Interpreting Energy Technology & Policy Implications

of Climate Stabilization Scenarios

Holmes Hummel, PhD
Interdisciplinary Program on Environment and Resources

Post-doctoral Fellow, Precourt Institute on

Energy Efficiency, Stanford University /\

Faculty Advisors:
John Weyant
Stephen Schneider
Jon Koomey

Gil Masters

Lawrence Berkeley Laboratory
August 24, 2007

Decomposition of mitigation sources for a rapid growth scenario with emissions constrained
to a doubling of CO2 concentrations above pre-industrial levels (A2r-4.5 W/m2)

Scenario constructed by the Greenhouse Gas Initiative of the International Institute for Applied Systems Analysis (Riahi et al, 2006)



Century-Scale Energy & Emissions Scenarios
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What do they mean?

How do I know?

Does it make sense?



Exploring Energy Futures

model agnostic
= Constructing a Wn framework for interpretation

s How do policy interventions affect key drivers of emissions?

= What are the sources of mitigation in stabilization scenarios?

= Accounting for direct equivalent energy accounting
s Insights from analyzing sample energy scenarios
s What is the role of energy efficiency?

s Summary of findings, and your questions
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First, using the familiar Kaya Identity...

GDP = C
P GDP =

Reference: “"Dynamics as Usual” (B2) Stabilization target: 550ppm CO2 Model: MiniCAM



Economic Welfare Energy Intensity Carbon Intensity of
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Economic Welfare Energy Intensity Carbon Intensity of
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Next, using the expanded decomposition...

Reference: “"Dynamics as Usual” (B2) Stabilization target: 550ppm CO2 Model: MiniCAM
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model agnostic
= Constructing a Wn framework for interpretation

s How do policy interventions affect key drivers of emissions?

= Accounting for direct equivalent energy accounting

s Insights from analyzing sample energy scenarios
s What is the role of energy efficiency?

s Summary of findings, and your questions



Basic emissions scenario analysis
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Basic emissions scenario analysis

3) Effect of a policy . _
@ intervention Emissions Profile
2 of a Possible

@ Future World

E Miti_ga_ted

S Emissions

@)

©

= Path to

b Stabilization




What intervention policy is
most frequently applied?

A benevolent omniscient dictator institutes a worldwide
cap-and-trade program in which everyone plays,
no players are obligated to mitigate more than others,

and everyone can mitigate anywhere at anytime with low
transaction costs.

As a result, everyone faces the same global carbon price,
equal to the marginal cost of abatement.

Though this policy is not feasible to implement, it is used as a proxy:

“A global uniform carbon price has been applied as a proxy of pressure
on the system to induce a variety of mitigation measures.”

- van Vuuren, RIVM 2001



Annual CO,-equivalent Emissions (GtC-eq)
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Annual CO,-equivalent Emissions (GtC-eq)

1990

Decomposing Sources of Mitigation

Reference Case:
“Dynamics as Usual”
(B2 SRES)

Stabilization Target:
520ppm CO,-eq
(400ppm CO, only)
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Model: MESSAGE-MACRO (IIASA GGl, 2006)
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Decomposing Sources of Mitigation:
Earlier instances in the literature

Projected Emissions Mitigation
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Comparison with “stabilization wedges” concept

o N B

>
(&
e
-
1]
c
S
/]
i
&
1]
[
=
LT
(7]
7]
o
L

MO N B O o

| | 1 | I
000 2010 2020 2030 2040 2050 2060
Year

Pacala, S. and R. Socolow. 2004. "Stabilization Wedges,” Science, Vol 305

Presents fixed reference and stabilization paths,
then offers mix & match technologies

in units of a “stabilization wedge” (25 GtC).
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Pacala, S. and R. Socolow. 2004. "Stabilization Wedges,” Science, Vol 305
Hanaoka, et al. 2006. Greenhouse Gas Emissions Scenarios Database, NIES. (Fig 3.4)

Uncertainty is fundamental to the problem.
then offers mix & match technologies

in units of a “stabilization wedge” (25 GtC).
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Uncertainty is fundamental to the problem.
Technological innovation paths are interdependent.

in units of a “stabilization wedge” (25 GtC).



