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1. INTRODUCTION 
 
Classification of remote sensing imagery is a means of compressing much spectral data into 
more readily understandable and interpretable information.  In so doing, much of the noise in 
data is eliminated resulting in a signal that is relatively course.  Detecting landscape change via 
image classification is limited by the high degree of generalization intrinsic to classification 
systems that stems from a) conventional dependence on a limited number of spectral bands, b) 
aggregation of information inherent in statistical approaches to classification and c) dependence 
on a single sensing system with a fixed spatial scale.  The combined effect is that change is not 
detected until gross changes have occurred that are discernable within the generalization 
framework.  

 
Transformations in the form of ratios and indices (i.e. NDVI, EVI, polarization index) derived 
from multispectral data generally provide higher fidelity than classification, but are limited to the 
spatial resolution of the original data.  Assessment of change detection via indices offers 
increased sensitivity to change, but interpretation of the meaning of the change is often less 
intuitive.   

 
Texture analysis refers to a class of mathematical procedures and models that characterize the 
spatial variations within imagery as a means of extracting information.  Texture is an areal 
construct that defines local spatial organization of spatially varying spectral values that is 
repeated in a region of larger spatial scale.  Thus, the perception of texture is a function of spatial 
and radiometric scales.  Mathematical procedures to characterize texture fall into four general 
categories, statistical, geometrical, model-based methods and signal processing methods and 
include Fourier transforms, convolution filters, co-occurrence matrix, spatial autocorrelation, 
fractals, etc. (Tuceryan and Jain, 1998; Zhao, 2001). 

   
Because texture has so many different dimensions, there is no single method of texture 
representation that is adequate for a variety of textures.  Here, we provide a brief description of a 
number of texture analysis techniques and some examples.  Many terms will be unfamiliar to the 
reader and one is encouraged to seek other sources for more in depth discussion.  Most image 
processing software packages that are commercially available today include several texture 
analysis tools.  Few, however, make full use of these tools because of the difficulty interpreting 
results. 

 
Despite their potential value, textural measures have not been exploited in any formal way for 
routine monitoring of landscape change.  Although, texture analysis has been used to classify 
remotely sensed images, its value is restricted within the limitations afforded by classification.  
The spatial variations in image values that constitute texture are generally due to some 
underlying physical variation in the landscape that alters the reflectivity or emissivity.  Textural 
analysis techniques can be used to provide quantitative metrics that are highly sensitive to the 
underlying processes of change.  For example, Lam et al. (2002) showed that a quantitative 
description of landscape complexity could aid in the interpretation of landscape processes.  Lam 
et al. (1998) showed the value of spatial metrics, such as fractal dimension, in revealing the 
spatial characteristics of images. 
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Fractals and spatial autocorrelation are two spatial analytical techniques used to measure 
geometric complexity (Lam et al., 2002) and conveniently describe many irregular, fragmented 
patterns found in nature (Mandelbrot, 1983).  One of the advantages of fractal and spatial 
autocorrelation techniques over other spatial indices used in landscape ecology, such as 
contagion, dominance, and interspersion is that it can be applied directly to unclassified images 
(Lam et al., 2002).  Also, in contrast to autoregressive and Markov models, fractals have high 
power in low frequencies, which enables them to model processes with long periodicities (Ojala 
and Pietikyinen, 2004 ). Although the fractal technique has been applied extensively in a variety 
of disciplines (e.g., Krummel et al., 1987; MacLennan and Howarth, 1987; Lovejoy and 
Schertzer, 1985; Barbanis et al., 1999; Lu and Hellawell, 1995), its use as a spatial technique for 
characterizing remote sensing images is limited and needs to be evaluated more thoroughly (Lam 
et al., 2002).  Emerson et al. (1999) concluded that more research is needed to link textural 
analysis of remotely sensed images with the complexity of geographical processes.  Quattrochi et 
al. (2001) examined the relationship between fractal dimensions and spectral resolution of 
imagery.  Likewise, Lam et al. (2002) concluded that further research on fractal and related 
textural analysis methods applied to multi-resolution imagery would afford a better 
understanding of the impact of scale on the analysis of environmental phenomena.  Quattrochi et 
al. (2002) measured the fractal dimensions of different environmental and ecological landscapes 
to determine if they had characteristic fractal dimensions that could be used to identify regions of 
varying degrees of complexity and used for change detection without the need to classify images 
beforehand.  Al-Hamdan (2004) showed that important forest-related measures could be 
effectively estimated from remotely sensed radiometric data using textural analysis techniques.  
Textural metrics were related to landscape characteristics.  The study also revealed optimal 
radiometric and spatial resolutions among various remote sensors for detecting differences in 
surface characteristics. 

