
PROGRESSIVE MESH DECOMPOSITION IN THE

OPERATIONAL RATE-DISTORTION SENSE USING

GLOBAL ERROR

Laurent Balmelli

Visual and Geometric Computing

IBM T.J. Watson Research Center, USA

balmelli@us.ibm.com

ABSTRACT

Given a semi-regular mesh whose subdivision connectivity is obtained with the 4-8 scheme, we propose an algorithm to
decompose the mesh into a control mesh and a series of embedded detail meshes. Hence, the output representation is
adaptive and progressive. We use a tree-driven, �ne to coarse approach to simplify the mesh using vertex decimation.
Previous approaches use local error and greedy strategies to simplify meshes. Our method uses global error and a
generalized vertex decimation technique borrowed from optimal tree pruning algorithms used in compression. Although
global error is used, our algorithm has cost �(n logn). We show that a direct approach using the same error criterion
has at least cost �(n2). We have a rate-distortion framework: each approximation satis�es a constraint in rate (e.g.
number of triangles) while minimizing the distortion (e.g. distance in l2 norm with the input mesh). The algorithm
aims at the optimal approximations in the rate-distortion sense. We analyze the optimality of the algorithm and give
several proofs for its properties. Our algorithm can be applied to meshes obtained with other subdivision schemes (e.g.
Loop, Catmull-Clark,...) and has also applications in compression and �nite element analysis.

Keywords: rate-distortion optimal, mesh simpli�cation, global error, subdivision connectivity

1. INTRODUCTION

1.1 Motivation

Meshes with subdivision connectivity, e.g. semi-
regular triangulations constructed using iterated
subdivision rules (Figures 1a-d), are popular in many
applications, such as visualization [11] and finite
element analysis [9], to name a few. Their irregular
counterparts have also been extensively studied [16],
but regular meshes are preferred because of their su-
perior performance and flexibility for processing [13],
transmission [17] and compression [15].

A particular class of semi-regular triangulations
are 4-8 meshes. In the strict regular setting, these

meshes have been extensively used to visualize terrain
data [3, 11, 19, 21]. In this context, 4-8 meshes are
also called quadtree triangulations because quadtrees
are often used to store them [18, 21, 22]. Terrain
models are given as amplitude matrices (i.e. the
parametrization is implicit) and 4-8 meshes are used
to connect the vertices (Figures 1a-d). Recently,
researchers have also used semi-regular 4-8 meshes to
compute approximations of subdivision surfaces [24].
Subdivision surfaces are an increasingly popular
representation for piecewise-smooth surfaces. Al-
gorithms for subdivisions surfaces use recursive
subdivision rules to create vertices from a coarse
control mesh. Examples of such rules are provided by
Loop [20], Catmull-Clark [6, 8] and Velho-Zorin [24].
Today, the properties of subdivision surfaces are an
important area of investigation (e.g. [25]).

In both terrain visualization and subdivision surfaces,
researchers often deal with large datasets. Therefore,
simplification algorithms producing adaptive, multi-
resolution representations are an important topic of
investigation [11, 19, 21, 3]. Multi-resolution repre-
sentations of meshes with subdivision connectivity
have many advantages over their uniform counter-
parts. They allow for vertices to be concentrated in
detailed regions, leading to efficient descriptions of
the shape. Their multiple levels of resolution provide
an efficient means to deal with resources-constrained
rendering, storage or transmission.

1.2 Contributions and plan

We propose an efficient algorithm to produce adaptive
representations of semi-regular 4-8 meshes using
vertex decimation and global error. The algorithm
decomposes the input into a control mesh plus a
series of detail meshes. Global error metrics yield
better approximation quality than heuristics based on
local error, but are often computationally expensive.
We shows that a direct approach using global error
requires at least �(n2) time, where n is the number
of vertices in the input mesh. In comparison, our
algorithm using the same error criterion has cost
�(n logn). Also, decimation approaches yield better
results than their refinement counterparts [12]. In
order to choose vertices to decimate, we use an
optimal vertex selection technique borrowed from tree
pruning algorithms used in compression [7].

We study our mesh simplification algorithm in an op-
erational Rate-Distortion (RD) framework. We attach
decimation costs to each vertex. More precisely, we
measure a cost in rate, given in terms of triangles, and
a cost in distortion, computed in l2 norm with respect
to the original mesh. We give an �(log2 n) algorithm
to maintain global error estimates for the vertices
during the optimization process. The algorithm takes
advantage of the hierarchy imposed over the set of
vertices by the 4-8 mesh construction (Section 1.4).

