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ABSTRACT

In this second part of a two-part study of recursive filter techniques applied to the synthesis of covariances
in a variational analysis, methods by which non-Gaussian shapes and spatial inhomogeneities and anisotropies
for the covariances may be introduced in a well-controlled way are examined. These methods permit an analysis
scheme to possess covariance structures with adaptive variations of amplitude, scale, profile shape, and degrees
of local anisotropy, all as functions of geographical location and altitude.

First, it is shown how a wider and more useful variety of covariance shapes than just the Gaussian may be
obtained by the positive superposition of Gaussian components of different scales, or by further combinations
of these operators with the application of Laplacian operators in order for the products to possess negative
sidelobes in their radial profiles.

Then it is shown how the techniques of recursive filters may be generalized to admit the construction of
covariances whose characteristic scales relative to the grid become adaptive to geographical location, while
preserving the necessary properties of self-adjointness and positivity. Special attention is paid to the problems
of amplitude control for these spatially inhomogeneous filters and an estimate for the kernel amplitude is proposed
based upon an asymptotic analysis of the problem.

Finally, a further generalization of the filters that enables fully anisotropic and geographically adaptive co-
variances to be constructed in a computationally efficient way is discussed.

1. Introduction

In the first part of this study (Purser et al. 2003, hence-
forth referred to as Part I) we focused on the numerical
methods that could be applied efficiently to the task of
generating spatially homogeneous and horizontally iso-
tropic smoothing kernels on a regular grid. We showed
how carefully constructed high-order quasi-Gaussian re-
cursive filters could overcome some of the well-known
deficiencies of the simpler first-order recursive filters
used in empirical data analysis schemes by Purser and
McQuigg (1982), Hayden and Purser (1995), and dis-
cussed by Lorenc (1997). The most serious problem
with the first-order filters is that, unless iterated many
times, they show a pronounced spurious anisotropy
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aligned with the directions of the numerical grid lines.
The high-order filters of Part I produce more closely
circular contours of amplitude without the need for nu-
merous costly iterations. In addition, we showed how
to improve the treatment of boundaries and noted that
Fujita and Purser (2001) used a generalization of the
cyclic boundary treatment as the basis of one of the
efficient parallelization strategies they tested in a related
context.

The emphasis of this second part of the study is the
generalization and refinement of the methods of Part I
to enable a far richer variety of covariance operators to
be generated with controlled geographic variations. Sec-
tion 2 deals with specific proposals for the construction
of non-Gaussian parameterized families of covariance
models based on linear superposition of the quasi-
Gaussian ‘‘building blocks’’ that the recursive filters of
Part I provide. There are many reasons that Gaussian
forms are convenient in this respect, and some of these
are discussed in Part I. Gaspari and Cohn (1998, 1999)



AUGUST 2003 1537P U R S E R E T A L .

have successfully used efficient compact-support ap-
proximations to Gaussian-shaped covariances in their
implementation of the physical-space statistical analysis
system (PSAS) described in da Silva et al. (1995). Some
of the techniques for synthesizing more general co-
variances from quasi-Gaussian building blocks apply
equally to these direct applications of compactly sup-
ported covariance models. One covariance family that
we have found to be extremely convenient to use and
beneficial in applications comprises bell-shaped distri-
butions with significantly fatter tails than the Gaussian.
We discuss the efficient construction of approximations
to these fat-tailed distributions that allow a broader dy-
namical range of scales in the analysis increments to be
assimilated.

A variation of the characteristic horizontal scale of
the filters allows analysis schemes to adapt to the geo-
graphic variations in the density and quality of the recent
observational data, which clearly are reflected in the
statistical characteristics of the errors of the forecast
background field—the starting point for the new anal-
ysis. Also, for global, and other large-scale, domains,
it is not possible to maintain a uniform resolution ev-
erywhere with an orthogonal coordinate grid, owing to
the intrinsic curvature of the earth. Thus, even were we
to require a covariance of perfectly uniform character-
istic scale in units of true distance, this would neces-
sarily translate to a requirement for a filter of varying
scale in the grid units that are relevant to the numerical
construction of the filter. These matters are dealt with
in section 3 and a proposal for the approximation of the
filter’s amplitude in the case of inhomogeneous filters
is provided in the appendix.

A further important generalization of the covariances
involves deliberately relaxing the artificial constraint of
local isotropy. The advantages in a variational analysis
of not insisting on isotropic covariances are probably
obvious to any practitioner and are discussed in the
recent article by Otte et al. (2001). Studies of the co-
variances implied by four-dimensional variational meth-
ods (e.g., Thépaut et al. 1996) provide objective con-
firmation of the need for such covariances. When the
analysis is performed in a favorably distorted coordinate
system, such as the geostrophic momentum coordinates
used in the study of Desroziers (1997), an anisotropy
in the geographical metric occurs automatically even
while the filter remains ‘‘isotropic’’ relative to the (dis-
torted) grid. In a somewhat analogous way, a meteo-
rological analysis carried out in an isentropic coordinate
framework (e.g., Shapiro and Hastings 1973; Benjamin
1989) automatically provides enhanced vertical reso-
lution in zones of above average static stability where
it is very often beneficial to clarify the more intricate
structures of frontal zones or inversion layers. However,
it is also desirable to be able to acquire a more precise
control over the form and degree of anisotropy assigned
to the covariance kernels than one obtains by relying
on the fortuitous properties of certain predefined co-

ordinate choices. Section 4 describes a new approach
to the construction of general anisotropic covariances,
which we call the ‘‘hexad’’ algorithm. At any given
location, the three-dimensional covariance is synthe-
sized from combinations of six recursive filters that act
along oblique lines of the analysis grid (in two dimen-
sions there is an analogous ‘‘triad’’ algorithm). The sym-
metric ‘‘aspect tensor’’ prescribing the local second mo-
ment structure of the desired covariance can be shown
to have a unique hexad (or triad) representation by line
filters on the given grid. We note that the application
of anisotropic filtering is analogous to a diffusion pro-
cess generalized to posses a diffusivity in the form of
an anisotropic symmetric tensor. The aspect tensor for
a homogeneous diffusion process with diffusivity D act-
ing for a duration, t, is then just twice the product of
D and t. This explicitly diffusive approach is discussed
by Weaver and Courtier (2001) in their extension of the
earlier work of Derber and Rosati (1989), and is another
valid way of considering the problem of generating an-
isotropic Gaussian smoothers. The main advantage of
employing recursive filters is that they tend to require
significantly fewer iterations to achieve the desired
Gaussian form. Our concluding remarks are given in
section 5.