 
These and other studies provide a foundation for using textural analysis models to characterize 
landscape change.  These techniques rely explicitly on data from a single sensing system and 
none exploit the information that is available from other sensing systems at contrasting but 
complementary spatial scales and frequencies.  Textural and adaptive filters provide various 
metrics regarding heterogeneity at the scale of multiple pixels.  Because texture has so many 
different dimensions, there is no single method of texture representation that is adequate for a 
variety of textures. 

 
 

2. TECHNIQUES 
 
A wide variety of techniques for describing image texture have been proposed in the research 
literature. Tuceryan and Jain (1998) defined four major categories for analysis techniques: 
statistical, geometrical, model-based and signal processing. 

 
2.1. Statistical Methods  
Statistical methods analyze the spatial distribution of gray values by computing local features at 
each point in the image and deriving a set of statistics from the distributions of the local features 
(Ojala and Pietikyinen, 2004). The use of statistical features is one of the early methods proposed 
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in the research literature (Tuceryan and Jain, 1998).  The reason behind that is the fact that the 
spatial distribution of gray values is one of the defining qualities of texture.  Statistical methods 
can be classified into first-order (one pixel), second-order (two pixels) and higher-order (three or 
more pixels) statistics based on the number of pixels defining the local feature (Ojala and 
Pietikyinen, 2004). The first-order statistics estimate properties like the average and variance of 
individual pixel values, ignoring the spatial interaction between image pixels, second- and 
higher-order statistics on the other hand estimate properties of two or more pixel values 
occurring at specific locations relative to each other.  Co-occurrence features and gray level 
differences (Weszka et al., 1976) are the most widely used statistical methods, which inspired a 
variety of modifications later on (Ojala and Pietikyinen, 2004) including signed differences 
(Ojala et al., 2001) and the Local Binary Pattern (LBP) operator (Ojala et al., 1996).  LBP 
operator combines statistical and structural approaches to texture analysis by incorporating 
occurrence statistics of simple local microstructures. Autocorrelation function, which has been 
used for analyzing the regularity and coarseness of texture (Kaizer, 1955; Emerson et al., 1999; 
Lam et al., 2002; Al-Hamdan, 2004), and gray level run lengths (Galloway, 1975) are examples 
of other statistical approaches (Ojala and Pietikyinen, 2004).  

 
2.2. Geometrical Methods 
Geometrical methods try to describe the primitives and the rules governing their spatial 
organization by considering texture to be composed of texture primitives.  The structure and 
organization of the primitives can be presented using Voronoi tessellations (Tuceryan and Jain, 
1990).  An example of often-used primitive elements would be image edges (Ojala and 
Pietikyinen, 2004).  The desirable properties in defining local spatial neighborhoods and because 
the local spatial distributions of tokens are reflected in the shapes of the tessellations are some of 
the advantages of this method.  Segmentation of textured images is one example of texture 
features based on Voronoi polygons (Tuceryan and Jain, 1998) (Figure 1).  Gray level texture 
images and a number of synthetic textures have been successfully segmented with identical 
second-order statistics by this algorithm (Ojala and Pietikyinen, 2004). 
 
Edge detection with a Laplacian-of-Gaussian or a difference-of-Gaussian filter (Marr 1982, 
Voorhees & Poggio 1987, Tuceryan and Jain 1990); adaptive region extraction (Tomita and 
Tsuji 1990); or mathematical morphology (Matheron, 1967; Serra, 1982) are some techniques 
used for extracting the primitives (Ojala and Pietikyinen, 2004).  Once the primitives have been 
identified, the analysis is completed either by computing statistics of the primitives (e.g. 
intensity, area, elongation, and orientation) or by deciphering the placement rule of the elements 
(Zucker 1976, Fu 1982).   

