

New Physics with Dijets at CMS

Selda Esen and Robert M. Harris *Fermilab*

Kazim Gumus and Nural Akchurin Texas Tech

Physics Colloquium at Texas Tech April 20, 2006

- Introduction to the Physics
- CMS Jet Trigger and Dijet Mass Distribution
- CMS Sensitivity to Dijet Resonances
- CMS Sensitivity to Quark Contact Interactions
- Conclusions

Standard Model of Particle Physics

- In the standard model nature contains
 - → 6 quarks
 - $\rightarrow \,$ **u** and **d** quark make nucleons in atom
 - → 6 leptons
 - \rightarrow electrons complete the atoms
 - 4 force carrying particles
 - $\rightarrow \gamma$: electromagnetism
 - \rightarrow W & Z : weak interaction
 - \rightarrow g : color (nuclear) interaction.
 - Higgs particle to give W & Z mass
 - \rightarrow Higgs not discovered yet.
- Tremendously successful.
 - Withstood experimental tests for the last 30 years.
 - → "Tyranny of the Standard Model".
- Why should there be anything else ?
 - Other than the Higgs.

→ Or mass difference between generations?

- How do we unify the forces ?
 - $\rightarrow \gamma$, Z and W are unified already.
 - Can we include gluons? ->
 - Can we include gravity?
 - Why is gravity so weak?
- These questions suggest there will be new physics beyond the standard model.
 - → We will search for new physics with dijets.

a generation?

- Why three nearly identical generations of quarks and leptons?
 - \rightarrow Like the periodic table of the elements, does this suggest an underlying physics?

What causes the flavor differences within

4

Dijets in the Standard Model

- What's a dijet?
- Parton Level
 - → Dijets result from simple 2 → 2 scattering of "partons"
 - → quarks, anti-quarks, and gluons.
- Particle Level
 - Partons come from colliding protons (more on this later)
 - The final state partons become jets of observable particles via the following chain of events
 - \rightarrow The partons radiate gluons.
 - → Gluons split into quarks and antiquarks
 - → All colored objects "hadronize" into color neutral particles.
 - → Jet made of π , k, p, n, etc.
- Dijets are events which primarily consist of two jets in the final state.

- Two types of observations will be considered.
 - Dijet resonances are new particles beyond the standard model.
 - → Quark contact Interactions are new interactions beyond the standard model.
- Dijet resonances are found in models that try to address some of the big questions of particle physics beyond the SM, the Higgs, or Supersymmetry
 - → Why Flavor ? → Technicolor or Topcolor → Octet Technirho or Coloron
 - → Why Generations ? → Compositeness → Excited Quarks
 - → Why So Many Forces ? → Grand Unified Theory → W' & Z'
 - → Can we include Gravity ? → Superstrings → E6 Diquarks
 - → Why is Gravity Weak ? → Extra Dimensions → RS Gravitions
- Quark contact interactions result from most new physics involving quarks.
 - Quark compositeness is the most commonly sought example.

Dijet Resonances

- Produced in "s-channel"
- Parton Parton Resonances
 - → Observed as dijet resonances.
- → Many models have small width Γ
 - → Similar dijet resonances (more later)

Model Name	Х	Color	JP	Γ / (2M)	Chan
E ₆ Diquark	D	Triplet	0+	0.004	ud
Excited Quark	q*	Triplet	1/2+	0.02	qg
Axigluon	А	Octet	1+	0.05	qq
Coloron	С	Octet	1-	0.05	qq
Octet Technirho	$ ho_{T8}$	Octet	1-	0.01	qq,gg
R S Graviton	G	Singlet	2-	0.01	qq,gg
Heavy W	W'	Singlet	1-	0.01	$q_1 \overline{q}_2$
Heavy Z	Ζ'	Singlet	1-	0.01	qq

Quark Contact Interactions

- New physics at large scale Λ
 - Composite Quarks
 - New Interactions
- Modelled by contact interaction
 - Intermediate state collapses to a point for dijet mass << Λ.
- Observable Consequences
 - Has effects at high dijet mass.
 - Higher rate than standard model.
 - Angular distributions can be different from standard model.
 - We will use a simple measure of the angular distribution at high mass (more later).