We discuss the optimality of the solutions and analyze
how optimal vertices are chosen at each decimation
step. We use our results to show that approximation
errors are most of the time monotonic across rate. We
prove that, under certain assumptions, monotonicity
is achieved. We explain that suboptimal cases leading
to nonmonotonicities exist. However, we show
experimentally that the approximation errors returned
by our algorithm behave almost always monotonically
across rate. We compare our algorithm to a greedy

counterpart and show that monotonicity is no more
conserved in this case.

We show experimentally the superiority of using
global error for the vertices over approaches based
on local error. Then, we apply our algorithm to a
database of 388 terrains [10] and give approximation
results and timings. Timings are given for terrains
containing up to two millions triangles.

The paper is organized as follows: In Section 1.3, we
review previous work. In Section 1.4, we introduce the
hierarchical construction of 4-8 meshes and explain
the constraints imposed over the vertices. In Section
2, we introduce our approach: More precisely, in Sec-
tion 2.1, we present our framework and give the al-
gorithm. Then in Section 2.2, we explain the update
method used to maintain global characteristics for the
vertices. We evaluate the complexity of the algorithm
in Section 2.3. We discuss the optimality of the so-
lutions in Section 3 and give experimental results in
Section 4. We summarize our results and conclude this
paper in Section 5.

1.3 Previous work

Many simplification algorithms for regular 4-8
meshes have been given in the context of terrain
visualization [11, 19, 21]. Unfortunately, all previ-
ous approaches use greedy strategies and local error
criteria to simplify the model. Lindstrom et al. and Pa-
jarola et al. use an greedy insertion approach [19, 21],
whereas Duchaineau et al. adopt a strategy involving
both greedy insertion and greedy decimation [11]. In
Section 1.4, we explain the difference between greedy
selections and more general approaches, as introduced
in this work. In the semi-regular setting (e.g. subdi-
vision surfaces), simplification algorithms using local
error are also given (see Velho [23]). However, most
implementations are based on nonadaptive representa-
tions to avoid the added complexity and performance
penalty traditionally associated with adaptive schemes.

Each simplification step modifies the model’s shape,
and some errors must be recomputed. Efficient
algorithms for update are necessary to keep acceptable
computational cost. In previous work, algorithms
are given in order to locally recompute errors after
greedy insertions [19, 21] or greedy decimations [11].
However, no such algorithm is described for more
general cases of decimation (Section 1.4). Moreover,
no low-cost solution exists to efficiently maintain
global error estimates for the vertices.

Approaches based on global error are usually more

computationally expensive [14, 1]. A typical cost
for such algorithm is �(n2), where n is the number
of vertices or triangles. Hence, the cost restricts the
size of the dataset to be processed. In [4], we give an
analysis in computational complexity of simplification
operations, e.g. insertion and decimation, for 4-8
meshes. In the present paper, we use these results to
obtain an �(n logn) algorithm using global error.

Our algorithm is inspired from optimal tree pruning al-
gorithms used to compute adaptive quantizers for com-
pression [5, 7]. A quantizer is often represented with
a binary tree and a partial tree corresponds to an adap-
tive quantizer. The efficiency of a quantizer is evalu-
ated using a rate functional, e.g. returning the average
bitrate of the quantizer, and a distortion functional, e.g.
measuring the deviation between the original and the
quantized samples. Both functionals are evaluated on
the tree representation. The algorithm given by Chou
et al. in [7] computes partial trees achieving minimal
distortion for a given rate. They prove that the algo-
rithm finds the optimal quantizers by iteratively dec-
imating the tree. This problem is very similar to our
mesh decimation approach, however the hierarchy im-
posed over the vertices must be conserved and a mesh
must be conforming in order to be a valid solution,
posing additional constraints to the optimization pro-
cess.

1.4 4-8 meshes and constraints

We present a simple construction of a regular 4-8 mesh
connecting an amplitude matrix z (e.g. terrain data),
i.e. the coordinates x; y are implicit. For the sake of
clarity, we represent our meshes as tilings of the plane
R
2 . A 4-8 mesh connecting the dataset is created using

the recursive procedure depicted in Figures 1a-d. Ini-
tially, a control mesh formed with two triangles is con-
nected using the four corner vertices. Hence, the con-
trol mesh is a single triangulated quadrilateral (quad).
Then, each triangle hypothenuse is bisected to connect
a vertex at the midpoint. We denote each connection
step by l and Figures 1a-d depict steps l = 1; 2; 3; 4,
respectively. After 2d connection steps, the mesh con-
tains n = 2 � 4d triangles. The unique vertex inserted
at step l = 1 (Figure 1a) is called the root vertex and is
denoted by v0.