 
A method in which the observable textures are considered as distorted versions of ideal textures 
has been proposed by Zucker (1976).  The placement rule is defined for the ideal texture by a 
graph that is isomorphic to a regular or semiregular tessellation.  These graphs are then 
transformed to generate the observable texture, which is used to determine which of the regular 
tessellations should be used as the placement rule (Ojala and Pietikyinen, 2004).  In another 
approach, Fu (1982) proposed to regard the texture image as texture primitives arranged 
according to a placement rule (Ojala and Pietikyinen, 2004).  The primitive is usually a 
collection of pixels, but it can be as simple as a single pixel that can take a gray value. The 
placement rule is defined by tree grammar and a texture is then viewed as a string in the 
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language defined by the grammar whose terminal symbols are the texture primitives. This 
method can be used for texture generation as well as texture analysis, which is an advantage 
(Ojala and Pietikyinen, 2004). 

 
 

 
 
Figure 1. Texture segmentation using the Voronoi tessellation. (a) An example texture pair from Brodatz’s album 
(Bajcsy and Lieberman, 1976), (b) the peaks detected in the filtered image, and (c) the segmentation using the 
texture features obtained from Voronoi polygons (Tuceryan and Jain, 1990). The arrows indicate the border 
direction. The interior is on the right when looking in the direction of the arrow (Tuceryan and Jain, 1998). 

 
 

2.3. Model-based Methods 
Model based texture analysis methods are based on the construction of an image model that can 
be used not only to describe texture, but also to synthesize it (Ojala and Pietikyinen, 2004).  The 
model parameters capture the essential perceived qualities of texture.  These methods 
hypothesize the underlying texture process, constructing a parametric generative model, which 
could have created the observed intensity distribution (Ojala and Pietikyinen, 2004).  The 
intensity function is considered to be a combination of a function representing the known 
structural information on the image surface and an additive random noise sequence.  Pixel-based 
models view an image as a collection of pixels, whereas region-based models regard an image as 
a set of subpatterns placed according to given rules (Ojala and Pietikyinen, 2004).  Region-based 
models are an example of random mosaic models, which tessellate the image into regions and 
assign gray levels to the regions according to a specified probability density function (Schachter 
et al. 1978).  The facet model is a pixel-based model, which assumes no spatial interaction 
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between neighboring pixels, and the observed intensity function is assumed to be the sum of a 
deterministic polynomial and additive noise (Haralick & Watson 1981) (Ojala and Pietikyinen, 
2004).  Random field models analyze spatial variations in two dimensions.  Global random field 
models treat the entire image as a realization of a random field (Frieden 1980, Hunt 1980), 
whereas local random field models assume relationships of intensities in small neighborhoods 
(Ojala and Pietikyinen, 2004).  A Gibbs random field is a global model, where using cliques of 
neighboring pixels as the neighborhood system, a probability density function is assigned to the 
entire image (Besag, 1974; Hassner and Sklansky, 1980; Geman & Geman 1984; Ojala and 
Pietikyinen, 2004).  Markov random fields (MRFs) have been popular for modeling images 
because they are able to capture the local (spatial) contextual information in an image.  These 
models assume that the intensity at each pixel in the image depends on the intensities of only the 
neighboring pixels. MRF models have been applied to various image processing applications, 
such as texture synthesis (Cross and Jain, 1983; Wang and Liu, 1999), texture classification 
(Chellappa and Chatterjee, 1985; Khotanzad and Kashyap, 1987), image segmentation (Therrien, 
1983; Cohen and Cooper, 1987), image restoration (Geman and Geman, 1984), and image 
compression (Ojala and Pietikyinen, 2004) (Figure 2). 
 

 
 

Figure 2. Example of water texture synthesis. (a) Original water texture, (b) The synthesized water texture with 
MRF modeling, (c) The synthesized water texture with multiresolution MRF modeling (Wang and Liu, 1999). 