The Large Hadron Collider

- The LHC will collide protons with a total energy of √s =14 TeV.
 - The collisions take place inside two general purpose detectors: CMS & ATLAS.
- Protons are made of partons.
 - → Quarks, anti-quarks and gluons.
 - Three "valence" quarks held together by gluons.
 - The anti-quarks come from gluons which can split into quarkantiquark pairs while colliding.
- The collisions of interest are between two partons
 - One parton from each proton.
- Also extra pp collisions (pile-up).

$$\frac{d\sigma}{dm} \sim \sum_{a,b} f_a(x_a) f_b(x_b) \frac{d\hat{\sigma}}{dm} (ab \to 12)$$

$$m = \sqrt{\hat{s}} = \sqrt{x_a x_b s}$$
 $\sqrt{s} = 14$ TeV

- Product of 3 probabilities
 - f_a(x_a): parton of type a with fractional momentum x_a.
 - → $f_b(x_b)$: parton of type b with fractional momentum x_b
 - → $\hat{\sigma}(a b \rightarrow 12)$: subprocess cross section to make dijets.
- Falls rapidly with total collision energy, equal to final state mass, m.

8

Dijet Mass from Final State

 $m = \sqrt{E^2 - \vec{p}^2} = \sqrt{(E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2}$

- **QCD** Prediction for Dijet Mass Distribution
 - Expressed as a cross section
 - Rate = Cross Section times Integrated Luminosity (JLdt)
- In Δm = 0.1 TeV for $\int Ldt$ = 1 fb ⁻¹
 - \rightarrow ~1 dijet with m = 6 TeV
 - \rightarrow ~10⁵ dijets with m = 1 TeV
 - \rightarrow ~10⁸ dijets with m = 0.2 TeV
- Will need a trigger to prevent a flood of low mass dijets!

The CMS Detector

ECAL > 26 λ_0

Calorimeter & Jets

춖

- Jets are reconstructed using a cone algorithm
 - Energy inside a circle of radius R centered on jet axis is summed:

 $R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.5$

- This analysis requires jet $|\eta| < 1$.
 - Well contained in barrel.
- Jet energy is corrected for
 - Calorimeter non-linear response
 - Pile-up of extra soft proton-proton collisions on top of our event
 - → Event is a hard parton-parton collision creating energetic jets.
 - Correction varies from 33% at 75 GeV to 7% at 2.8 TeV.
 - → Mainly calorimeter response.

Robert Harris, Fermilab

CMS Jet Trigger

&

Dijet Mass Distribution

Robert Harris, Fermilab

Trigger

- Collision rate at LHC is expected to be 40 MHz
 - 40 million events every second !
 - CMS cannot read out and save that many.
- Trigger chooses which events to save
 - Only the most interesting events can be saved
- Two levels of trigger are used
 - Level 1 (L1) is fast custom built hardware
 - $\rightarrow\,$ Reduces rate to 100 KHz: chooses only 1 event out of 400
 - High Level Trigger (HLT) is a PC farm
 - \rightarrow Reduces rate to 150 Hz: chooses only 1 event out of 700.
- Trigger selects events with high energy objects
 - → Jet trigger at L1 uses energy in a square $\Delta \eta \times \Delta \phi = 1 \times 1$
 - Jet trigger at HLT uses same jet algorithm as analysis.

- The jet trigger table is a list of jet triggers CMS could use.
 - We consider triggers that look at all jets in the Barrel and Endcap
 - → Requires a jet to have $E_T = E \sin\theta$ > threshold to reduce the rate.
 - → Jet triggers can also be "prescaled" to further reduce the rate by a factor of N.
 - \rightarrow The prescale just counts events and selects 1 event out of N, rejecting all others.
- Guided by Tevatron experience, we've designed a jet trigger table for CMS.
 - Chose reasonable thresholds, prescales, and rates at L1 & HLT.
 - Evolution of the trigger table with time (luminosity)
- Driven by need to reconstruct dijet mass distribution
 - To low mass to constrain QCD and overlap with Tevatron.
 - For realistic search for dijet resonances and contact interactions.
- Running periods and sample sizes considered
 - → Luminosity = 10³² cm⁻² s⁻¹. Month integrated luminosity ~ 100 pb⁻¹. 2008 ?
 - → Luminosity = 10³³ cm⁻² s⁻¹. Month integrated luminosity ~ 1 fb⁻¹. 2009 ?
 - → Luminosity = 10^{34} cm⁻² s⁻¹. Month integrated luminosity ~ 10 fb⁻¹. 2010?

- HLT budget is what constrains the jet trigger rate to roughly 10 Hz.
- Table shows L1 & HLT jet E_{T} threshold and analysis dijet mass range.

Rates for Measuring Cross Section (QCD + CMS Simulation)

10⁵

Ultra:PT>400 High: PT>250

Med: PT>120

Trig for L=10³³

1 fb⁻¹

Expected Events per fb^{A-1} 0, 01 0, 01 0, 01 0, 01 0, 01 0, 01 0, 01

10

0

- Stop analyzing data from trigger where next trigger is efficient
- Prescaled triggers give low mass spectrum at a conveniently lower rate.
- Expect the highest mass dijet to be
 - → ~ 5 TeV for 100 pb⁻¹

Dijet Mass Cross Section (QCD + CMS Simulation)

Put triggers together for dijet mass spectrum.