2. Synthesis of a covariance in terms of Gaussians

Let G(x1, x2) denote the kernel of a (quasi-) Gaussian
recursive filter operator of the kind defined by Eq. (3.23)
of Part I. For a univariate covariance constructed di-
rectly from this Gaussian, the amplitude (i.e., the ‘‘var-
iance’’) may be made to vary geographically while pre-
serving the important property of self-adjointness by
modulating the otherwise homogeneous filter before and
after application:

1/2 1/2B(x , x ) 5 w (x )G(x , x )w (x ),1 2 1 1 2 2 (2.1)

where w(x) is the total effective weight at x applied to
the G. However, it has been recognized that objective
analysis using the Gaussian shape to model the co-
variance severely hampers the ability of the analysis
to assimilate the smallest scales of significant back-
ground error. In adverse configurations of the data, the
problem is apt to manifest itself in excessive and dam-
aging extrapolation effects at the edge of isolated data
voids where the analysis strives to fit the surrounding
more densely distributed data smoothly. Lorenc (1981)
provides an illustration of this effect with idealized
data. The small-scale analysis increments are inadver-
tently inhibited when, as with a Gaussian model, the
presumed power spectrum values at moderately large
wavenumbers become much smaller than the values
that the data and experience indicate to be appropriate.
Recall that the power spectrum for a spatially homo-
geneous covariance model is simply the Fourier trans-
form of that covariance. For example, the two-dimen-
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sional Gaussian function of unit integrated weight, and
scale parameter, a,

21 1 x 2 x1 2G (x , x ) 5 exp 2 , (2.2)a 1 2 2 1 2[ ]2pa 2 a

is associated with the power spectrum,

Ĝ (k, l) 5 G (x, 0) exp(2ik · x) dx dya EE a

2a
2 25 exp 2 (k 1 l ) , (2.3)[ ]2

which is itself of Gaussian form and which, therefore,
does possess a rapidly diminishing tail in the spectral
region of total wavenumbers exceeding a few times
the ‘‘characteristic wavenumber,’’ (1/a). Clearly, the
ideal remedy would be the representation of the actual
covariance operator (whatever that is); at least it
should be possible, within the space of isotropic co-
variances, to find one possessing more appropriate tail
characteristics, although this almost certainly neces-
sitates exploring options other than the Gaussian fam-
ily. In principle, however, by the methods of Laplace
transforms, it should be possible to synthesize almost
any practical isotropic covariance profile as a super-
position of Gaussian components, as is noted by
Schoenberg (1938) and more recently discussed by
Gneiting (1999):

` 2 2 2a a a
2 2B̂(k, l) 5 w exp 2 (k 1 l ) d . (2.4)E 1 2 1 2[ ]2 2 20

In practice, we would wish to approximate the general
superposition (2.4) by a discrete approximation involv-
ing many Gaussian constituents. That is,

M ap 2 2B̂(k, l) 5 w exp 2 (k 1 l ) , (2.5)O p [ ]2p

where M ø 5 typically. Given that the individual
Gaussian components are positive definite, then B̂ is

also, provided the weights wp are all non-negative (in
general, a positive superposition of positive definite
operators is itself positive definite). We would also like
to confine ourselves to constructions generalizing this
type so that, in the spatial domain, the combination
can be expressed in a way that does not jeopardize the
self-adjointness that the iterative solution algorithms
depend on. The appropriate form in the spatial domain
is therefore

M

1/2 1/2B(x , x ) 5 w (x )G (x , x )w (x ). (2.6)O1 2 p 1 a 1 2 p 2p
p

Note that, although in practice we should expect the
weights wp to vary smoothly in space, the self-adjoint-
ness and positive definiteness of this construction hold
regardless. The profile of weights must be regarded as
samples, at the discrete scales selected, of an underlying
continuous weight profile. The density of selected scales
per ‘‘octave’’ (the term we shall use for a change by a
factor of 2 in a scale or a wavenumber) is something
we must determine according to the smoothness of the
continuous weight profile in the log-scale domain. With
an adequate scale resolution, it then becomes possible
to change the overall scale progressively across the ex-
tent of a large domain without appreciably altering (ex-
cept by linear contraction or expansion) the intended
shape of the covariance profile.

One of the simplest general families of scale profiles
accommodating the requirement that the sampled weights
wp all be non-negative is what we shall call the ‘‘hyper-
Gaussian’’ family of functions. For the two-dimensional
isotropic hyper-Gaussian functions normalized to have
unit integrals, a generic member of this family is char-
acterized by a scale parameter, s, and a shape parameter,
g. One may regard each member function as being a
continuous superposition of isotropic Gaussians of hor-
izontal scales exp(s) according to a weighting profile in
s that is itself of a Gaussian form, centered on log(s)
and with a dispersion parameter in s of g:

2` 21 1 (s 2 logs) 1 1 x
H (x) 5 exp 2 exp 2 ds. (2.7)s,g E 1 2[ ] [ ]2 g 2p exp(2s) 2 exp(s)Ï2pg2`

Note that, in the limiting case, g 5 0, this model reverts
to pure Gaussian form.