 
Mandelbrot (1983) proposed describing images with fractals, a set of self-similar functions 
characterized by so-called fractal dimensions (FD), which is correlated to the perceived 
roughness of image texture (Pentland 1984).  In contrast to autoregressive and Markov models, 
fractals have high power in low frequencies, which enables them to model processes with long 
periodicities (Ojala and Pietikyinen, 2004).  For a surface, such as remotely sensed images, FD 
can be estimated using the isarithm method (Lam et al., 2002) (Figure 3).  The isarithm method 
computes a mean fractal dimension from individual FD values of gray-scale contours.  For each 
isarithm (contour) value and each step size, the algorithm classifies each pixel below the isarithm 
value as white and each pixel above this value as black (Quattrochi et al., 2001).  It then 
compares each neighboring pixel along the rows or columns and determines whether the pairs 
are both black or both white.  If they are dissimilar, then an isarithm lies between the two 
neighboring pixels.  The length of each isarithm line is approximated by the total number of 
boundary pixels (Quattrochi et al., 2001).  A linear regression is performed using the logarithms 
of the total length of the boundary and the step size.  The regression slope is used determine the 
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fractal dimension FD of the isarithm line.  The final fractal dimension FD of the surface is the 
average of the FD values for those isarithms having a coefficient of determination greater than or 
equal to 0.9 (Jaggi et al., 1993; Emerson et al., 1999; Quattrochi et al., 2001; Lam et al., 2002). 

 
 

 
 

Figure 3. Three simulated surfaces and corresponding images from top to bottom, Fractal Dimension (FD) = 2.1, 
2.5, 2.9. (Lam et al, 2002). 

 
Many natural surfaces have a statistical quality of roughness and self-similarity at different 
scales. Fractals are very useful and have become popular in modeling these properties in image 
processing (Tuceryan & Jain 1998). Quattrochi et al. (2002) measured the fractal dimensions of 
different environmental and ecological landscapes to determine if they had characteristic fractal 
dimensions that could be used to identify regions of varying degrees of complexity and used for 
change detection without the need to classify images beforehand.  Al-Hamdan (2004) showed 
that important forest-related measures could be effectively estimated from remotely sensed 
radiometric data using textural analysis techniques. Textural metrics were related to landscape 
characteristics.  The study also revealed optimal radiometric and spatial resolutions among 
various remote sensors for detecting differences in surface characteristics. 

 
2.4. Signal Processing Methods 
Signal processing methods analyze the frequency content of the image. Spatial domain filters, 
such as Law’s (1980) masks, local linear transforms proposed by Unser and Eden (1989), and 
various masks designed for edge detection (e.g. Roberts' and Sobel's operators (Rosenfeld and 
Kak, 1976)) are the most direct approach for capturing frequency information (Ojala and 
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Pietikyinen, 2004).  Rosenfeld and Thurston (1971) introduced the concept of edge density per 
unit area: fine textures tend to have a higher density of edges than coarse textures.   

 
Another class of spatial filters are moments (Laws, 1980), which correspond to filtering the 
image with a set of spatial masks.  The resulting images are then used as texture features (Ojala 
and Pietikyinen, 2004).  Tuceryan (1992) used moment-based features successfully in texture 
segmentation.  'True' frequency analysis is done in the Fourier domain.  The Fourier transform 
describes the global frequency content of an image, without any reference to localization in the 
spatial domain, which results in poor performance.  Spatial dependency is incorporated into the 
presentation with a window function, resulting in a so-called short-time Fourier transform (Ojala 
and Pietikyinen, 2004).  The squared magnitude of the two-dimensional version of the short-time 
Fourier transform is called a spectrogram, which Bajcsy and Lieberman (1976) used in analyzing 
shape from texture.   

 
Multiresolution analysis, the so-called wavelet transform, is achieved by using a window 
function, whose width changes as the frequency changes (Mallat, 1989).  If the window function 
is Gaussian, the obtained transform is called the Gabor transform (Turner, 1986; Clark and 
Bovik, 1987).  A two-dimensional Gabor filter is sensitive to a particular frequency and 
orientation (Ojala and Pietikyinen, 2004).  Other spatial/spatial-frequency methods include the 
difference-of-Gaussians (Marr 1982) and the pseudo-Wigner distribution (Jacobson & Wechsler 
1982).  Texture description with these methods is done by filtering the image with a bank of 
filters, each filter having a specific frequency. Texture features are then extracted from the 
filtered images. Often many scales and orientations are needed, which results in texture features 
with very large dimensions (Ojala and Pietikyinen, 2004). Dimensionality can be reduced by 
considering only those bands, which have high energy (Reed & Wechsler 1988, Jain & 
Farrokhnia 1991). Alternatively, redundancy can be reduced by optimizing filter design so that 
the frequency space is covered in a desired manner (Manjunath & Ma 1996) (Ojala and 
Pietikyinen, 2004).  