Subdivision surfaces are used to generate semi-regular
4-8 meshes, i.e. with arbitrary topology [24]. A coarse
control mesh composed of a small set of triangulated
quads (as in Figure 1a) fixes the topology and is used
as an initial mesh. Then, subdivision rules are used
to create new vertices connected on each quad, as in
Figures 1a-d.

v0

(a) l = 1 (b) l = 2 (c) l = 3 (d) l = 4

Figure 1. Connection of a matrix of amplitudes z
using the 4-8 scheme: Initially, a control mesh formed
by two triangles is created using the corner vertices.
Then, triangle hypothenuses are bisected to connect
a vertex at the midpoint. Each connection step is
denoted by l and (a),(b),(c) and (d) show steps l =
1; 2; 3 and 4, respectively. At each step, the newly
connected vertices are depicted in white.

The iterative procedure used to connect the vertices
naturally yields hierarchical constraints over the set
of vertices. The vertices at each level form a set
of triangles, eventually embedded in a set of finer
triangles formed by the vertices connected at the next
step. Hence, the construction defines a hierarchy
of triangulations (e.g. Figure 1a-d), as well as a
hierarchical set of vertices. Both hierarchies can be ef-
ficiently modeled with a quadtree [2]. However, since
neighbor quads share common vertices on their edges,
nodes in the tree of vertices share common children.
Hence, subtrees are actually locally connected to their
neighbors. Consequently, pruning operations have to
be defined accordingly [2]. Our algorithm operates on
vertices and we refer to their hierarchy simply as tree
for simplicity.

Consider the root vertex v0 connected in Figure 1a. A
decimation perserving the hierarchy operates as fol-
lows: When v0 is decimated (e.g. in the mesh of Fig-
ure 1d), the pair of triangles split by v0 (Figure 1a) is
recovered. Call v a vertex, then Mv denotes the set
of vertices that must be removed jointly in order to re-
cover the original pair of triangles and then preserve
the hierarchy. We call this set merging domain. This
set forms a forest of subtrees in the tree of vertices.
Consequently when decimating v0, the root of the tree
of vertices, all the vertices in the mesh are also deci-
mated, i.e. Mv0 contains all the vertices in the mesh.
Assume that jMvj counts the number of vertices in a
domain, then jMv0 j = n. A merging domain is at-
tached to each vertex in the mesh. For the vertices v
connected at the step depicted in Figure 1d, Mv = fvg
since it suffices to remove v to recover the correspond-
ing pair of triangles in Figure 1c. Such decimation
is referred to as a greedy case of decimation (as used
in [11]) and Mv = fvg is a leaf in the tree of vertices.
In contrast, a general case of decimation refers to when
an arbitrary domain (i.e. with jMvj > 1), formed by a
forest of subtrees, can be removed. We explain in Sec-
tion 2.1 that allowing general decimation is the key to

perform optimal choices in the rate-distortion sense.

v

(a) (b)

Figure 2. General decimation: (a) Example of merg-
ing domain Mv . The white vertices depict the ver-
tices in the domain. (b) Support of the merging do-
main: Set of remaining triangles when Mv is deci-
mated.

Figure 2a depicts an example of general decimation:
The white vertices belong to the domain Mv attached
to the central vertex v. Assume that 2d steps were
used to construct the mesh, then v was connected at
step 2d � 4 in order for the domain to have the size
shown in the figure. Therefore the coarser the con-
nection step, the larger the merging domain. Figure
2b depicts the triangulation when Mv is decimated.
We call support the remaining set of triangles tiling
the merging domain. Moreover, we denote by �Mv a
decimated merging domain. Note that the decimation
preserves the hierarchy and that the resulting mesh is
conforming.

Preserving the hierarchy imposed by the construction
constrains simplification algorithms to search a
smaller set of possible approximations. However,
this approach has the following advantages: Each
simplified mesh is represented by a partial tree, hence
no effort is needed to retriangulate the dataset after
removing a vertex, since all successive approxima-
tions are embedded. Such representation is naturally
progressive and the connectivity can be stored in a
compact way. The resulting meshes are efficient for
compression.

