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1. Methods

In general, our strategy is, whatever (A)MG(e)
method is available adopt it to solve non—linear
elliptic PDEs;

e (Modified) Inexact Newton MG: this requires
solving linear problems with (A)MG(e);

problem: resulting matrices are typically non—
symmetric and possibly indefinite;

(Lu, @) = /a(:c, u)Vu -V dr
Q

Its Jacobian is a convection—diffusion operator
( “nice” convection)

(T (ug)v, ¢) =§f2 [a(z, ug)Vv -V

+vb(ug) - Vo] dx
with

b(ug) = a,(x, ug)Vug.



Method I:. True FAS

For FAS one needs coarse non-linear problems
constructed (algebraically, for unstructured finite
element problems). This includes full MG and
“cascadic” MG.

A coarse non—linear operator, for a coarse finite
element space Vg (constructed by AMGe, for ex-
ample) is defined by

TeETy

where zp and up are averaged values over every
element T.

(LH’U,, 90) = Z a’(xT7 'U/T)/V’U/VQO dx, u,p € Vg,
T

This strategy can be carried out for unstructured
finite element meshes and if access to node coor-
dinates is available, the method of creating coarse
non—linear operators is extendable to more general
non—linearities, like

a(z, u, Vu).



e using standard global coarse spaces;

problem for FAS (and any MQG): if direct coarse
non—linear problems are built, typically the re-
sulting forms are “non—inherited”.

e using special “coarsened away’ global spaces
(reverse to Mitchell, Bank and Holst)

problem: parallelizing for >> 1 processors;
can be overcome by localizing the coarse spaces;

e coarse non—linear problems are solved by Newton-
type method; This leads to a non—linear Schwarz
/ FAS method. Fine—grid smoothing is needed
in general.

problem: choosing appropriate initial iterates
if local coarse non—linear problems are used;

e Oone can solve the non—linearly preconditioned
problem in ASPIN framework;



Method II: Preconditioned non—linear GCG
method

as ‘“‘parameter—free” Inexact Newton method.

Outline:

F(u) = 0.

J(ug) — Jacobian. Let {d;} be a set of search
vectors. Given a current iterate ug one first solves
a non—linear problem for {ag} of small size

(F(uo + ) ogdy), J(ug)d;) = 0.
5

One can use Newton method here.

The new iterate is

ug = ug + Zakdk.
k



The new search direction d is defined by
d:F—Zﬂkdk : (d, dj) = 0, all 3,
k

where r is a preconditioned version of the residual
r = F(ug). If 7~ J(ug)~1r, i.e., an inexact New-
ton direction, the thus preconditioned nonlinear
GCG converges at least as fast as a corresponding
stationary inexact Newton method.

For the preconditioner a natural choice is some
approximation to J(ug)~1r using linear (A)MG(e),
or any of the previous Schwarz methods exploiting
various coarse spaces.



Software

We are pretty much in a ‘research phase” explor-
ing algorithms utilizing all the potential of linear
solvers available from HYPRE.

Our goal, for this project, is to have a general pur-
pose unstructured finite element non—linear elliptic
PDE solver, exploiting o(A)MG(e) algorithms.

Any parallel linear solver available in HYPRE used
as a preconditioner, to solve the Jacobian sys-
tems. If type of problem is appropriate, one can
use BoomerAMG (in parallel).

Generally, our intent is, for general systems of el-
liptic PDEs, that a parallel (o) AMGe will be used
for parallel tests (hopefully soon).

Current status:

Preliminary work has been done using sequential
codes for solving unstructured non-linear elliptic
finite element problems, implementing:



e FAS with standard agglomeration based AMGe
coarsening;

e FAS-Schwarz, based on global coarsened away
spaces;

e preconditioned non—linear GCG with inexact
Jacobians used as a preconditioner; the Jaco-
bians were preconditioned with additive Schwarz
-type (linear) utilizing global coarsened away
spaces, and non—inherited forms;

e non—linear preconditioning in ASPIN framework
utilizing local coarsened away spaces. The lat-
ter are in process of testing in collaboration
with Xiao-Chuan Cai and Leszek MarcinkowskKi.

The problems we have seen were mentioned above.
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Collaboration

Our main collaborators are:

e scalable linear solvers team, CASC—LLNL:
linear solvers part;

e UC Boulder:
Steve McCormick, Tom Manteuffel, John Ruge
on the MG part;

e UC Boulder:
Xiao-Chuan Cai and Leszek Marcinkowski on

the Schwarz part.
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4. Examples of coarse elements

formed by element agglomer-

Sequence of increasingly coarse elements,
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Partitioned mesh of 6,400 fine elements into 16 subdomains: each color

represents subdomain of fine—grid elements.
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An agglomeration based coarsened away mesh: 6,400 fine elements, 456
agglomerated elements, 400 subdomain elements. Each color represents

an agglomerate.



Partitioned mesh of 6,400 fine elements into 12 subdomains: each color

represents subdomain of fine—grid elements.
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Local coarsened away mesh.
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Local coarsened away mesh.
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