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Abstract

We present a model for optimizing the placement of sensors in municipal
water networks to detect contaminants that are maliciously or accidentally
injected. An optimal sensor configuration is desirable to minimize the cost
and maximize the information provided by the sensors. We formulate sen-
sor placement problems as mixed-integer programs, for which the objective
coefficients are not known with certainty. We present three robust optimiza-
tion models that differ in how the coefficients in the objective vary. Under
one set of assumptions there exists a sensor placement that is optimal for all
realizations of the coefficients. Under other assumptions, we apply sorting
to solve each worst-case realization. The most difficult case is where the ob-
jective parameters are bilinear, for which we propose a branch-and-bound
method.

1 Introduction
Recent terrorist attacks have heightened concerns about whether community water
systems are sufficiently well protected to ensure a safe and reliable supply of
drinking water in the United States and around the world. Community water
monitoring programs, such as weekly sampling, are often inadequate to quickly
detect malicious or accidental contamination in a water system. Consequently,
there is growing interest in the use of contaminant sensors to provide ongoing
monitoring of water quality. Such a monitoring system could significantly mitigate
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the risk from contamination, and thus it complements other physical security
approaches for community water systems.

A good sensor placement minimizes cost and maximizes the information avail-
able for contamination containment and remediation across the full range of pos-
sible contamination scenarios. Uncertainties in attack risk and water demand and
variability in population density can affect the optimal solution considerably. This
is a major concern for sensor placement because accurate, detailed information is
not available for many community water networks (e.g., how many people con-
sume water at a particular location on a “normal” day). In this paper, we consider
“robust” problem formulations for sensor placement that directly account for some
types of data uncertainties.

We consider robustness for sensor placement problems that are formulated as
mixed-integer programs (MILPs). A wide variety of combinatorial optimization
problems can be formulated as MILPs, for which globally optimal solutions can
be generated with standard, commercial optimization software. We have recently
demonstrated that MILPs can be effectively applied to solve moderately large
sensor-placement problems [1] and that they can be used to express many sensor
placement quality measures [10].

We show how to exploit the linear structure of a MILP model to quantify the
impact of data uncertainty in the objective function on the value of the globally
optimal solution. Two sensor placement objectives illustrate our analysis: (1) min-
imize expected population exposed (PE), and (2) minimize the expected portion
of the network that becomes contaminated (NC).

We first consider models in which uncertainty can be expressed as a random
variable. In several scenarios, it is possible to use properties of these random vari-
ables to formulate deterministic MILPs that minimize the expected performance
measure. Thus, we do not need to apply more costly methods that perform op-
timization under uncertainty (e.g., search methods that use samples from the
random variables to identify descent directions).

We also consider the case where data uncertainties are bounded within a range
of values. For example, this model of uncertainty might reflect limited data pre-
cision. For objectives like NC, we show that the solution to a robust min-max
formulation is exactly the solution to the original MILP. More complex objectives,
like PE, contain terms with multiplicative uncertainties. If considered indepen-
dently, these uncertainties can again be quantified in a straightforward manner.
Further, we show that assessing the impact of these uncertainties together requires
only the solution of an alternative MILP formulation.

Section 2 describes integer programming formulations for the Min Network
Contaminated and Min Population Exposed sensor placement problems. Section 3
describes random uncertainties, and Section 4 gives three models of interval un-
certainty (see [11] for related analysis of minimum spanning trees under interval
uncertainty). Kouvelis and Yu [4] provide general background on robust discrete
optimization. The Mathematical Programming Glossary [2] provides succinct def-
initions of mathematical programming terms.
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2 Integer Programming Models
We now describe two MILP models of sensor placement that we use to illustrate
our robust model analysis. We model an attack as the release of a large volume of
harmful contaminant at a single point in the network at a single injection site. We
assume that typical water demands throughout a day occur in one of a fixed set of
patterns, P = {1, . . . , Np}. The model makes no assumptions about how long each
pattern holds, how often it appears, or the order in which the patterns appear.
We use EPANET [8] to determine an acyclic water flow given a set of available
water sources, assuming each demand pattern holds steady for sufficiently long.
Further, we ignore the magnitude of water velocity, requiring only its direction
and that it be sufficiently large.