Figure 1a illustrates the radial profile of the corre-
lation implied by this covariance model for g 5 0, 0.1,
0.2, and 0.3. The parameter g provides control over what
we may refer to, following statistical parlance, as the
‘‘kurtosis’’ of the distribution, which is a quality of the
response shape sensitive primarily to the nondimen-
sionalized fourth moment, as defined below. Suppose

we define unidirectional moments of an isotropic dis-
tribution, H(x):

mm 5 H(x)x dx dy. (2.8)m EE
Thus, for the normalized Gaussian, Ga, we have the
moments, m0 5 1, m2 5 a2, and m4 5 3a4. Since the
construction (2.7) is a linear superposition of Gaussians,
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and each moment is a linear functional of the distri-
bution, we find that, for the hyper-Gaussian with shape
parameter g, the corresponding moments are m0 5 1,
m2 5 s2 exp(2g) and m4 5 3s4 exp(8g). Then, if we
adopt the definition of kurtosis to be the nondimensional
quantity,

m m0 4k 5 , (2.9)
2(m )2

we find that the kurtosis for the hyper-Gaussian of shape
parameter g is

k 5 3 exp(4g).g

As a generic shape parameter, the kurtosis has its lim-
itations. In particular, it is generally not appropriate to
define the kurtosis of a distribution that has regions of

negative values, for example, covariances with negative
sidelobes such as those defined below.

A family of covariances whose profiles possess negative
sidelobes can be generated by a very similar superposition.
We do this by replacing the Gaussian basis by the cor-
responding functions obtained by taking the negative La-
placian of each Gaussian. The resulting covariances,

2H9 (x) 5 2¹ H (x),s,g s,g (2.10)

have the correlation profiles depicted in Fig. 1b. In terms
of the filtering operations represented by these profiles,
the application of the Laplacian operator will require
some extra cost.

A further consequence of the superposition property
is that the power spectra of the hyper-Gaussian, and
its negative Laplacian, are expressible as simple in-
tegrals:

` 21 1 (s 2 logs) 1
2Ĥ (k) 5 exp 2 exp 2 [exp(s)k] ds and (2.11a)s,g E 5 6[ ]2 g 2Ï2pg2`

` 21 1 (s 2 logs) 1
2 2Ĥ9 (k) 5 k exp 2 exp 2 [exp(s)k] ds. (2.11b)s,g E 5 6[ ]2 g 2Ï2pg2`

These power spectrum families are shown, for the
same range of shape parameters as before, in Figs. 2a
(for Ĥ) and 2b (for Ĥ9). Note the dramatic effect on
the power at small scales (large wavenumber) that
results from even small positive values of the shape
parameter, g .

The natural question that now arises is how fine a
resolution in the log scale, s, is required to adequately
represent these covariance models by the approxima-
tions that replace the integral representations (with re-
spect to s) by discrete summations. This can be answered
by observing how far the discrete approximations’ pow-
er spectra depart from the exact integral representations’
power spectra. In practice, we find that, for g 5 0.3,
about three scales per octave appears to be adequate.
For smaller g it is prudent to increase this density of
discrete scales. In the context of a multigrid construction
(discussed in Part I), it is clearly convenient numerically
to have an integer number of discrete smoothing scales
of the basic Gaussians in each octave, or, in other words,
to have the same whole number of smoothing scales per
grid of the multigrid hierarchy.

3. Inhomogeneous generalizations

In this section we treat cases in which the grid remains
orthogonal and smooth in terms of its resolution, but
not necessarily uniform or without curvature. At the
same time, we treat the case in which the filter remains
locally isotropic, but whose smoothing scale is permit-

ted to vary geographically. Polar grids, such as plane
polars or global latitude and longitude grids, possess
special rotational symmetries that can be exploited in
the case of the spatially homogeneous smoothing filters
that respect those symmetries. But polar grids also pre-
sent unique difficulties involving the polar singularities
themselves, which then require special corrective mea-
sures to be applied to the filters. We pay attention to
these problems in this section and suggest some of the
remedies that are possible by exploiting the analogy
between recursive filtering and a general diffusion pro-
cess. In this regard, the generalized recursive filters can
be regarded as accelerated numerical solvers for ap-
proximating the action of inhomogeneous diffusion.
These methods can therefore be considered consistent
alternatives to the direct application of diffusion oper-
ators proposed by Derber and Rosati (1989) and recently
generalized by Weaver and Courtier (2001).

a. Inhomogeneities of grids or filter scales

One should not be led to believe that our construction
of quasi-Gaussian filters is necessarily restricted to per-
fectly uniform Cartesian grids. On a smoothly varying
nonuniform grid in one dimension, the tridiagonal dis-
cretization of the differential operator d2/dx2, and poly-
nomials of the discretization by which the requisite pow-
ers of d2/dx2 are approximated, still lead to banded ma-
trices that, as shown below, can be rendered symmetric
by a similarity transformation with a diagonal matrix
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FIG. 1. (a) Cross-sectional profiles of the fat-tailed ‘‘hyper-Gaussian’’ covariance models defined
in section 5 for a range of shape parameters g . (b) The result of applying the negative Laplacian,
and renormalization of amplitude, to these hyper-Gaussian functions.

related to the metrical properties of the grid. A power,
i, of the simplest tridiagonal representation of a second
derivative operator results in a band matrix of 2i 1 1
diagonals. Also, we can generalize the conditions of
homogeneity of the smoothing scales to incorporate the
effects of a scale that can vary smoothly across the grid,
again, without invalidating the property of self-adjoint-
ness. However, this additional generalization requires
that, in all appearances of the operator, [2(a2/2)d2/dx2],
in the counterpart to the polynomial (3.8) of Part I, a
form of the second derivative factor is substituted that
is self-adjoint even when a is a function of x. Of the
qualifying possibilities, the one that is most convenient
in practice and that leads to a substance-conserving filter
is the one most closely identified with the operation of
a diffusive process:

2d a (x) d
2 . (3.1)

dx 2 dx

The operator, (3.1), would be appropriate when the
grid lines along which x varies are all parallel but, in a
general orthogonal curvilinear grid, this is no longer
true. The final generalization we add in this section is
the accommodation of grids with converging or diverg-
ing grid lines. We do this by including a metric term,
t, whose reciprocal is the density of x-grid lines so that
t itself may be thought of as the line or area measure