The most important benefit for preserving the hierar-
chy is that global error estimates for the vertices can
be computed at low cost. In Section 2, we explain
that this can be done in �(log2 n). In Section 4.1,
we show experimentally that our hierarchy-preserving
method using global error leads to far superior results
in quality than their counterparts using local error (e.g.
[11, 19, 21, 23]). Moreover, we show that there is only
a small degradation when compared to algorithms not
preserving the hierarchy, i.e. searching a larger space
of approximations. Recall that these algorithms do not

benefit from the properties described above.

2. ALGORITHM

2.1 General approach

This section introduces our �(n logn) algorithm
based on general decimation and global error. We
show in Section 2.3 that it computationally out-
performs a direct approach using the same error
criterion. We apply it to a regular mesh built on a
matrix of amplitudes z, e.g. terrain data. The same
algorithm applies to semi-regular meshes. In this case,
extraordinary vertices are not decimated in order to
preserve the mesh topology. We use mesh functionals
u : Mv ! R to compute properties for v over its
merging domain Mv. We use two mesh functionals R
and D: R is called the rate and counts the number of
triangles, whereas D measures the distance in l2 norm
between the original surface and an approximation
(Appendix A). Hence, for each v we compute the
vector value u(Mv) = (R(Mv); D(Mv)).

Call M0 = fv0; : : : ; vN�1g the input mesh and M a
simplified version, then the problem to solve is

D(R) = min
jMj�jM0j

fD(M)jR(M) � rg; (1)

where r denotes a constraint in rate. A progressive
representation for M is found by solving the problem
for all values 2 � r � n. For a rate budget r, the
solution (R(Mi); D(Mi)) returned by D(R) satisfies
the constraint at minimal incurred distortion. The set
of solutions, denoted by

jBj < : : : < jM1j < jM0j; (2)

where B is the control mesh, corresponds to a series
of embedded approximations. The solutions are
embedded in the sense that any approximation can be
reconstructed from a coarser solution only by splitting
a set of triangles.

Each simplified mesh (R(Mi); D(Mi)) can be rep-
resented as a position in the space of values spanned
by R and D. This space is called rate-distortion
(RD) plane (Figures 3a-d). The set of all possible
approximations is a cloud of positions in the RD
plane. Each optimal configuration is represented by
a position u(Mi) = (R(Mi); D(Mi)) on the curve
bounding the convex hull of all configurations (Figure

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0

1

2

3

4

5

6

7

M0()urate

d
is

to
rt

io
n

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0

1

2

3

4

5

6

7

min✘
M1()u

M0()u
rate

d
is

to
rt

io
n

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0

1

2

3

4

5

6

7

M0()u

M2()u

M1()u

min✘

rate

d
is

to
rt

io
n

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0

1

2

3

4

5

6

7

B()u

M0()uM1()u

M2()u
min✘

rate

d
is

to
rt

io
n

(a) (b) (c) (d)

Figure 3. Algorithm: (a) Initially, the variations �u(Mv) and the slopes �(v) are computed for each vertex. (b)
The vertex with minimal slope �(v) = ��D(Mv)=�R(Mv) is chosen and decimated. The RD characteristics of
the ancestor vertices of Mv are updated, hence the corresponding positions in the RD plane are displaced. (c),(d)
The algorithm is iterated. The algorithm aims at the solutions on the curve lowerbounding the set of all possible
con�gurations. These approximations are optimal in the operational RD sense.

3d). This curve is called the operational RD curve and
the approximations on this curve are optimal in the
operational RD sense.

We define the variation of a functional as

�u(Mv) = u(Mv)� u(�Mv)

= (R(Mv)�R(�Mv); D(Mv)�D(�Mv))

= (�R(Mv);�D(Mv)):

(3)

The variation �u(Mv) is the change in rate and
distortion when Mv is decimated. Therefore, a
vector �u(Mv) links two configurations in the RD
plane. More precisely, given a mesh over which
�u(Mv) is computed, the vector leads to the con-
figuration obtained by decimating Mv. Hence,
�(v) = ��D(Mv)=�R(Mv) is the trade-off be-
tween rate and distortion when Mv is decimated and
represents a slope in the RD plane (Figure 3a).