For any particular attack, we assume that all points “downstream” of the re-
lease point can be contaminated. That is, water moves quickly to the demand
points. This model assumes perfect sensors that raise a general alarm precisely
when contamination passes. This is a vast simplification of water transport in
real networks, but the issues of data uncertainty still apply in more realistic IP
models.

The two MILP models we consider here differ by their objectives. Oth-
erwise, they are defined on a common undirected graph, G = (V, E), where
V = {v1, . . . , vn} and E = {e1, . . . , em}. There are no parallel edges, so we
can denote e by its endpoints, {vi, vj}. A pattern defines a direction of flow on
edges of this graph such that the graph becomes acyclic, and we denote the start
and finish nodes of an edge for pattern p by V s(e, p) and V f (e, p), respectively.
An edge may have no flow during a particular pattern, in which case it is oriented
arbitrarily and the flow is tagged as zero. A path from node vi to vj for pattern p is
a sequence of edges, ej1 , . . . , ejk

, such that they have positive flow and their orien-
tation is downstream: V s(ej1 , p) = vi, V f (ejk

, p) = vj, and V f (ejl
, p) = V s(ejl+1

, p)
for l = 1, . . . , k−1. If such a path exists, we say vj is reachable from vi for pattern
p, and we let R = {(i, j, p) : vj is reachable from vi for pattern p}.

The primary decision variables for optimization are where to place the sensors:
se = 1 if a sensor is placed at edge e and otherwise se = 0. We suppose that
we have a limited number of sensors, so we have

∑
e∈E se ≤ Smax. Secondary

decision variables are xijp, for (i, j, p) ∈ R, such that xijp = 1 if node vj becomes
contaminated, given an attack at node vi for pattern p; otherwise, xijp = 0.

If an attack occurs at node vi for pattern p, vi becomes contaminated, which
in turn contaminates its outgoing arcs. The downstream effect continues until an
edge is reached that senses the contamination. From that point downward, there
is no undetected contamination; otherwise, a node is contaminated whenever any
one of its ingoing arcs is contaminated. The following constraints represent this
and comprise the MILP feasible region:

x ∈ {0, 1}|R|, s ∈ {0, 1}|E|, xiip = 1,
∑
e∈E

se ≤ Smax, (1)

xijp ≥ xikp − se for {(i, j, p), (i, k, p) ∈ R, V s(e, p) = k, and V f (e, p) = j}. (2)
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Constraints (1) require variables to be binary; however, this could be relaxed
for the contamination variables x because they will be binary in computed optimal
solutions anyway. The constraint xiip = 1 (for all i, p) means that node vi is
contaminated if it is attacked when the network flow is using pattern p.

Constraint (2) requires node vj to be contaminated if it is a descendent (under
pattern p) of attacked node vi, and there is some path from vi to vj that has
no sensor. To see this, note that such a constraint forces xijp = 1 if, and only
if, the following conditions are met: (1) there is a predecessor node vk that is
contaminated by the attack (xikp = 1); and (2) the connecting edge (e = (vk, vj))
has no sensor (se = 0). If either of these conditions does not hold, xijp is not
constrained to be 1; the minimization will choose xijp = 0 if all such constraints
allow it.

In general, we do not know a priori where or when an attack will occur, so
we consider a set of weighted attack scenarios. Each scenario consists of an at-
tack point and a flow pattern. Attack weights may reflect expert knowledge of
network vulnerabilities. We consider two objectives for which we wish to min-
imize a weighted sum of values of some outcome, given the attack weights αip.
The αip may be considered probabilities, but our analysis does not depend upon
that interpretation of the uncertainty. In fact, our robust analysis addresses the
uncertainty of these weights.

The first objective is the portion of the extent of contamination, measured
by the lengths of the pipes represented by the edges of the network. Edge e
becomes contaminated under flow pattern p if node V s(e, p) is contaminated. Let
Es(j, p) = {e ∈ E : V s(e, p) = j and e has positive flow}. Then, given the length
of a pipe is L(e), let λjp =

∑
e∈Es(j,p) L(e). The (weighted) total amount of

contaminated pipe is given by

MILP-NC: minimize NC =
∑

(i,j,p)∈R
αipλjpxijp subject to (1), (2). (3)

The second objective is the population exposed to the contaminant, using esti-
mates of populations at nodes. Let δjp be the population at node vj for pattern
p. Then, the population exposed to contamination is given by

MILP-PE: minimize PE =
∑

(i,j,p)∈R
αipδjpxijp subject to (1), (2). (4)

Both of these objectives have the structure of two parameters defining the
coefficient of the contamination variables x, which depend on the decision variables
se. The NC objective is defined by parameters α and λ, though we only expect
significant uncertainty in the attack probabilities α. The PE objective is a product
of two uncertain parameters, since the population values δjp are also estimated
values.