(according to whether the grid is two- or three-dimen-
sional) of the interface orthogonal to the grid line and
attributed to it in finite-difference operations. Using par-
tial derivatives to emphasize the implied multidimen-
sionality, the operator we need to generalize (3.1) is

21 ] a (x) ]
2 t , (3.2)

t ]x 2 ]x

which is self-adjoint in the sense of an inner product
defined

(s, t) [ s(x)t(x)t (x) dx. (3.3)E
Let xi be the main grid coordinates for integers i and

let the intermediate staggered grid of points such as
xi11/2 be a smooth interpolation from it. Likewise, by
smooth interpolation, we assume a and t to be available
at the main and staggered grids. Define

dx 5 x 2 x , (3.4)i i11/2 i21/2

dx 5 x 2 x . (3.5)i11/2 i11 i

Redefining the scale parameter s 5 a/dx as in Part I,
the simplest consistent discretization of the operator
(3.2) is



AUGUST 2003 1541P U R S E R E T A L .

FIG. 2. Power spectra in log-linear coordinates for the covariances depicted in Fig. 1. (a) The
hyper-Gaussians and (b) the negative Laplacians of the hyper-Gaussians.

21 ] a (x) ]s
2 t[ ]t ]x 2 ]x i

2 21 t a (ds ) t a (ds )i21/2 i21/2 i21/2 i11/2 i11/2 i11/2ø 2[ ]2t dx dx dxi i i21/2 i11/2

1
2[ [n s (2s 1 s )i21/2 i21/2 i21 i2ni

21 n s (s 2 s )], (3.6)i11/2 i11/2 i i11

where

n 5 t dxi i i (3.7)

defines the local grid cell measure (area or volume). We
can relate this operator to a tridiagonal matrix, K, that
serves to generalize the K of Eq. (3.1) of Part I. A
representative row, i, of K, is defined by

2(ns )i21/2K 5 2 , (3.8a)i,i21
2 2Ï(ns ) (ns )i i21

2 2(ns ) 1 (ns )i21/2 i11/2K 5 , (3.8b)i,i 2(ns )i

2(ns )i11/2K 5 2 , (3.8c)i,i11
2 2Ï(ns ) (ns )i i11
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in terms of which, the finite-difference operator of (3.6)
is obtained:

21 ] a (x) ]s 1 1
2 t ø sKsÏn s , (3.9)1 2[ ]t ]x 2 ]x 2 Ïni i

where s and are the diagonal matrices formed fromÏn
the values si and . The components of the matrixÏni

K obey the approximation

[K , K , K ] ø [21, 2, 21]i,i21 i i,i11 (3.10)

very closely when a, dx, and t are all smooth and slowly
varying in x, tending to these values in the limiting case
of constant a, dx, and t. Having found a consistent self-
adjoint, but low-order-accurate numerical approxima-
tion to the appropriate second derivative, the suggested
refinement of accuracy available through the use of the
coefficients b1,j defined in Part I is

n21 ] a (x) ] 1 1
j2 t ø s b K sÏn. (3.11)O 1, j1 2t ]x 2 ]x 2 j51Ïn

Taking the Taylor series for the exponential of this op-
erator, but truncating all the terms composing matrices
of half-bandwidth exceeding n (as discussed in Part I,
n is typically four to obtain results closely approxi-
mating the Gaussian shape), we obtaining the sought-
for generalization of in Eq. (3.12) of Part I:D*(n)

n1 s
jD* ø exp b K s Ïn. (3.12)O(n) 1, j1 22 j51Ïn

While the coefficient-finding method of appendix A
of Part I is no longer applicable in the general inho-
mogeneous case, Cholesky factorization is still possible,
since at least the matrix sandwiched between diagonals
1/ and of (3.12) remains symmetric. This fac-Ïn Ïn
torization provides the means to construct the associated
advancing and backing recursive filters. However, these
filters now have coefficients varying in space and so are
slightly more complicated to apply. Also, the method
of setting end conditions described in appendix B of
Part I can no longer accurately simulate the indefinite
continuation of the grid beyond a boundary in general.
In practice, we apply those techniques as if the smooth-
ing parameters at the boundary point in question are the
values everywhere and we then find that the imperfec-
tions that result are often barely noticeable.

In order to control the amplitude of the covariance
synthesized from inhomogeneous filters of the kind we
have described we need to estimate, for each point in
the domain, the amplitude of the result of applying the
sequence of basic filters to a unit impulse located at this
same point. The homogeneous case conforms to the
Gaussian model. The Gaussian model with constant
scale parameter a for one direction corresponds to dif-
fusion in this direction with ‘‘diffusivity’’ D for ‘‘time’’
t, when

22Dt 5 a (3.13)

and the impulse-response value of the result is just
(4pDt)21/2. In more than one dimension, the diffusivity
D generalizes to a tensor (Weaver and Courtier 2001)
and the appropriate generalization of the impulse re-
sponse, | 4pDt | 21/2, involves the determinant of D.
What we have referred to as the aspect tensor is simply
the tensorial generalization to these higher dimensions
of the combination 2Dt of (3.13). But inhomogeneity
of scale, which we may interpret as inhomogeneity of
the effective diffusivity in the diffusion analog of our
filters, leads to impulse-response functions that differ
slightly from the profile calculated on the basis of the
Gaussian model. An asymptotic analysis of this differ-
ence, which is outlined in the appendix, provides us
with a valuable practical refinement to the Gaussian
amplitude approximation. It emerges from this analysis
that, to a good approximation, the impulse response at
a given point of simulated inhomogeneous diffusion act-
ing for time t is the same as the amplitude obtained by
diffusing for duration t with an alternative homogeneous
diffusion process whose constant diffusivity is a localD
weighted average of D. The appropriate weighted av-
erage can be obtained by applying to D the original
diffusion process, but for only half the usual time, t/2,
and evaluating the result of the smoothed diffusivity
field at the point under consideration. The refinementD
is valid to first order in the magnitude of the modulation
of D, so it is actually sufficient (and more practical) to
simply smooth the single field of | 4pDt | . Note that the
diffusion operation acting for duration t/2 is equivalent
to the application of the ‘‘square root’’ (in the convo-
lution or linear operator sense) of the total filter. (Note
that, for homogeneous filters, the square root filter is
expressible, by way of the convolution theorem, as the
inverse transform of the square root of the Fourier trans-
form of the original filter.) In many practical applica-
tions of the recursive filter method to data analysis, this
square root filter, or at least a very good approximation
to it, is already available owing to the manner in which
the total filter is synthesized from simpler components.
Thus, the amplitude refinement imposes no significant
extra computational burden in typical cases where, once
constructed, the same smoothing operator is subse-
quently applied over and over again.