The algorithm proceeds as follows: Initially, the vari-
ations �u(Mv) and the slopes �(v) are computed
(Figure 3a) and stored for each vertex. Note that
�D(Mv) < 0 (Appendix A), hence �(v) > 0. Addi-
tionally, we use a variable �min at each vertex to store
the minimal slope amongs all its descendants. At each
iteration the vertex v with minimal �(v) is chosen and
Mv is decimated (Figure 3b). General decimation al-
lows us to select the optimal Mv in the rate-distortion
sense: The selection minimize the increase in distor-
tion while maximizing the decrease in rate. The deci-
mation changes the characteristics (i.e. in rate and dis-
tortion) of a set of vertices. We call these vertices an-
cestors1 and denote this set by AMv

. Two types of

1Recall that subtrees in the tree of vertices are locally connected

ancestors a exist: the vertices such that Mv �Ma (i.e.
towards the root) and the vertices such that Mv and
Ma partially overlap. In [2], we explain how to find
these vertices efficiently. In particular, we prove that

jAMv
j 2 �(logn): (4)

Also, we show that �(log2 n) operations are sufficient
to update all the ancestor values. We explain our
update mechanism in Section 2.2. Once the RD
characteristics of the ancestor vertices are updated,
the corresponding positions u(Ma) in the RD plane
are displaced. The algorithm is iterated until the
configuration with minimal rate is reached (Figures
3c-d).

We give the algorithm below. In our application, we
use a regular 4-8 mesh and the configuration with
minimal rate has two triangles (subdivided by the
root vertex v0 as shown in Figure 1a). As pointed
out in Section 1.4, Mv0 contains all the vertices in
the mesh. Therefore, since our characteristics are
global, the global rate and the global distortion are
given by R(Mv0) and D(Mv0), respectively. Hence,
in line 7 we use R(Mv0) to test the rate of the current
approximation. Similarily, we could use D(Mv0) to
obtain configurations satisfying a maximum error.
The total complexity of the algorithm is computed in
Section 2.3.

ALGORITHM

1 initialization:

to their neighbors (Section 1.4). Hence, in contrast with common

definitions for ancestors in trees, our ancestors are not strictly con-

fined to vertices towards the root.

2 for all v
3 COMPUTE �D(Mv), �R(Mv)

4 �(v) ��D(Mv)
�R(Mv)

5 iteration:

6 i = 1 (counter for the approxima-
tions.)

7 while R(Mv0) > 2

8 v? = argminv2M �(v)

9 Mi �Mi�1 nMv?

10 UPDATE �D(Ma) AND �R(Ma),
8a 2 AMv

11 end

12 end

2.2 Update of global error

In this section, we present the algorithm used to update
the functional variations of the vertex characteristics.
The algorithm has cost �(log2 n) and is derived from
an algorithm based on an inclusion-exclusion princi-
ple used to compute merging domain intersections [4].
Assume that a domain Mv is decimated, then for each
vertex w 2 Mv, we find a set of parents a 2 Aw (see
below) and the variations �u(Ma) are replaced by

�u(Ma)��u(Mw);8a 2 Aw;8w 2Mv: (5)

The unions of all sets Aw, 8w 2 Mv is a set of
ancestors of Mv. We explain how to find the sets Aw

below.

We use the algorithm below to update the functional
variations computed at the initialization (lines 1-4 of
the algorithm in Section 2.1) during the mesh opti-
mization. In the algorithm, the updated ancestor func-
tionals are denoted �u0(Ma). The algorithm finds the
set of ancestors AMv

and updates the characteristics
using (5). More precisely, a set of parents for each ver-
tex w 2Mv, denoted by Aw, is traversed. The parents
are found using a fine to coarse traversal of the tree of
vertices. An example of traversal is shown in Figure 5.
The index next to each vertex is the connection step l
(Figures 1a-d). The larger the index the finer the con-
nection step. Finally, note that an important property
related to the parents of a vertex, is

8w 2Mv; v 2 Aw; (6)

i.e. all the vertices w 2Mv have v as a parent.

The update (5) is performed for each parent. Once the
set of parents for w has been visited, w is decimated.
Hence the algorithm is used to update the ancestor
variations and to jointly decimate the domain Mv.
Hence, it replaces lines 9 and 10 of the algorithm
given in Section 2.1. Consider the decimation of Mv

and the update of AMv
. Furthermore, assume that v is

connected at step l. The set of vertices w 2Mv has to
be iteratively decimated starting at the vertices in the
domain having the finest connection step. From a tree
point of view, this is equivalent to iteratively prune
the subtrees formed by Mv starting at the leaves.
Therefore, if Mv spans m levels, then the vertices at
step l+m are decimated first, followed by the vertices
at step l +m� 1, and so on.