Comparison with “stabilization wedges” concept
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Uncertainty is fundamental to the problem.
Technological innovation paths are interdependent.

Proportion and timing of mitigation measures matter.
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Comparison with “stabilization wedges” concept
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Exploring Energy Futures

model agnostic
= Constructing a Wn framework for interpretation

s How do policy interventions affect key drivers of emissions?

= What are the sources of mitigation in stabilization scenarios?

= Accounting for direct equivalent energy accounting

s Insights from analyzing sample energy scenarios
s What is the role of energy efficiency?

s Summary of findings, and your questions



Accounting for the Direct Equivalent method

e The direct equivalent method sets primary energy directly equal to
the heat content of delivered final energy — giving appearance of
100% efficiency.

e The scale of the distortion in @ decomposition increases as more
solar, hydro, and wind power displace fossil fuels. IPCC SRES
scenarios also treat nuclear power as a direct equivalent source.

e Use of data based on the direct equivalent method will result in
inflated indicators for efficiency improvements, overstating actual
reduction in demand.

e Primary energy accounting must be addressed because it affects
results of both the decomposition of key drivers and the
decomposition of mitigation sources.



Global Emissions by Mitigation Category
Direct Equivalent assumption NOT taken into account
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Global Emissions by Mitigation Category
Direct Equivalent assumption taken into account

Reference Case

Demand
Reduction

Direct Equivalent Effect |

Fuel Switching

Carbon

Sequestration
Path to .

Mitigation
Target Non-CO,
gases

Land Use

=
P
Q
e
%
c
Q
0
0
S
LL
o
P
o}
@)
[
S
c
c
<

High Growth (A2r GGI), Stabilization: 670ppm CO,-eq, Model: MESSAGE-MACRO



Exploring Energy Futures

model agnostic
= Constructing a Wn framework for interpretation

s How do policy interventions affect key drivers of emissions?
= What are the sources of mitigation in stabilization scenarios?

= Accounting for direct equivalent energy accounting

s Insights from analyzing sample energy scenarios

s What is the role of energy efficiency?

s Summary of findings, and your questions



Data

Criteria for sample scenarios:
v" Energy system detalil
|\ J

v" At least three different models

2 v" Accessible data
Detailed
stabilization v' Multiple reference cases
scenarios

v (Relatively) Low stabilization levels



Energy Interval Data

v" Primary Energy by Source

v" Final Energy by Type DiSC|OSU I’e

v' End-Use Demand by Sector (/f available)

Emissions

v CO, Emissions by Source (Energy, Industry, Land Use)

v' Carbon Sequestration

v CO, Equivalent Emissions for other greenhouse gases (/f available)

Costs

v" Shadow carbon price

v GDP

v' Marginal abatment cost curve data (/f available)

v' Investment in the energy sector (/f available)

v Aggregate annual energy system costs (/f available)

Demographic
v Population

Electric Power Sector
v' Electricity Generation Output by Fuel Source
v' Primary Energy Input to Electric Power Generation by Fuel Source



Sample Stabilization Scenarios

Scenario Reference @ Stabilization

Study Case Case ISelE
EMF-19 B2 550 CO2 MiniCAM
EMF-19 B2 550 CO2 IMAGE
EMF-19 B2 550 CO2 MSG-MCR
WBGU ALT* 450 CO2 MSG-MCR
WBGU B1* 400 CO2 MSG-MCR
IPCC TAR A2 550 CO2 MSG-MCR
GGl A2 670 CO2 eq MSG-MCR
efe] B2 480 CO2 eq MSG-MCR
efe]! Bl 480 CO2 eq MSG-MCR
MNP B1 400 CO2 IMAGE
IPCC TAR A1B 550 CO2 IMAGE