3 Random Uncertainties
A natural method for modelling data uncertainties is to describe the likely values
of data using random variables. For example, many sources of data can be effec-
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tively characterized by a Normal random variable, whose mean value and standard
deviation are empirically estimated. Suppose that we can model the attack prob-
abilities and population densities at different sites and for different patterns as
random variables Aip and Djp respectively. Then a standard method to account
for data uncertainty is to consider the expected value of the model objective. For
example, we can rewrite the PE objective as

min E


 ∑

(i,j,p)∈R
AipDjpxijp




and the NC objective as

min E


 ∑

(i,j,p)∈R
Aipλjpxijp


 .

These objectives are the only place where this data is used, so the constraint
matrix is unchanged. Also, we assume that the length data λjp is well-known and
thus not considered in our robust analysis. In general, these expected-performance
objectives may require the use of optimization solvers that directly address these
uncertainties. However, we describe assumptions for which these expected value
objectives can be re-cast to simple linear objectives by exploiting properties of the
probability distributions for Aip and Djp.

Because the λjp parameters are certain (constant) and the xijp are fixed for a
given sensor placement, we can rewrite the NC objective as

min
∑

(i,j,p)∈R
E(Aip)λjpxijp.

Consequently, our robust formulation can be simply recast as the nonrandom NC
MILP model using αip = E(Aip).

We now consider the PE objective. Suppose that we model population den-
sity at each site with a stable, baseline component plus an uncertain component
that is uniformly distributed across all sites. This may be a reasonable model in
contexts where most of the population is stable (e.g. where it can be estimated
with Census data) and we have limited information to predict the distribution of
the uncertain component of the population. Let δ̂jp be the baseline population
estimate, which accounts for a fraction bp of the total population Dp =

∑
j δjp

(that is,
∑

j δ̂jp = bpDp). Let D̂jp be the random variables that account for the
remaining uncertainty.

In a malicious attack, the Aip could depend on the baseline population values
δ̂ip, but they will be independent of the random fluctuations D̂jp. For example,
an attacker may be more likely to attack a mall because a lot of people go there,
regardless of the exact population on a given day. Then the PE objective becomes

P∑
p=1

n∑
i=1

∑

j:(i,j,p)∈R
E

[
Aip

(
δ̂jpxijp + D̂jpxijp

)]
.
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Using linearity of expectations, the objective is

P∑
p=1

n∑
i=1

∑

j:(i,j,p)∈R

(
δ̂jpxijpE[Aip] + xijpE[Ajp ∗ D̂jp]

)
.

Because the Ajp are independent of the population fluctuations, this becomes

P∑
p=1

n∑
i=1

∑

j:(i,j,p)∈R

(
δ̂jpxijpE[Aip] + xijpE[Ajp] ∗ E[D̂jp]

)
.

We have
∑

j D̂jp = (1− bp)Dp for all instances of the D̂jp variables. If we assume
that the D̂jp are uniformly distributed with this constraint, then for a given p
they are symmetric with respect to j so they all have the same mean. Thus,
E(D̂jp) = (1 − bp)Dp/np (where np is the number of nodes j for which there is
population uncertainty in time period p). Our objective function simplifies to

P∑
p=1

n∑
i=1

∑

j:(i,j,p)∈R

(
δ̂jpxijpE[Aip] + xijpE[Ajp](1− bp)Dp/np

)
,

which again has no explicit uncertainties.

4 Interval Uncertainty
Our MILP models for sensor placement have the general form min cx : x ∈
X, where c is uncertain. It is often the case that there is uncertainty in the
coefficients c that cannot be captured by a probability distribution. For example,
these coefficients may be measurements that have limited precision, or they may
reflect quantities that have a definite value that is not known precisely. In these
contexts, we wish to find a solution with minimum worst-case cost over the interval
of uncertainties. We make the general assumption that the total deviation of
our uncertainties is zero; that is, the sum of the parameter values is a known
constant. In particular, this assumption captures the fact that our estimate of
total population is likely to be much better than our estimate of δjp, the population
consuming water at site j in period p.

