// $Id: AKatSystemOfUnits.hh,v 1.1 2002/07/18 21:25:11 kamland0 Exp $ // Copied from CLHEP for use within AKat // Id: SystemOfUnits.h,v 1.10 1998/09/14 13:26:24 evc Exp // ---------------------------------------------------------------------- // HEP coherent system of Units // // This file has been provided by Geant4 (simulation toolkit for HEP). // // The basic units are : // millimeter (millimeter) // nanosecond (nanosecond) // Mega electron Volt (MeV) // positron charge (eplus) // degree Kelvin (kelvin) // the amount of substance (mole) // luminous intensity (candela) // radian (radian) // steradian (steradian) // // Below is a non exhaustive list of derived and pratical units // (i.e. mostly the SI units). // You can add your own units. // // The SI numerical value of the positron charge is defined here, // as it is needed for conversion factor : positron charge = e_SI (coulomb) // // The others physical constants are defined in the header file : // PhysicalConstants.h // // Authors: M.Maire, S.Giani // // History: // // 06.02.96 Created. // 28.03.96 Added miscellaneous constants. // 05.12.97 E.Tcherniaev: Redefined pascal (to avoid warnings on WinNT) // 20.05.98 names: meter, second, gram, radian, degree // (from Brian.Lasiuk@yale.edu (STAR)). Added luminous units. // 05.08.98 angstrom, picobarn, microsecond, picosecond, petaelectronvolt #ifndef AKAT_SYSTEM_OF_UNITS_H #define AKAT_SYSTEM_OF_UNITS_H // // Length [L] // static const Double_t millimeter = 1.; static const Double_t millimeter2 = millimeter*millimeter; static const Double_t millimeter3 = millimeter*millimeter*millimeter; static const Double_t centimeter = 10.*millimeter; static const Double_t centimeter2 = centimeter*centimeter; static const Double_t centimeter3 = centimeter*centimeter*centimeter; static const Double_t meter = 1000.*millimeter; static const Double_t meter2 = meter*meter; static const Double_t meter3 = meter*meter*meter; static const Double_t kilometer = 1000.*meter; static const Double_t kilometer2 = kilometer*kilometer; static const Double_t kilometer3 = kilometer*kilometer*kilometer; static const Double_t micrometer = 1.e-6 *meter; static const Double_t nanometer = 1.e-9 *meter; static const Double_t angstrom = 1.e-10*meter; static const Double_t fermi = 1.e-15*meter; static const Double_t barn = 1.e-28*meter2; static const Double_t millibarn = 1.e-3 *barn; static const Double_t microbarn = 1.e-6 *barn; static const Double_t nanobarn = 1.e-9 *barn; static const Double_t picobarn = 1.e-12*barn; // symbols static const Double_t mm = millimeter; static const Double_t mm2 = millimeter2; static const Double_t mm3 = millimeter3; static const Double_t cm = centimeter; static const Double_t cm2 = centimeter2; static const Double_t cm3 = centimeter3; static const Double_t m = meter; static const Double_t m2 = meter2; static const Double_t m3 = meter3; static const Double_t km = kilometer; static const Double_t km2 = kilometer2; static const Double_t km3 = kilometer3; // // Angle // static const Double_t radian = 1.; static const Double_t milliradian = 1.e-3*radian; static const Double_t degree = (3.14159265358979323846/180.0)*radian; static const Double_t steradian = 1.; // symbols static const Double_t rad = radian; static const Double_t mrad = milliradian; static const Double_t sr = steradian; static const Double_t deg = degree; // // Time [T] // static const Double_t nanosecond = 1.; static const Double_t second = 1.e+9 *nanosecond; static const Double_t millisecond = 1.e-3 *second; static const Double_t microsecond = 1.e-6 *second; static const Double_t picosecond = 1.e-12*second; static const Double_t hertz = 1./second; static const Double_t kilohertz = 1.e+3*hertz; static const Double_t megahertz = 1.e+6*hertz; // symbols static const Double_t ns = nanosecond; static const Double_t s = second; static const Double_t ms = millisecond; // // Electric charge [Q] // static const