 
Lucieer (2004) presented a supervised texture-based image segmentation technique that 
identifies objects from fine spatial resolution Light detection And Ranging (LiDAR) imagery and 
from multi-spectral Compact Airborne Spectral Imager (CASI) imagery (Figures 4 and 5).  The 
proposed algorithm provided good segmentation results for a test case study with a composite 
image of five different textures.  The study provided a texture-based supervised segmentation 
algorithm that derived labeled objects from remotely sensed imagery.  Texture was modeled with 
the joint distribution of Local Binary Patterns (LBP) and local variance. The segmentation 
algorithm was a hierarchical splitting technique, based on reducing uncertainty at the level of the 
image blocks that are obtained.  This technique provides not only a texture-based image 
segmentation, but also an indication of uncertainty for all object building blocks (Lucieer, 2004).  
The spatial distribution of uncertainty values provided information about the location and width 
of transition zones.  The study showed that object uncertainty values provide important 
information to identify transition zones between fuzzy objects (Lucieer, 2004). 
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Figure 4. Segmentation result band 12 CASI image: (a) Supervised texture-based segmentation of band 12 of a 
CASI image with four reference land cover classes; (b) Related uncertainty for all object building blocks (Lucieer, 
2004). 
 
 

 
Figure 5. Segmentation result LiDAR DSM: (a) Supervised texture-based segmentation of the LiDAR DSM with four 
reference land form classes; (b) Related uncertainty for all object building blocks (Lucieer, 2004). 

 
 

Ohanian and Dubes (1992) have studied the performance of various texture features.  They 
compared four fractal features, sixteen co-occurrence features, four Markov random field 
features, and Gabor features (Tuceryan and Jain, 1998).  The evaluation was done on four classes 
of images: Gauss Markov random field images, fractal images, leather images, and painted 
surfaces.  The co-occurrence features generally outperformed other features (88% correct 
classification) followed by fractal features (84% classification).  Using both fractal and co-
occurrence features improved the classification rate to 91% (Tuceryan and Jain, 1998).  It also 
used the energy from the raw Gabor filtered images instead of using the empirical nonlinear 
transformation needed to obtain the texture features as suggested in (Jain and Farrokhnia, 1991 
cited in Tuceryan and Jain, 1998).  Their study did not compare the texture features in 
segmentation tasks.   
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Kim et al. (2004) presented an efficient method of detecting ridges and ravines in gray scale 
images by using local min and max operations (Figure 6).  This method comes from the idea 
that, of the gray scale morphological operations, the opening operation tends to remove small 
bright details and the closing operation removes dark details from the gray scale image (Kim et 
al., 2004).  In this method, the properties of opening and closing are implemented by combining 
the fuzzy logic operations (local min and max operations). This method needs no information of 
ridge or ravine direction, and has been shown to be capable of detecting ridges and ravines of 
various pixel widths (Kim et al, 2004). 
 

 
Figure 6. Detecting ridges in a gray-scale airphoto: (a) original image, (b) ridges derived from (a), and (c) ridges 
overlaid on original image (Kim et al., 2004). 
  
 
3. CASE STUDY 
 
We provide a case study in more detail that illustrates how some of the information extraction 
techniques described above can be utilized in processing remotely sensed images.  
Environmental protection is accomplished through Environmental Assessments and 
Environmental Impact Statements (EIS) that seek to prevent adverse environmental effects from 
taking place rather than mitigating problems caused by past activities or practices.  
Characterization of floodplains is a necessary component of EISs associated with proposed 
transportation corridors that cross or encroach upon floodplains.  A study was conducted to 
examine the utility of remotely sensed data in characterizing the water resistance characteristics 
of forested flood plain areas that might lie in highway corridors or be subject to highway 
crossings (Al-Hamdan, 2004).  One objective of this study was to use remotely sensed data and 
GIS to characterize vegetated landscapes based on their complexity and roughness associated 
with forests. We show demonstrated that important forest-related measures could be effectively 
estimated from remotely sensed radiometric data using textural analysis techniques.  This 
characterization facilitates hydraulic and hydrologic modeling because surface roughness is 
required to compute the flow information needed by engineers in the design of highways that 
cross flood plains in forested areas, especially in large areas where human access is very 
difficult.  More specifically, the research objective was to determine whether or not important 
measures of forest-related surface roughness could be effectively estimated from remotely 
sensed data using the textural analysis techniques.  Several remotely sensed images of different 
spatial and spectral resolution were obtained for several forested regions (Figure 7).   
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Figure 7.  Forest sites used in Al-Hamdan’s case study. 
 