The next three sections consider three robust optimization models that dif-
fer by how c is restricted. Define the sum-restricted ball about a vector y by
B(y, L, U) = {y′ : L ≤ y′ ≤ U,

∑
k y′k =

∑
k yk}, where we suppose L ≤ y ≤ U .

This is an interval of uncertainty about y with one degree of freedom lost. Thus
our robust optimization problem is to find

min
x∈X

max
c∈B(ĉ,L,U)

cx,

where X is the feasible region for the MILP defined by constraints (1) and (2).
The coefficients in our MILP models can be rewritten as cijp = αipθjp, where

(i, j, p) ∈ R; θjp = λjp in MILP-NC, and θjp = δjp in MILP-PE. We show that
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robust optimization is significantly less expensive if the coefficients θjp are known
with certainty, as is the case for MILP-NC, and if the interval of uncertainty is
expressed as percentage deviations.

We exploit the particular structure of our robust MILP models in the following
analysis. In particular, we consider the linear programming (LP) relaxation of
the inner maximization problem, for which we ignore the constraint that x are
discrete values. The dual of a maximization LP is another LP with a minimization
objective. It is well-known that the minimum value this dual formulation equals
the maximum value of the LP itself, and we exploit this fact in our analysis of the
inner LP. The following lemma shows the structure of the dual LP relaxation for
the inner maximization problem in our robust MILP models.

Lemma 4.1 Consider the problem max yd : d ∈ B(d̂, d, d). The dual linear
program uses variables π for the constant-sum constraint, γ for the lower-bound
constraints, and µ for the upper-bound constraints, and has the form

minπ,γ,µ

{
π

N∑
r=1

d̂r + µd− γd : γ, µ ≥ 0, π + µr − γr = yr for r = 1, . . . , N

}
.

We use this lemma in the proof of Proposition 4.1, and in solving the more general
case in §4.2.

4.1 Unweighted Uncertainty

The unweighted case with percentage deviations considers robust models
for which c ∈ C(ε, ĉ) ≡ B(ĉ, (1 − ε)ĉ, (1 + ε)ĉ) for 0 ≤ ε ≤ 1 and ĉ ≥ 0. The
following proposition proves that the unweighted case with percentage deviations
has a permanent solution [11]. That is, the solution for this problem is independent
of ε for any fixed ĉ.

Proposition 4.1 For each ĉ ≥ 0, consider the family of problems for ε ∈ [0, 1]:

P (ε, ĉ) : min
x∈X

max
c∈C(ε,ĉ)

cx.

Then, every optimal solution to P (0, ĉ) is optimal for every P (ε, ĉ), 0 < ε ≤ 1.

We omit the formal proof here, but here is the rationale. Choose x∗ to minimize
ĉx, and hence also P (0, ĉ), the problem with no uncertainty in ĉ. If there are many
sensors, an optimal solution has only a few contamination variables x∗r = 1. Thus,
c can only increase the cost proportionally (by ε ≤ 1). If there are few sensors,
an optimal solution has only a few x∗r = 0. The same rationale applies to its
complement: min cx = S −max c(1 − x), where S =

∑
r cr =

∑
r ĉr is constant.

If x∗ is balanced such that ĉx∗ u 1
2S, this result follows from a simple analysis of

the cost of the optimal solutions to P (0, ĉ) and P (ε, ĉ).
Proposition 4.1 demonstrates that the solution to the original MILP is the so-

lution to any robust formulation that allows percentage deviations. Consequently,
no additional computational effort is needed to generate a robust solution for these
problems.
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4.2 Linearly Weighted Uncertainty

The linearly weighted case considers robust problems for which cr = ηrθr, ηr

is known, and θ ∈ B(θ̂, θ, θ), where θ = (1− ε)θ̂ and θ = (1 + ε)θ̂, for 0 < ε ≤ 1.
Thus, our robust problem is

min
x∈X

max
θ∈B(θ̂, θ, θ)

∑
r

ηrθrxr.

Let S =
∑

r θ̂r. We apply Lemma 4.1 to obtain one model with all variables
minimizing:

min
x∈X

max
θ∈B(θ̂, θ, θ)

∑
r

ηrθrxr = min {πS+µθ−γθ : x ∈ X, γ, µ ≥ 0, π+µr−γr = ηrxr}.