Robert Harris, Fermilab

Systematic Uncertainties

- Jet Energy
 - CMS estimates +/- 5 % is achievable.
 - Changes dijet mass cross section between 30% and 70%
- Parton Distributions
 - CTEQ 6.1 uncertainty
- Resolution
 - Bounded by difference between particle level jets and calorimeter level jets.

- Systematic uncertainties on the cross section vs. dijet mass are large.
 - But they are correlated vs. mass. The distribution changes smoothly.

CMS Sensitivity to

Dijet Resonances

Robert Harris, Fermilab

Motivation

• Theoretical Motivation

- The many models of dijet resonances are ample theoretical motivation.
- But experimentalists should not be biased by theoretical motivations . . .

Experimental Motivation

- The LHC collides partons (quarks, antiquarks and gluons).
 - \rightarrow LHC is a parton-parton resonance factory in a previously unexplored region
 - \rightarrow The motivation to search for dijet resonances is intuitively obvious.

⇔ We <u>must</u> do it.

- → We should search for generic dijet resonances, not specific models.
 - → Nature may surprise us with unexpected new particles. It wouldn't be the first time …
- One search can encompass ALL narrow dijet resonances.
 - → Resonances more narrow than the jet resolution all produce similar line shapes.

- Resonances produced via color force, or from valence quarks in each proton, have the highest cross sections.
- Published Limits in Dijet Channel in TeV :

→ q* > 0.775 (D0) → A or C > 0.98 (CDF) → E_6 Diq > 0.42 (CDF) → ρ_{T8} > 0.48 (CDF) → W' > 0.8 (D0) → Z' > 0.6 (D0) CDF: hep-ex/9702004 D0: hep-ex/0308033

- QCD cross section falls smoothly as a function of dijet mass.
- Resonances produce mass bumps we can see if xsec is big enough.

Signal / QCD

- Many resonances give obvious signals above the QCD error bars
 - Resonances produced via color force
 - \rightarrow q* (shown)
 - \rightarrow Axigluon
 - \rightarrow Coloron
 - $\rightarrow \text{ Color Octet } \rho_{\text{T}}$
 - → Resonances produced from valence quarks of each proton
 → E6 Diquark (shown)
- Others may be at the edge of our sensitivity.

Statistical Sensitivity to Dijet Resonances

- Sensitivity estimates
 - Statistical likelihoods done for both discovery and exclusion
- 5σ Discovery
 - We see a resonance with 5σ significance
 - → 1 chance in 2 million of effect being due to QCD.
- 95% CL Exclusion
 - We don't see anything but QCD
 - Exclude resonances at 95% confidence level.
- Plots show resonances at 5σ and 95% CL
 - Compared to statistical error bars from QCD.

- Uncertainty on QCD Background
 - Dominated by jet energy uncertainty (±5%).
 - → Background will be measured.
- Trigger prescale edge effect
 - Jet energy uncertainty has large effect at mass values just above where trigger prescale changes.
- Resolution Effect on Resonance Shape
 - Bounded by difference between particle level jets and calorimeter level jets.
- Radiation effect on Resonance Shape
 - Long tail to low mass which comes mainly from final state radiation.
- Luminosity

- Cross Section for Discovery or Exclusion
 - → Shown here for 1 fb⁻¹
 - → Also for 100 pb⁻¹, 10 fb⁻¹
- Compared to cross section for 8 models
- CMS expects to have sufficient sensitivity to
 - Discover with 5σ significance any model above solid black curve
 - Exclude with 95% CL any model above the dashed black curve.
- Can discover resonances produced via color force, or from valence quarks.

- Resonances produced by the valence quarks of each proton
 - Large cross section from higher probability of quarks in the initial state at high x.
 - → E6 diquarks (ud → D → ud) can be discovered up to 3.7 TeV for 1 fb⁻¹
- Resonances produced by color force
 - Large cross sections from strong force
 - With just 1 fb⁻¹ CMS can discover
 - → Excited Quarks up to 3.4 TeV
 - $\rightarrow\,$ Axigluons or Colorons up to 3.3 TeV
 - $\rightarrow\,$ Color Octet Technirhos up to 2.2 TeV.
- Discoveries possible with only 100 pb⁻¹
 - Large discovery potential with 10 fb⁻¹

32

- Resonances produced via color interaction or valence quarks.
 - Wide exclusion possibility connecting up with many exclusions at Tevatron
 - → CMS can extend to lower mass to fill gaps.
- Resonances produced weakly are harder.
 - But CMS has some sensitivity to each model with sufficient luminosity.
 - Z' is particularly hard.
 - → weak coupling and requires an anti-quark in the proton at high x.