5

4

4 1

3 3

2

2

2

2

3

w

1

2

3

45

3 3
2 2

2

4

(a) (b)

Figure 5. Parents of vertex w (Aw): (a) To �nd the
parents of w (connected at l = 5), the vertex hier-
archy is traversed �ne to coarse. The path (arrows)
follows recursively the tree of vertices towards the
root. Each traversed vertex split a pair of triangles
depicted in (b). In both (a) and (b), the index next
to each vertex indicates the connection step (Figure
1a-d).

ALGORITHM

1 for ALL AVAILABLE VERTICES w 2 Mv CON-
NECTED AT STEP l +m: : : l

2 for ALL a 2 Aw

3 �u0(Ma) = �u(Ma)��u(Mw)

4 end

5 decimate w

6 end

1v 2vw

Mw3

Mw2

Mw1

overlap

Mw4

Mw5

overlap

(a) (b) (c)

Figure 4. Update of the global error: (a) When Mv1
and Mv2

are decimated, the global characteristics (rate and
distortion) of the mesh are u(Mv0

) ��u(Mv1
[Mv2

). (b) Intersection between two large merging domains. For
clarity, the merging domains are represented using their support. The intersection is depicted in dark shade and the
thick line represents the boundary between the domains. (c) Decomposition of the intersection in part (b): The
intersection is expressed as the union of a set of smaller domains Mwi

, i = 1 : 5. Note that the pairs of domains
Mw2

,Mw3
and Mw3

,Mw4
overlap (represented in dark shade).

We explain now how global characteristics are main-
tained using the above algorithm. We start with a
simple example, then we address the general case. To
do so, we summarize the problem of finding merging
domain intersections. A complete analysis is found
in [2].

Consider the following example: After the initializa-
tion phase (lines 1-4 of the algorithm in Section 2.1),
the functional values �u(Mv) are global since no do-
main has been yet decimated. Consider Mv1 and Mv2

as depicted in Figure 4a. Clearly, after decimating both
domains, the global characteristics of the mesh (rate
and distortion) are

�u(Mv0)��u(Mv1 [Mv2); (7)

where v0 denotes the root vertex. Recall that v0 is used
to measure the characteristics of the complete mesh
since Mv0 contains all the vertices. To evaluate (7),
we need to compute �u(Mv1 [Mv2). Unfortunately,
we have Mv1 \Mv2 6= ;, thus

�u(Mv1 [Mv2) < �u(Mv1) + �u(Mv2): (8)

However, Mw = Mv1 \ Mv2 , as shown in Figure
4a. Hence, the surplus of �u(Mv1) + �u(Mv2) is
�u(Mw) because every triangle tiling the support of
Mw is also a triangle of either the support of Mv1 or
Mv2 . Therefore,

�u(Mv1[Mv2) = �u(Mv1)+�u(Mv2)��u(Mw):
(9)

We show now that the algorithm computes (9) after
the successive decimation of Mv1 and Mv2 (the order

has no importance). For Mv1 , the algorithm first deci-
mates w and the three remaining vertices connected at
the same step (depicted in white in Figure 4a). Hence,
following (6), the updated functional characteristics at
v1, v2 and v0 (root vertex) are, respectively,

�u(Mv1)��u(Mw)�
X

k2Mv1
;k 6=v1;k 6=w

�u(Mk);

�u(Mv2)��u(Mw);

�u(Mv0)��u(Mw)�
X

k2Mv1
;k 6=v1;k 6=w

�u(Mk):

(10)
Then, the algorithm decimates v1 and the updated
value at v0 is

�u(Mv0)��u(Mv1): (11)

Note that v2 is not affected by the decimation of v1
since v2 =2 Av1 . Now Mv2 is decimated, starting with
the three available vertices k 2 Mv2 ; k 6= w, depicted
in gray in Figure 4a. The updated values at v2 and v0
are, respectively,

�u(Mv2)��u(Mw)�
X

k2Mv2
;k 6=v2;k 6=w

�u(Mk);

�u(Mv0)��u(Mv1)�
X

k2Mv2
;k 6=v2;k 6=w

�u(Mk):

(12)
Finally, the algorithm decimates v2 and the updated

value at v0 is

�u(Mv0)� (�u(Mv1) + �u(Mv2)��u(Mw))| {z }
�u(Mv1

[Mv2
)

;

(13)
which shows that (9) is obtained, i.e. the characteris-
tics computed at v0 are global.