The generalizations of the recursive filters we have
described in this subsection work on a wide variety of
grids provided each grid itself contains no singularity.
But this restriction unfortunately precludes the use of
the methods on a polar grid in the immediate vicinity
of the pole. In order to treat such a case, the next sub-
section discusses some of the special techniques that
can be brought to bear.

b. Polar grids

We shall only treat in detail the special case of filters
with homogeneous filtering scale, a. On a plane-polar
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grid or on a global grid of latitudes and longitudes, the
recursive filter method can be adapted in conjunction
with discrete Fourier transforms applied azimuthally or
longitudinally to data, providing that the longitudes are
uniformly spaced and of a number factorable into small
primes, as required for the efficient application of the
FFT algorithm (e.g., Press et al. 1992). Fourier trans-
formation separates the two-dimensional smoothing
problem into independent one-dimensional filtering op-
erations in the radial or meridional directions applied
to the zonal Fourier coefficients.

Suppose u and l are latitude and longitude, respec-
tively. From initial data x(u, l) we may apply the zonal
transform:

x̂(u, m) 5 x(u, l) exp(22piml) dl. (3.14)E
The idea is to redefine the operator of Eq. (3.9) ofD*(n)

Part I in a fully two-dimensional way as the polynomial
of 2(a2/2)¹2 instead of 2(a2/2)d2/dx2. But we shall see
that, through the process of Fourier transformation, the
action of this operator is reduced to a set of one-di-
mensional operators acting on the various wavenumber
components separately. For constant a, the operator cor-
responding to, 2(a2/2)¹2, takes the following form in
the semispectral domain (latitude and zonal wavenum-
ber):

2 2 2 2a a m a ] ]
22 ¹ 5 2 t , (3.15)

2 22 2t 2R t ]u ]u

where the metric term, t, is now defined for an earth
of radius R simply as

t(u) 5 R cos(u). (3.16)

Note that, for each separate zonal wavenumber m, this
operator has its simplest numerical representation in the
discrete latitude grid as a tridiagonal matrix, but high-
order corrective terms can be added using the method
involving coefficients b1,j described in section 2a of Part
I. As in the context of a nonuniform one-dimensional
grid discussed above, this matrix operator is transform-
able to symmetric form through a similarity relation. In
fact, the second term of the operator on the right of
(3.15) applied to a scalar s may be identified exactly
with either side of (3.9) when we use the substitutions

n [ t Rdu and (3.17a)i i i

s [ a /(Rdu ), (3.17b)i i

together with the same K defined as in (3.8a)–(3.8c).
Following the previous example, the Taylor series of
the exponential function of the discrete matrix repre-
sentation of 2(a2/2)¹2 is taken, and again, only com-
ponent matrices of half-bandwidth not exceeding n are
retained, in order to obtain the representation, at each
wavenumber m, of D(n) . By analogy to (3.12), the nu-
merical approximation to the wavenumber m com-D*(n,m)

ponents of this nth-order operator, D(n) , for the polar
grid may be expressed:

n2 21 a m s
jD* ø exp 1 b K s Ïn. (3.18)O(n,m) 1, j21 22t 2 j51Ïn

From the derived Cholesky factors, the coefficients of
the advancing and backing basic filters are then extract-
ed separately for each wavenumber component.

These filters are more expensive to apply globally
than the doubly recursive filters of section 3a because
they require a zonal FFT to be applied to the input data
at each latitude and an inverse FFT applied to the final
output data. But they do provide a satisfactory solution
to the ‘‘polar problem’’ in the case of homogeneous
smoothing scale, a. In an earlier phase of this study,
two of us (RJP and NMR) investigated filters of this
semispectral form for a global analysis and devised
methods for constructing hybrid filters in which only
the polar caps are treated by the FFT, the data elsewhere
being dealt with by the methods of section 3a. A dis-
cussion of a proposed extension to this technique to
accommodate geographically inhomogeneous scale can
be found in Purser et al. (2001), but perhaps a more
relevant generalization is the accommodation of fully
anisotropic functions, discussed below.

4. Anisotropic covariances

In addition to spatial inhomogeneity, we would like
to be able to stretch the shape of a local representative
contour surface of the covariance function into the form
of an ellipsoid (or an ellipse, if in two dimensions).
Except in the unnatural special cases where the principal
axes for the stretching exactly coincide with the coor-
dinate grid directions, we cannot achieve the desired
stretching without including nonstandard grid lines
among the set of directions along which recursive
smoothing operators apply. In three dimensions, the de-
scription of a general linear stretching involves six in-
dependent components of the symmetric aspect tensor
defining the spatial second moments. The essentially
additive property of second moments under composition
by spatially unbiased filters (which is an exact result in
the case of spatially homogeneous smoothers, and a
good approximation in most other cases) allows the six
independent aspect tensor components to be resolved
into a hexad of generalized grid lines and their asso-
ciated one-dimensional second moments of dispersion.
A special convention for choosing this hexad, which we
will briefly describe, ensures that this resolution of the
aspect tensor is essentially unique.