Impact of model & modeler assumptions:
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Study: Energy Modeling Forum, Study #19



Annual CO, Emissions (GtC)

Impact of Technology Assumptions:
Same Model (MESSAGE-MACRO, 2000-2004)
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Annual CO, Emissions (GtC)

Impact of Technology Assumptions:
Same Model (MESSAGE-MACRO, 2000-2004)

A2-550ppm TAR

1990  (Riahi & Roehrl, 2000) 2100



Impact of technology assumptions:

Similar high growth reference case and stabilization target from
the same model with

Annual CO, Emissions (GtC)

(Riahi & Roehrl, 2000)

Reference: A2 (SRES)
Target: 550 ppm
Model: MESSAGE-MACRO



Impact of technology assumptions:
Similar high growth reference case and stabilization target from

the same model with
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Model: MESSAGE-MACRO Model: MESSAGE-MACRO



Impact of technology assumptions:

Similar high growth reference case and stabilization target from
the same model with

1990 2100
(Riahi, Grubler, & Naki¢enovic, 2006)

Reference: A2 (SRES) multi-gas
Target: 4.5 W/m2 (670ppm ) multi-gas
Model: MESSAGE-MACRO
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model agnostic
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s How do policy interventions affect key drivers of emissions?
= What are the sources of mitigation in stabilization scenarios?
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Annual CO,-equivalent Emissions (GtC-eq)
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Exploring Energy Futures

model agnostic
= Constructing a Wn framework for interpretation

s How do policy interventions affect key drivers of emissions?
= What are the sources of mitigation in stabilization scenarios?

= Accounting for direct equivalent energy accounting
s Insights from analyzing sample energy scenarios

s What is the role of energy efficiency?

s Summary of findings, and your questions



Summary of Findings

Standard practice for data disclosure should provide at /east the fields needed to
identify sources of mitigation and impact on key drivers of emissions.

When sufficient data is disclosed, the two decomposition techniques
demonstrated can be applied to a wide range of energy scenarios to perform
initial validation and assessment of diverse energy futures from a variety of
sources, including bottom-up and top-down models.

The direct equivalent method deserves more attention, even reconsideration (esp.
for nuclear power), and must be taken into account in any policy analysis that
promotes fuel switching.

Modeling teams can apply consistent decomposition algorithms as part of
standard reporting, and if not, third party analysts can do the analysis themselves
(e.g. IEA report on the role of renewables in global energy scenarios).



Summary of Findings

The decomposition techniques are helpful for discerning policy-relevant
implications of scenarios generated with (infeasible) proxy policy interventions.

Application of these decomposition techniques to sample scenarios indicates that
the contribution of energy efficiency is often understated, straining energy supply
options and leading scenarios to deploy high-risk technologies on a large scale.

Environmental and social impacts of most large-scale supply-side mitigation have
not been well investigated. (“"We tend to like best the things about which we
know the least.” - Holdren)

Even when ambitious assumptions about efficiency are taken into account, the
level of effort implied by 400-550ppm stabilization scenarios is staggering.

To convey the challenge and some solutions, common decomposition techniques
can improve transparency, coherency, and comparability of scenario results.
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What quantity of primary energy should be credited with
delivering one unit of final energy?

Primary Final
Energy Energy



Thermal equivalent method: Solar power is treated as if it
is a thermal power plant.

A customary practice:

Primary Final
Energy Energy



Engineering method:

Solar cells convert sunlight with
an average efficiency of

Primary Final
Energy Energy



Direct Equivalent method: Primary energy is set to be equal
to the heat content of the final
energy delivered.

Apparent efficiency:

Primary Final
Energy Energy



In the IPCC SRES scenario report: special Report on | "L
Emissions Scena;lg& e
' v i

The method =
applies to all non-thermal uses of

nuclear and renewable energy.

So the apparent
system efficiency

rises as more of
e these sources are used




Demand Elimination via

Primary Energy Accounting
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