The above example shows that the algorithm uses an
inclusion-exclusion principle to compute the global
error at each vertex. We presented a simple example
where the intersection between the decimated domains
�Mv1 and �Mv2 is the singleton domain Mw = fwg.

In general, intersections between domains are more
complex. For example, consider the intersection
between the two domains in Figure 4b. In the figure,
the domains are depicted using their support for
clarity. Following (4), we have �(logn) possible
arrangements for intersections. Hence the examples in
Figures 4a and 4b are just particular cases. Figure 6
depicts another example of arrangement.

The intersection in Figure 4b can be decomposed in
terms of smaller merging domains, as shown in Figure
4c. The number of domains is proportional to the size
of the intersection. In the example of Figure 4a, a sin-
gle domainMw is sufficient to express the intersection,
whereas in Figure 4c, the intersection is written

Mw1
[Mw2

[Mw3
[Mw4

[Mw5
: (14)

Unfortunately, the domains Mi forming the intersec-
tion overlap (Figure 4c), i.e. Mw2

\ Mw3
6= ; and

Mw3
\ Mw4

6= ; . Therefore to compute (14), we
use an inclusion-exclusion approach to resolve all
embedded intersections. In [4], we call this problem
merging domain intersections and we show that (14)
is computed in �(logn) time. Also, we show that the
intersections between a decimated domain �Mv and
the domains of all its ancestors AMv

are computed in
�(log2 n) time.

The update algorithm given at the beginning of this
section automatically computes all intersections
between Mv and the domains of its ancestors. As a
result, the computed values at each vertex v are the
global variation in RD characteristics after Mv is
decimated. Hence, the characterstics �u(Mv0), i.e.
at the root vertex, are the global RD characteristics of
the mesh.

We conclude now this section with the following gen-
eral example: Assume that all vertices in Mv are dec-

imated except for v. Therefore, following (6) the up-
dated variations at v and v0 are, respectively,

�u(Mv)�
P

w2Mv;w 6=v
�u(Mw),

�u(Mv0)�
P

w2Mv;w 6=v
�u(Mw).

(15)

Assume that v is now decimated, then using (5), the
variation at v0 is now

�u(Mv0)��u(Mv); (16)

which corresponds to the global characteritics of the
mesh after the decimation of Mv.

2.3 Complexity

The cost of the algorithm in Section 2.1, i.e. comput-
ing a complete decomposition of the mesh, is found as
follows: In [4], we show that merging domains have
size �(logn) on average. Thus, assuming a mesh of
n triangles, the initialization has cost �(n logn). At
each iteration, the optimal vertex v? (having minimal
slope �(v?)) is found in �(logn) operations using
the values �min. The cost to decimate Mv and update
the variations for the vertices in AMv

is �(log2 n).
Also, �(logn) values �(v) and �min are recomputed
and the algorithm is iterated. On average, n=�(logn)
steps are necessary to decompose the mesh, since at
each step, �(logn) vertices on average are decimated
(average size of merging domains). Hence, the cost to
compute the full decomposition is �(n logn).

A direct algorithm needs to recompute the global er-
ror over each ancestors’ domain. A lowerbound for
this update is obtained as follows: We have roughly
�(4l+1) vertices at step l and l 2 �(logn) ancestors
exists. Call a any such ancestor, then jMaj4(i; n) �
n=4i�1, 1 � i � l. Therefore, a lowerbound for the
complexity is

log
4
nX

i=0

4i
iX

j=0

n

4j
=

16

9
n2 �

1

3
n log4 n�

7

9
n 2 �(n2):

(17)
Note the above approximation accounts only for the
ancestors a such as Mv � Ma. Accounting for the
update of the ancestors whose domain partially over-
laps does not change the order of magnitude. However,
this evaluation is complex due to the �(logn) cases of
overlap, i.e. arrangements for intersections, one has to
deal with (Section 2.2).

3. DISCUSSION OF OPTIMALITY

In this section, we discuss the optimality of the al-
gorithm. First, we explain how an optimal vertex is
chosen at each decimation step (Section 3.1). Second,
we discuss issues related to intersections between do-
mains and how optimal choices are affected (Section
3.2). Third, we explain how the monotonicity of the
approximation errors (i.e. distortions) are conserved
across rate (Section 3.3).