a. Definition of a feasible hexad

On a grid represented by any 3-vector of integers, the
directions of a feasible hexad are collectively the set
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TABLE 1. Components of the hexads g and g9 discussed in the
examples of section 4.

p (gp)T ( )T9gp

1
2
3
4
5
6

(1, 21, 0)
(0, 0, 1)
(1, 0, 21)
(0, 21, 0)
(1, 0, 0)
(0, 1, 21)

(1, 1, 21)
(0, 0, 1)
(0, 1, 21)
(1, 0, 21)
(0, 1, 0)
(21, 0, 0)

generated by the integer displacements, or ‘‘genera-
tors,’’ gp, for p 5 1, . . . 6, where the triple product

[g , g , g ] 5 1, and (4.1)1 1 1

g 5 g 2 g , (4.2a)2 5 3

g 5 g 2 g , and (4.2b)4 1 5

g 5 g 2 g . (4.2c)6 3 1

In the context of such a hexad it requires only linear
analysis to resolve the aspect tensor components into
the additive components associated with each of the six
generators of a given hexad. For example, suppose the
intended aspect tensor at a particular grid location is
given by some symmetrix matrix, A, and, adopting and
extending the notation established in Part I, let the six
grid-relative smoothing scales associated with the given
hexad of generators, gp, be denoted sp. A unit value for
such a smoothing scale assigned to a direction defined
by a generator g would result in a contribution to the
aspect tensor of ggT, and therefore, by the additive prop-
erty of the contributions from the sequence of six
smoothing operations with scales sp, we shall find that
the final aspect tensor obtained at the end of this se-
quence will be

6

2 TA 5 s g (g ) . (4.3)O p p p
p

Formally, since there are six independent components
of A, this tensor equation can be rearranged as a set of
six linear equations for the six unknowns forced by2s p

the ‘‘right hand side’’ vector, A, of the independent com-
ponents of A through the action of the appropriate 6 3
6 matrix constructed from the corresponding compo-
nents of the terms gp . For example, suppose we areTgp

given the hexad whose generators are defined by the
components of the set g listed in Table 1, and an aspect
tensor:

 3 1 22 
A [ 1 3 22 . (4.4) 

 
22 22 4 

Putting the independent components of A into the 6-
vector, A, according to

A 5 A , (4.5a)1,11

A 5 A , (4.5b)2,22

A 5 A , (4.5c)3,33

A 5 A , (4.5d)2,34

A 5 A , and (4.5e)1,35

A 5 A , (4.5f)1,26

we resolve the aspect tensor into this hexad’s smoothing
quantities, , through the following matrix equation:2s p

2     1 0 1 0 1 0 s 31

21 0 0 1 0 1 s 32

2     0 1 1 0 0 1 s 43 5 . (4.6)     
20 0 0 0 0 21 s 224

20 0 21 0 0 0 s 225     
221 0 0 0 0 0 s 16     

Each column of the square matrix in (4.6) comes from
the six independent components, taken in the same order
as in (4.5a)–(4.5f ), of the tensor gp for the corre-Tgp

sponding generator. For example, the independent com-
ponents of

 1 21 0 
Tg g [ 21 1 0 (4.7) 1 1  

0 0 0 

are gathered into the vector [1, 1, 0, 0, 0, 21]T forming
the first column of the matrix in (4.6). For this example,
the solution of (4.6) is

2{s } 5 [21, 0, 2, 2, 2, 2].p (4.8)

However, for the hexad to have validity as a smoother,
all six of these projected components must also be2s p

non-negative, which is evidently not the case for the
hexad of generators in the present example, since the
first component , 0. Although the proof is beyond2s1

the scope of this paper, it can be shown that for every
positive-definite aspect tensor there is always, and only,
one way to associate positive projected components with
the directions of a feasible hexad. The following sub-
section describes the procedure by which the required
hexad is found.

b. The hexad algorithm

Geometrically, any feasible hexad of generators, to-
gether with their antipodes, constitute a set of 12 points
whose convex hull forms a linearly transformed cuboc-
tahedron, two examples of which are shown in Fig. 3.
[A cuboctahedron is the semiregular polyhedron formed
by slicing off the corners of a cube between its edge
midpoints to leave a boundary of eight equilateral tri-
angles and six squares; e.g., see Coxeter (1973, 18–19).]
In seeking the valid hexad for a given aspect tensor,
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FIG. 3. Geometric depiction of an iterative step in the hexad algorithm, by which one skewed
cuboctahedron in the grid has one antipodal pair of its 12 vertices (defining one of the active
generalized grid lines) replaced by another pair, forming another skewed cuboctahedron. The
(a) before and (b) after pictures show that the topological configurations remain equivalent
although disjoint regions of the space of aspect tensors are made accessible by positive smoothing
confined to the two respective hexads of generalized grid lines. Generically, a given aspect
tensor can be resolved into positive line-smoothing operations associated with only one hexad
of this form.

when an invalid trial hexad (Fig. 3a, say) projects a
negative component of this tensor onto one of its six
diameters, we step closer (e.g., Fig. 3b) to the sought-
after valid hexad by replacing only the generator as-
sociated with the offending line with a generator of the
only possible alternative line that the defining hexad
rules permit. The stepwise replacement of one trial hex-
ad configuration by another therefore has a nice geo-
metrical interpretation, which is illustrated in Fig. 3 by
the mutation from panel a to b. We see that the pair of
vertices at the extreme right and left of Fig. 3a are absent
in the configuration of Fig. 3b, while the extreme upper
and lower vertices shown in Fig. 3b are absent in Fig.
3a. If the vertex at the extreme right of Fig. 3a had the
designation, g1, with other vertices assigned so as to
conform to the rules, (4.1) and (4.2), then one way of
assigning labels to the vertices of the configuration in
Fig. 3b, also consistent with these rules, is to define the
new generators (primed) as follows:

g9 5 g 2 g , (4.9a)1 3 4

g9 5 g , (4.9b)2 2

g9 5 g , (4.9c)3 6

g9 5 g , (4.9d)4 3

g9 5 2g , and (4.9e)5 4

g9 5 2g . (4.9f)6 5

Corresponding rules are easily found for the other five
transition possibilities. In the case of the numerical ex-
ample introduced in the last subsection, where it was
indeed found that generator g1 led to a corresponding

with negative value, the replacement of g1 by the2s1

alternative, , in accordance with these prescribed rulesg91

leads to the new hexad defined in the right column of
Table 1. In this case, when we resolve the aspect tensor
into the components we obtain2s p