Now the sum of the equality constraints in this new formulation, weighted by θ̂r,
gives us πS + θ̂(µ− γ) =

∑
r θ̂rηrxr. We thus rewrite this formulation as

min
∑

r

θ̂rηrxr + (θ − θ̂)µ + (θ̂ − θ)γ : x ∈ X, γ, µ ≥ 0, π + µr − γr = ηrxr. (5)

We conclude that solving linearly weighted robust formulations simply requires the
solution of an augmented MILP formulation, which includes an extended objective
and some additional side-constraints on dual variables from the maximization
subproblem.

Alternatively, instead of treating this as one minimization, we can decompose
it and solve the inner maximization problem to obtain θ(x) for each x in the
outer minimization. This can be done simply by sorting the coefficients {ηrxr}
so that η1x1 has the largest value, η2x2 the next largest and so on. We then
transfer weight from the θi with the lightest coefficients to the θi with the heav-
iest coefficients, respecting lower and upper bounds. The worst-case value of θ
has the form θr = (1 + ε)θ̂r = θr for r < k, θr = (1 − ε)θ̂r = θr for r > k, and
θk ≤ θk =

∑
r θ̂−∑

r 6=k θr ≤ θk. We can also take advantage of sorting {ηrxr} once
by putting indices for which xr = 0 last for a particular x. Unlike the unweighted
case, this is algorithmic because the result depends upon η (as well as x). Be-
cause the inner maximization problem has time complexity O(|R| ln |R|), this de-
composition approach may be computationally more efficient than the integrated
formulation in Equation (5). (See [2, 7] for descriptions of using decomposition
for algorithm design in integer programming.)

4.3 Bilinear Weighted Uncertainty

Finally, we consider the bilinear weighted case, where cr = ηrθr, ηr ∈ B(η̂, η, η),
and θr ∈ B(θ̂, θ, θ). Our robust optimization problem is

min
x∈X

max
η∈B(η̂, η, η)
θ∈B(θ̂, θ, θ)

∑
r ηrθrxr.
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Maximizing a bilinear form is a difficult problem, but there are several approaches
that make effective use of simple inequalities (e.g., Ryoo and Sahinidis [9]). We
sketch here a branch-and-bound approach that we are pursuing to obtain a near-
global solution.

Consider for the moment the bilinear subproblem. Let σ(x) = {r : xr = 1} and
let ỹ denote y restricted to σ(x). We can apply McCormick’s linear bounds [6, 9],

max
{
η̃θ̃ + θ̃η̃ − η̃θ̃, η̃θ̃ + θ̃η̃ − η̃θ̃

} ≤ η̃θ̃ ≤ max
{
η̃θ̃ + θ̃η̃ − η̃θ̃, η̃θ̃ + θ̃η̃ − η̃θ̃

}
,

to bound the bilinear objective.
Given this linearization of the bilinear subproblem, we can apply the same

duality analysis used for the linearly weighted case. However, the augmented
MILP now provides only a bound on the value of a robust solution. To refine this
bound, we consider a branch-and-bound process that branches to fix the sensor-
placement variables se (and hence the decision variables xr) and to subdivide the
values of θ̃, θ̃, η̃, and η̃ (to improve the bound on the bilinear subproblem).

5 Conclusions
There are many possible formal objectives for sensor placement that reflect vari-
ous costs and risks of an attack on a network [10]. Previous work has considered
problem formulations that minimize the volume of water consumed before detec-
tion [3], minimize the time to detection [5], and minimize the population exposed
to contaminants before detection [1].

Our analysis of randomized uncertainty and intervals of uncertainty applies to
many of the MILP formulations described by Watson et al [10]. We have shown
that many robust analyses simply require a reformulation or reinterpretation of
the initial MILP problem. Consequently, we expect that these analyses will be
tractable in practical applications. We have also demonstrated that in some spe-
cial circumstances the solution to the initial MILP is in fact a robust solution.

However, finding robust formulations with multiple sources of uncertainty re-
mains a significant challenge. Although we have outlined a strategy for dealing
with bilinear models with uncertain intervals, the practical application of this
strategy remains to be demonstrated. For example, the strategy that we have
outlined requires a customized branching strategy. It cannot be directly solved
with commercial MILP solvers.
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