 
Textural analysis techniques, namely fractals and spatial autocorrelation methods, were used to 
characterize these images in terms of image complexity and roughness associated with forests. 
The effects of spatial and spectral characteristics of the data on the estimates of the textural 
indices were also examined.  For a given tree species, the reflectance values recorded by remote 
sensors are a function of the size and continuity of the forest canopy.  Thus, for hydraulic and 
hydrological purposes, such as overland flow modeling in forests, there is a need to define the 
relationship between satellite information (digital numbers) and canopy closure, as well as the 
relationship crown width and diameter at breast height (DBH).  These relationships are then used 
to estimate the flow roughness coefficient Manning’s n using models like the one developed by 
Musleh (2003) in an experimental study.  
 
The textural analysis techniques applied in the case study include fractals and spatial 
autocorrelation methods. Fractals are measures of the self-similarity and thus ultimately measure 
the degree of complexity of the imaged land surface.  The fractal dimension (FD) can be 
visualized as related to the relationship between the total length of a surface feature and the step 
size used to measure that length.  For a landscape surface, FD can be estimated using a method 
that is called the isarithm method (Lam et al., 2002). The isarithm method computes a mean FD 
from individual FD values of gray-scale contours (isarithms).  For each isarithm value and each 
step size, the algorithm classifies each pixel below the isarithm value as white and each pixel 
above this value as black (Quattrochi et al., 2001).  It then compares each neighboring pixel 
along the rows or columns and determines whether the pairs are either both black or both white.  
If they are dissimilar, then an isarithm lies between the two neighboring pixels.  The length of 
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each isarithm line is approximated by the total number of boundary pixels (Quattrochi et al., 
2001).  A linear regression is performed using the logarithms of the total length of the boundary 
and the step size.  The regression slope B is used determine the fractal dimension of the isarithm 
line, where B−= 2FD .  As a flat surface grows more complex, FD increases from a value of 2.0 
to nearly 3.0 as the surface begins to fill a volume.  The final fractal dimension FD of the surface 
is the average of the FD values for those isarithms having a coefficient of determination greater 
than or equal to 0.9 (Quatrochi et al., 2001; Lam et al., 2002; Emerson et al., 1999; Jaggi et al., 
1993).   

 
Spatial autocorrelation is an assessment of the correlation of a variable in reference to spatial 
location of the variable.  Spatial autocorrelation measures the level of interdependence between 
the variables, the nature and strength of the interdependence. Moran’s I is one of the oldest 
measures of spatial correlation.  It compares the value of a variable at any one location with the 
value at all other locations and can be applied to zones or points with continuous variables 
associated with them. Computation of Moran's I is achieved by division of the spatial covariation 
by the total variation. 

 
Landsat TM images were acquired covering four National Forests areas wherein the forest stand 
characteristics (such as trunk size, distribution, species, etc) are well known.  Topographic data 
in the form of digital elevation model (DEM) data sets were also obtained from the U.S. 
Geological Survey.  The four National Forests for which data were obtained include 
Chattahoochee National Forest (GA), Talladega National Forest (AL), Oakmulgee National 
Forest (AL), Bankhead National Forest (AL) (Figure 7).  A data set was constructed in Arc-View 
that consisted of the spatial distribution of species attributes, digital elevation files and the 
Landsat scenes.  Leaf-on satellite images were used because forest canopies reflect more energy 
than do bare trees.  A review of the forestry literature revealed that the relationship between tree 
canopy characteristics and trunk size has been extensively studied and quantified.  Not 
surprisingly, these studies have shown that canopy size and trunk diameter are strongly related 
and thus it should be possible to indirectly estimate trunk diameters from observations of the 
canopies.  Small subsets of each image (samples) were collected from each forest area making 
sure to obtain equal coverage of all parts of the forest (Figures 8 and 9).  A total of at least 150 
samples were collected from the forests for statistical analysis.  The FD and Moran’s I values 
were found for all bands of the Landsat TM coverage and for all samples.  The averages of FD 
and Moran’s I for each sample were calculated using the results of all Landsat TM bands except 
the thermal band, which has a different spatial resolution.  
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Figure 8.  Location of sampling sites in Bankhead National Forest. 
 