Double_t eplus = 1. ; // positron charge static const Double_t e_SI = 1.60217733e-19; // positron charge in coulomb static const Double_t coulomb = eplus/e_SI; // coulomb = 6.24150 e+18 * eplus // // Energy [E] // static const Double_t megaelectronvolt = 1. ; static const Double_t electronvolt = 1.e-6*megaelectronvolt; static const Double_t kiloelectronvolt = 1.e-3*megaelectronvolt; static const Double_t gigaelectronvolt = 1.e+3*megaelectronvolt; static const Double_t teraelectronvolt = 1.e+6*megaelectronvolt; static const Double_t petaelectronvolt = 1.e+9*megaelectronvolt; static const Double_t joule = electronvolt/e_SI; // joule = 6.24150 e+12 * MeV // symbols static const Double_t MeV = megaelectronvolt; static const Double_t eV = electronvolt; static const Double_t keV = kiloelectronvolt; static const Double_t GeV = gigaelectronvolt; static const Double_t TeV = teraelectronvolt; static const Double_t PeV = petaelectronvolt; // // Mass [E][T^2][L^-2] // static const Double_t kilogram = joule*second*second/(meter*meter); static const Double_t gram = 1.e-3*kilogram; static const Double_t milligram = 1.e-3*gram; // symbols static const Double_t kg = kilogram; static const Double_t g = gram; static const Double_t mg = milligram; // // Power [E][T^-1] // static const Double_t watt = joule/second; // watt = 6.24150 e+3 * MeV/ns // // Force [E][L^-1] // static const Double_t newton = joule/meter; // newton = 6.24150 e+9 * MeV/mm // // Pressure [E][L^-3] // #ifndef __CINT__ #define pascal hep_pascal // a trick to avoid warnings static const Double_t hep_pascal = newton/m2; // pascal = 6.24150 e+3 * MeV/mm3 #else static const Double_t pascal = newton/m2; // pascal = 6.24150 e+3 * MeV/mm3 #endif static const Double_t bar = 100000*pascal; // bar = 6.24150 e+8 * MeV/mm3 static const Double_t atmosphere = 101325*pascal; // atm = 6.32420 e+8 * MeV/mm3 // // Electric current [Q][T^-1] // // ampere = 6.24150 e+9 * eplus/ns static const Double_t ampere = coulomb/second; static const Double_t milliampere = 1.e-3*ampere; static const Double_t microampere = 1.e-6*ampere; static const Double_t nanoampere = 1.e-9*ampere; // // Electric potential [E][Q^-1] // static const Double_t megavolt = megaelectronvolt/eplus; static const Double_t kilovolt = 1.e-3*megavolt; static const Double_t volt = 1.e-6*megavolt; // // Electric resistance [E][T][Q^-2] // static const Double_t ohm = volt/ampere; // ohm = 1.60217e-16*(MeV/eplus)/(eplus/ns) // // Electric capacitance [Q^2][E^-1] // static const Double_t farad = coulomb/volt; // farad = 6.24150e+24 * eplus/Megavolt static const Double_t millifarad = 1.e-3*farad; static const Double_t microfarad = 1.e-6*farad; static const Double_t nanofarad = 1.e-9*farad; static const Double_t picofarad = 1.e-12*farad; // // Magnetic Flux [T][E][Q^-1] // static const Double_t weber = volt*second; // weber = 1000*megavolt*ns // // Magnetic Field [T][E][Q^-1][L^-2] // // tesla =0.001*megavolt*ns/mm2 static const Double_t tesla = volt*second/meter2; static const Double_t gauss = 1.e-4*tesla; static const Double_t kilogauss = 1.e-1*tesla; // // Inductance [T^2][E][Q^-2] // static const Double_t henry = weber/ampere; // henry = 1.60217e-7*MeV*(ns/eplus)**2 // // Temperature // static const Double_t kelvin = 1.; // // Amount of substance // static const Double_t mole = 1.; // // Activity [T^-1] // static const Double_t becquerel = 1./second ; static const Double_t curie = 3.7e+10 * becquerel; // // Absorbed dose [L^2][T^-2] // static const Double_t gray = joule/kilogram ; // // Luminous intensity [I] // static const Double_t candela = 1.; // // Luminous flux [I] // static const Double_t lumen = candela*steradian; // // Illuminance [I][L^-2] // static const Double_t lux = lumen/meter2; // // Miscellaneous // static const Double_t perCent = 0.01 ; static const Double_t perThousand = 0.001; static const Double_t perMillion = 0.000001; #endif /* AKAT_SYSTEM_OF_UNITS_H */