Sensitivity to Dijet Resonance Models

CMS Sensitivity to

Quark Contact Interactions

Robert Harris, Fermilab

- Observation in mass distribution alone requires precise understanding of QCD cross section.
- Hard to do
 - Jet energy uncertainties are multiplied by factor of ~6-16 to get cross section uncertainties
 - Parton distribution uncertainties are significant at high mass = high x and Q².

- Contact interaction is often more isotropic than QCD.
 - For example, the standard contact interaction among lefthanded quarks introduced by Eichten, Lane and Peskin.
- Angular distribution has much smaller systematic uncertainties than cross section vs. dijet mass.
- But we want a simple single measure (one number) for the angular distribution as a function of dijet mass.
 - See the effect emerge at high mass.

Sensitive Variable for Contact Interactions

- 0.5 0.5 1.0 η = -1 Dijet Ratio is the variable we Jet 1 use Simple measure of the most sensitive part of the angular distribution. Numerator Ζ We measure it as a function of $|\cos \theta^*| \sim 0$ mass. It was first introduced by D0 (hep-ex/980714). Jet 2 Dijet Ratio = **Jet** 1 N(|η|<0.5) / N(0.5<|η|<1) Number of events in which each **Denominator** leading jet has $|\eta| < 0.5$, divided Ζ by the number in which each $|\cos \theta^*| \sim 0.6$, leading jet has $0.5 < |\eta| < 1.0$ usually or We will show systematics on Jet 2 the dijet ratio are small. Jet 2 (rare)

- Lowest order (LO) calculation.
 - Both signal and background.
- Same code as used by CDF in 1996 paper
 - → hep-ex/9609011
 - but with modern parton distributions (CTEQ 6L).
- Signal emerges clearly at high mass
 QCD is pretty flat

Dijet Ratio and Statistical Uncertainty (Smoothed CMS Simulation)

- Background Simulation is flat at 0.6
 - → Shown here with expected statistical errors for 100 pb⁻¹, 1 fb⁻¹, and 10 fb⁻¹.
- Signals near edge of error bars
 - → Λ~5 TeV for 100 pb⁻¹
 - → Λ~10 TeV for 1 fb⁻¹
 - → Λ~15 TeV for 10 fb⁻¹
- Calculate χ^2 for significance estimates.

Robert Harris, Fermilab

39

Dijet Ratio and Systematic Uncertainty

- Systematics are small
 - The largely cancel in the ratio.
 - Upper plot shows systematics & statistics.
 - Lower plot shows zoomed vertical scale.
- Absolute Jet Energy Scale
 - No effect on dijet ratio: flat vs. dijet mass.
 - Causes 5% uncertainty in Λ . (included)
- **Relative Energy Scale**
 - Energy scale in $|\eta| < 0.5$ vs. $0.5 < |\eta| < 1$.
 - Estimate +/- 0.5 % is achievable in Barrel.
 - Changes ratio between +/-.013 and +/-.032.
- Resolution
 - No change to ratio when changing resolution
 - Systematic bounded by MC statistics: 0.02.
- Parton Distributions
 - We've used CTEQ6.1 uncertainties.
 - Systematic on ratio less than 0.02.

Significance of Contact Interaction Signal

Robert Harris, Fermilab

Left-Handed	Λ^+ for	Λ^+ for	Λ^+ for
Quark Contact	100 pb ⁻¹	1 fb ⁻¹	10 fb ⁻¹
Interaction	(TeV)	(TeV)	(TeV)
95% CL Exclusion	6.2	10.4	14.8
5σ Discovery	4.7	7.8	12.0

- Published Limit from D0: Λ⁺ > 2.7 TeV at 95% CL (hep-ex/980714).
- A can be translated roughly into the radius of a composite quark.

- → r = 10⁻¹⁷ cm-TeV / Λ
- → For Λ ~ 10 TeV, r ~ 10⁻¹⁸ cm
- Proton radius divided by 100,000 !

- We've described a jet trigger for CMS designed from Tevatron experience.
 It will be used to search for new physics with dijets.
- CMS is sensitive to dijet resonances and quark contact interactions
 - → We've presented sensivity estimates for 100 pb⁻¹, 1 fb⁻¹ and 10 fb⁻¹
 - → Capability for discovery (5 σ) or exclusion (95% CL) including systematics.
- CMS can discover a strongly produced dijet resonance up to many TeV.
 - \rightarrow Axigluon, Coloron, Excited Quark, Color Octet Technirho or E₆ Diquark
 - Produced via the color force, or from the valence quarks of each proton.
- CMS can discover a quark contact interaction Λ⁺ = 12 TeV with 10 fb⁻¹.
 Corresponds to a quark radius of order 10⁻¹⁸ cm if quarks are composite.
- We are prepared to discover new physics at the TeV scale using dijets.