 
 

 
 

Figure 9.  Location of sampling sites in Chattahoochee National Forest. 
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Overall, this study demonstrates that important measures of forest-related surface roughness 
including average stand thickness can be effectively estimated from remotely sensed data using 
the textural analytical techniques.  Regression models to predict stand size classes from fractal 
dimensions and Moran’s I calculated from Landsat TM data were developed (Figures 10 and 11).  
The image is represented and displayed in a digital format by subdividing the image into small 
equal-sized and shaped areas, called picture elements or pixels, and representing the brightness 
of each area with a numeric value or digital number which is the integration of the brightness 
levels within that pixel.  If the two adjacent pixels with a same area are covered with continuous 
small crown trees as in Figure 12(a), this results in two homogenous surfaces, and so the 
integration result in both pixels will be close, and thus the two pixel values will be similar in 
magnitude.  If the pixel values do not vary significantly, there is less complexity in terms of 
fractals and more homogeneity in terms of autocorrelation, thus a smaller FD and higher 
Moran’s I. On the other hand, if the pixels are covered with large crown trees as in 12(b), 
adjacent pixels are inhomogeneous so the integration results in both pixels will be dissimilar and 
the two pixel values will not be close in magnitude.  If the pixel values vary significantly, there is 
more complexity in terms of fractals, less homogeneity in terms of autocorrelation, and results in 
higher FD and lower Moran’s I.  That explains why the regressions showed that FD increased 
(positive slopes) and the Moran’s I decreased (negative slopes) as the sawtimber (Diameter at 
Breast Height > 9.0 inches) percentage increased, whereas FD decreased (negative slopes) and 
Moran’s I increased (positive slopes) as the saplings (DBH = 1.0-4.9 inches) percentage 
increased. The study also demonstrates that rough terrain significantly masks the effect of the 
differences in stand characteristics on the spatial indices (Figure 13). 

 
Three out of four data sets were selected for model development and the fourth one was utilized 
for technique validation.  Verification of stand size predictions showed that the developed 
models, especially the fractal dimension models, gave accurate estimates (Table 1). The results 
also revealed those textural metrics were sensitive to changes in hydraulic roughness and that the 
sensitivity increases as the vegetation thickness increases (Figures 14-17). Thus, they were 
capable of capturing hydraulically significant surface roughness indicating that it can be an 
effective measure of flow resistance in forested flood plain areas.  The study also revealed 
optimal radiometric and spatial resolutions among various remote sensors for detecting 
differences in surface characteristics.   

 
This case study showed that “complexity” is more evident in Landsat TM visible bands than in 
infrared bands.  The same textural analyses were performed with image data at higher and lower 
resolutions than Landsat TM data.  Results indicated that Landsat 30-meter resolution is better 
than IKONOS 4-meter and MODIS 250-meter resolutions in detecting potential differences in 
surface characteristics using the textural analytical techniques of fractals and autocorrelations. 
This result, of course, is directly due to the similarity of image resolution and tree canopy scale. 
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Figure 10.  Linear regression prediction models using fractal dimension. 
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Figure 11.  Linear regression prediction models using Moran’s I. 
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Figure 12.  Size class effect on remotely sensed data. 
 
 

 
 

Figure 13. Terrain effect on remotely sensed data. 
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Table 1. Performace evaluation measures of the developed stand size prediction models. 

 

 
 
 
 

 
 

Figure 14. The roughness coefficient Manning’s n for Chattahoochee National Forest 
using the Fractal Dimension. 
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Figure 15. The roughness coefficient Manning’s n using the Fractal Dimension for a large 
number of trees per acre (2500 trees/acre). 
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Figure 16.  The roughness coefficient Manning’s n for Chattahoochee National Forest 
using Moran’s I. 
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Figure 17.  The roughness coefficient Manning’s n using Moran’s I for a large number of 
trees per acre (2500 trees/acre). 
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