2{s } 5 [1, 1, 1, 1, 1, 1],p (4.10)

whose components, all being positive, confirm that the
new hexad in this example is a valid one. Note that Fig.
3 may be regarded as a pictorial representation of our
one-step hexad iteration viewed approximately from the
direction of the vector, (1, 1, 1).

In practice, a short chain of such iterations will usu-
ally suffice to locate the given aspect tensor’s unique
valid hexad (and there is an analogous ‘‘triad algorithm’’
for the two-dimensional case). The resolution of a given
aspect tensor into its equivalent hexad is carried out at
every analysis grid point and the six non-negative values
of that are obtained at each point can then be used2s p

to prescribe the coefficients of the recursive filter that
produces this degree of dispersion along the generalized
grid line that the corresponding hexad generator defines.
Since the generators at one grid point are typically large-
ly the same ones at the neighboring grid points, it be-
comes possible to link together the smoothing step in
each particular generalized grid direction to form con-
tinuous nontrivial line segments. It then becomes de-
sirable to define a procedure for smoothing along such
segments in an efficient way that avoids the application
of the filter along a line in one direction interfering with
the application along another intersecting line. This mat-
ter is addressed in the following section.

c. The ‘‘chromatic hexad’’

Each grid point belongs to six distinct line segments
along which filters are required to act. It is clearly un-
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desirable to have recursive filter operators acting con-
currently on two or more of the line segments dictated
by the hexad algorithm when the line segments in ques-
tion intersect at some shared grid point, because the
outcome of the first of the filters to reach this shared
point will then interfere with the action of the other
filters that follow. However, it is equally undesirable to
restrict the algorithm to a purely sequential process
when state-of-the-art mainframe computers are now
massively parallel. Fortunately, it is possible to ‘‘color
code’’ each of the generators of the grid and, hence, the
various line segments on which the filters operate, so
that every hexad consists of six different ‘‘colors’’ from
a total palette of seven. Since no two segments of the
same color can ever intersect, this means that, as long
as each color is dealt with sequentially by the filtering
algorithm, no conflicts can arise. To see how the col-
oring assignment comes about, we associate the three
components (gx, gy, gz) of a given generator g, with the
corresponding binary digits (ĝx, ĝy, ĝz), where each ĝ
is 0 or 1 according to whether the corresponding g is
even or odd. It is easy to show that the generators of a
feasible hexad cannot all be even, which allows us to
assign seven colors to the combinations. Moreover, we
find that the colors assigned to the generators of any
valid hexad are all different; we conveniently assign the
hexad itself the color missing from its generators. A
useful variant of the iterative procedure, the ‘‘chromatic
hexad’’ algorithm supplies, for a given aspect tensor,
the correct hexad, the corresponding six smoothing co-
efficients, and the assigned colors to allow efficient
scheduling of the smoothing operations on a parallel
computer.

Preliminary results obtained with the anisotropic co-
variances generated with the hexad algorithm are given
in Parrish and Purser (1998). Further applications and
refinements of the method will be described in future
publications.

5. Discussion

We have extended the methods of Part I to show how
recursive filters can be used to construct covariances
with shapes more general than purely Gaussian. The
problem of efficiently accommodating approximately
isotropic but spatially inhomogeneous covariance func-
tions in a variational analysis has also been solved using
recursive numerical filters. This approach may be re-
garded as an alternative to that of Gaspari and Cohn
(1998, 1999), who use direct calculation of the covari-
ances but achieve numerical efficiency by restricting the
approximations to Gaussian forms to having compact
support. In our case, the covariances are never explicitly
computed; instead, their effects as convolution operators
are represented, through a sequence of applications of
carefully designed recursive filters operating along the

various lines of the appropriately chosen computational
grids. In a regional analysis, there is no reason not to
use the grid of the intended numerical prediction model.
In a global context, where the usual latitude and lon-
gitude grid possesses polar singularities, we may either
adopt the special methods for polar grids discussed in
section 3b or, by invoking additional interpolations, cov-
er the global domain in overlapping maps, each of which
being furnished by an appropriate Cartesian grid. For
example, we can adopt square Cartesian grids embedded
in the respective polar stereographic projections for the
polar cap regions and a Mercator grid elsewhere, in
order to preserve the property of local isotropy, and use
the multi-Gaussian methods of synthesis to provide the
necessary control over the horizontal scale (needed to
compensate for the map-scaling factor, if nothing else).
Experiments reveal no evidence that the analysis results
are significantly degraded by adopting grids that differ
from the model grid, as long as the conversions between
them are by high-order accurate interpolations. How-
ever, this synthetic method results in non-Gaussian co-
variances, even when Gaussians are preferred, and, since
we must account for the cost of the additional grid-to-
grid interpolations, it can be more expensive than adopt-
ing the special procedures of section 3b. For a global
analysis, the user must choose the method best adapted
to his or her requirements. These matters are dealt with
in greater detail in Wu et al. (2002), which successfully
applies these recursive filter methods to a global analysis
of real meteorological data.

