will be very difficult to compute exact solutions for bilinearly weighted
formulations.

This paper has focused on modeling robustness and analyzing robust
formulations. Our computational experiments are preliminary, and thus we
cannot make strong predictions with them. A more comprehensive compu-
tational study of these techniques is clearly an important avenue of future
research, including the development of computational techniques for exactly
solving the bilinearly weighted formulation.

Acknowledgements Sandia National Laboratories is a multipurpose laboratory
operated by Sandia Corporation, a Lockheed-Martin Company, for the United
States Department of Energy under contract DE-AC04-94AL85000. We thank Nick
Sahinidis and GAMS Development Corp. for letting us use GAMS/BARON for the
computational study. Nick Sahinidis also provided very helpful guidance on the ef-
fective use of BARON for our nonlinear problems. Finally, we thank the two referees
for their extensive comments that led to a better presentation and their bringing
the relevance of the McCormick bounds to our LP relaxation (§5.3, p. 16).

References

1. Anderson, E.: The MOSEK Optimization Toolbox for MATLAB Version 2.5,
User’s Guide and Reference Manual. World Wide Web, http://www.mosek.com
(1999–2002)

2. Androulakis, I., Maranas, C., Floudas, C.: αBB: A global optimization method
for general constrained nonconvex problems. Journal of Global Optimization
7, 337–363 (1995)

3. Berry, J., Hart, W.E., Phillips, C.A., Uber, J.: A general integer-programming-
based framework for sensor placement in municipal water networks. In: Pro-
ceedings of the World Water and Environment Resources Conference (2004)

4. Berry, J.W., Fleischer, L., Hart, W.E., Phillips, C.A., Watson, J.P.: Sensor
placement in municipal water networks. Journal of Water Resources Planning
and Management 131(3), 237–243 (2005)

5. Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Math-
ematical Programming Series B 98, 49–71 (2003)

6. Bertsimas, D., Sim, M.: The price of robustness. Operations Research 52,
35–53 (2004)

7. Dantzig, G.B.: Linear programming under uncertainty. Management Science
1(3, 4), 197–206 (1955)

8. Ferson, S., Joslyn, C.A., Helton, J.C., Oberkampf, W.L., Sentz, K.: Challenge
problems: Uncertainty in system response given uncertain parameters. Relia-
bility Engineering and System Safety 85, 11–19 (2004)

9. Greenberg, H.: Mathematical Programming Glossary. World Wide Web, http:
//www.cudenver.edu/~hgreenbe/glossary/ (1996–2005)

10. Hoffman, F.O., Hammonds, J.S.: Propagation of uncertainty in risk assess-
ments: The need to distinguish between uncertainty due to lack of knowledge
and uncertainty due to variability. Risk Analysis 14(5), 707–712 (1994)

11. Kessler, A., Ostfeld, A., Sinai, G.: Detecting accidental contaminations in mu-
nicipal water networks. Journal of Water Resources Planning and Management
124(4), 192–198 (1998)

12. Kouvelis, P., Yu, G.: Robust Discrete Optimization and Its Applications.
Kluwer Academic Publishers, Norwell, MA (1996)

13. Kumar, A., Kansal, M.L., Arora, G.: Discussion of ‘detecting accidental con-
taminations in municipal water networks’. Journal of Water Resources Plan-
ning and Management 125(4), 308–310 (1999)

14. Lee, B., Deininger, R.: Optimal locations of monitoring stations in water dis-
tribution system. Journal of Environmental Engineering 118(1), 4–16 (1992)

15. Malivert, C.: An algorithm for bilinear fractional problems. Tech. Rep. 1998-03,
Université de Limoges, Cedex, France (1998)

16. Oberkampf, W.L., DeLand, S.M., Rutherford, B.M., Diegert, K.V., Alvin, K.F.:
Error and uncertainty in modeling and simulation. Reliability Engineering and
System Safety 75, 333–357 (2002)

17. Rowe, W.D.: Understanding uncertainty. Risk Analysis 14(5), 743–750 (1994)
18. Ryoo, H.S., Sahinidis, N.V.: Global optimization of nonconvex NLPs and

MINLPs with applications in process design. Computers & Chemical Engi-
neering 19(5), 551–566 (1995)

19. Sahinidis, N., Tawarmalani, M.: BARON 7.2.5: Global Optimization of Mixed-
Integer Nonlinear Programs, User’s Manual (2005)

20. Tawarmalani, M., Sahinidis, N.: Global optimization of mixed-integer nonlinear
programs: A theoretical and computational study. Mathematical Programming
99, 563–591 (2004)

21. Watson, J.P., Greenberg, H.J., Hart, W.E.: A multiple-objective analysis of sen-
sor placement optimization in water networks. In: Proceedings of the World
Water and Environment Resources Congress. American Society of Civil Engi-
neers (2004)

22. Yaman, H., Karasan, O.E., Pinar, M.C.: The robust minimum spanning tree
problem with interval data. Operations Research Letters 29, 31–40 (2001)

23. Yaman, H., Karasan, O.E., Pinar, M.C.: Restricted robust optimization for
maximization over uniform matroid with interval data uncertainty. Tech. rep.,
Bilkent University Technical Report (2004)