An additional development that we have described in
section 4 is the further generalization of the covariance
operators to accommodate fully anisotropic effects. Re-
cent approaches to three-dimensional data assimilation
where it is not assumed that the covariances must be
locally isotropic have been reported by Desroziers
(1997) and by Riishøjgaard (1998), and objective sta-
tistical methods for estimating the parameters of an-
isotropy from the data themselves are suggested by the
work of Dee and da Silva (1999) and Purser and Parrish
(2003). We expect that anisotropic covariances will play
a much more significant role in variational data assim-
ilation in the future.
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APPENDIX

Amplitude Estimation for Inhomogeneous
Quasi-Gaussian Filters

The control of amplitude (variance) of the covariance
filter is quite straightforward when the filter is spatially
homogeneous but, in the inhomogeneous case, the re-
sponse function is no longer simply a Gaussian and an
error is therefore incurred when amplitudes are esti-
mated purely on the basis of the Gaussian formula. For-
tunately, when the modulation of the filter’s smoothing
scale occurs slowly and smoothly across the domain, it
becomes possible to improve upon the Gaussian am-
plitude formula by taking into account the local varia-
tion of the smoothing parameters through the application
of an asymptotic analysis. We present an outline of this
method as it applies to ‘‘first order’’ perturbations of
scale in one dimension and we employ the diffusion
model to represent the overall effect of the filter. How-
ever, we will find that this theory generalizes to diffusion
in higher dimensions, making this work relevant also
to the approaches of Derber and Rosati (1989) and
Weaver and Courtier (2001).

With a ‘‘diffusivity’’ D(x), the outcome of the spa-
tially inhomogeneous filter is identified with the appli-
cation for ‘‘time’’ t of the diffusion equation:

dc d dc
ċ [ 5 D [ (Dc9)9. (A.1)

dt dx dx

The local variation of D is described by expanding it
as a series about the origin:

2D(x) 5 D 1 D x 1 D x 1 . . . .0 1 2 (A.2)

It is convenient to write the evolving solution in the
following form:

c(x, t) 5 exp[g(x, t)], (A.3)

where g is expressed as a series,
2g(x, t) 5 g (t) 1 g (t)x 1 g (t)x 1 . . . .0 1 2 (A.4)

For uniform D 5 D0, the solution that starts with a unit
impulse at x 5 0 and t 5 0 has, at future time,

1 1
g 5 2 logt 2 log(4pD ) and (A.5)0 02 2

1
g 5 2 , (A.6)2 4D t0

with other coefficients gk vanishing. We seek to deter-
mine the principal effect on the amplitude term, g0, of
small variations in D associated with nonvanishing co-
efficients Dk for k . 0.

Equating powers of x in the evolution equation for g
implied by (A.1) and (A.3),

2ġ 5 (Dg9)9 1 D(g9) , (A.7)

we obtain, after some algebra,

k11 k112j

ĝ 5 (k 1 1)h 1 h h D , (A.8)O Ok k122j i k122j2i j[ ]j50 i50

where

h [ kg .k k (A.9)

By symmetry, the terms Dk with odd k cannot affect the
amplitude to first order in their magnitudes. Thus, we
are able to consider expansions in only even powers of
x for D and hence for g in order to obtain the first-order
effect of inhomogeneity on amplitude. Expanding (A.8)
for the first few even powers of x,

ġ 5 2g D , (A.10)0 2 0

ġ 5 12g D 1 6g D 1 4g g D , and (A.11)2 4 0 2 2 2 2 0

ġ 5 30g D 1 20g D 1 10g D 1 16g g D4 6 0 4 2 2 4 2 4 0

1 4g g D . (A.12)2 2 2

We may further expand g2, g4, etc., in powers of t start-
ing with terms in t21; for example,

21g (t) [ g t 1 g 1 g t 1 . . . .2 2,21 2,0 2,1 (A.13)

From terms t22 in (A.11),

1
g 5 2 , (A.14)2,21 4D0

and from corresponding terms in (A.12),

D2g 5 . (A.15)4,21 212D0

With these substitutions, terms t21 in (A.11) imply

D2g 5 2 . (A.16)2,0 4D0

Then, integrating (A.10), we obtain

1 1
2g (t) 5 2 logt 1 g 2 D t 1 O (t ). (A.17)0 0,0 22 2

As in the case for uniform diffusivity, the normalization
of the initial unit impulse requires that

1
g 5 2 log(4pD ), (A.18)0,0 02

but if we absorb the first-order perturbation to g0 in the
form of an ‘‘effective’’ Gaussian model’s diffusivity,

, that is, by equatingD

1 1 1
22 log(4pD) [ 2 log(4pD ) 2 D t 1 O (t ),0 22 2 2

(A.19)

then,

D ø D exp(D t), (A.20)0 2

2[ D 1 D D t 1 O (t ). (A.21)0 2 0

Owing to the properties



1548 VOLUME 131M O N T H L Y W E A T H E R R E V I E W

c(x, t/2) dx 5 1 and (A.22)E
2c(x, t/2)x dx ø D t, (A.23)E 0

we may employ the approximation

D ø c(x, t/2)D(x) dx (A.24)E
to acquire a serviceable and robust effective diffusivity,

, in the Gaussian amplitude formula valid at x 5 0,D
which will largely compensate for the errors caused by
the inhomogeneity. But, generalizing this result to other
locations x is equivalent to applying the ‘‘square root’’
filter to the field D(x), for which an adequate non-self-
adjoint representation is available as one-half of the gen-
eral construction of self-adjoint filters that we have de-
scribed.

In higher dimensions the Gaussian amplitude factor
now comes from the determinant | D | of the tensorial
diffusivity, D (which is half the aspect tensor when the
diffusion acts for a unit time). Therefore, the first-order
correction can still be found by smoothing | D | with
the square root filter, or a good approximation to it. In
practice, the complete quasi-Gaussian smoother is con-
veniently synthesized in two halves to ensure self-ad-
jointness; the first half being a sequence of the recursive
filters applied in each of the necessary directions, the
second half being the reverse sequence of the adjoints
of each of these basic filters. A good enough approxi-
mation to the square root filter we require for the am-
plitude refinements, where the filter is not required to
be self-adjoint, is then simply the first ‘‘half’’ of the
complete self-adjoint smoothing filter.
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