3.1 Optimal choice

Recall that our rate functional measures the number
of triangles, hence the functional is monotonically in-
creasing with the mesh size. Consider now the follow-
ing example: Consider two vertices v1 and v2 such that
v2 2 Mv1 , i.e. �R(Mv2) < �R(Mv1). Furthermore,
assume that

�D(Mv2) > �D(Mv1): (18)

Such a case is possible with the l2 or the l1 norms
since both are nonmonotonic with the mesh size [14,
2]. Recall that �D(Mv1) < 0 and �D(Mv2) < 0
(Section 2.1). If v2 is decimated, then following (5)
and (6), we have that

�D(Mv1)��D(Mv2) > 0; (19)

and the new slope

�(v1) =
�(D(Mv1)�D(Mv2))

(�R(Mv1)��R(Mv2))
< 0; (20)

i.e. the sign of the slope changes. In consequence,
Mv1 will be the optimal domain to decimate at the
next iteration, and the global error will decrease, i.e
the RD curve will be nonmonotonic. We say that Mv1

is a nonmonotonic merging domain with respect to
Mv2 , i.e. decimating Mv2 creates a nonmonotonicity
at v1.

The algorithm avoids the above situation using general
decimation (Section 1.4) as follows: If the decimation
of a domain Mv provokes a nonmonotonicity at a par-
ent of v, then the algorithm will decimate the domain
of the parent instead. In Proposition 3.1, we show that
only the rate functional needs to be monotonic and that
the distortion functional can be arbitrary (i.e. mono-
tonic or nonmonotonic), both with respect to the mesh
size, in order for the algorithm to make the optimal
choice.

Proposition 3.1. Given v1 and v2, such that v2 2
Mv1 , and �R(Mv) � 0 (monotonicity of the rate
functional), then Mv2 is decimated before Mv1 if and
only if

�D(Mv1)

�D(Mv2)
> Æ > 1; (21)

where Æ = �R(Mv1)=�R(Mv2). When v1 does not
meet condition (21), the domainMv1 is said to be non-
monotonic with respect to Mv2 .

Proof. For Mv2 to be decimated before Mv1 , we need
to have

�D(Mv1)�R(Mv2) > �R(Mv1)�D(Mv2): (22)

Since the functionalR is monotonically increasing, we
can write

�R(Mv1) = Æ�R(Mv2); Æ > 1 (23)

Then, replacing (23) in (22) yields

�D(Mv0) > Æ�D(Mv1): (24)

2

3.2 Intersection between domains and optimal

choice

In Section 2.1, we explained that a type of ancestors is
the vertices a such that Mv and Ma partially overlap.
Figure 6 illustrates such a case. Assume now that Mv

is the optimal domain to decimate at some iteration
and that Ma is nonmonotonic with respect to Mw.
Since w 2 Mv, Mw is decimated jointly to Mv. Fol-
lowing (6), the decimation creates a nonmonotonicity
at Ma. The above example shows that, due to the
overlap between domains, the algorithm using general
decimation cannot avoid nonmonotonicities across
rate.

We perform experiments using matrices of amplitudes
z (terrain data [10]) and compare our algorithm to a
greedy counterpart using global error, i.e. we force the
algorithm to perform greedy decimation only (Section
1.4). Hence, only “leaf” domains Mv, i.e. Mv = fvg,
are decimated, preventing the algorithm to make op-
timal choices as explained in Section 3.1. We find

v

a
w

Figure 6. Suboptimal choice of the algorithm: w 2

Mv \Ma and Ma is a nonmonotonic merging domain
with respect to Mw (see Proposition 3.1). Decimat-
ing Mw provokes a nonmonotonicity at Ma.

that, although the algorithm using general decimation
cannot avoid monotonicity, the RD curve (top curve in
Figure 7) is very stable compared to the one obtained
with its greedy counterpart (bottom curve in Figure 7).
For the greedy version, nonmonotonicities often oc-
cur at low rate. We conclude that, for our dataset, few
cases of nonmonotonicity are observed.

0 50 100 150 200 250 300 350 400 450
108.9

108.8

108.7

108.6

108.5

108.4

108.3

108.2

108.1

108

rate (triangles)

PS
N

R
(d

B
)

Figure 7. Comparison of nonmonotoncities of the
RD curve between the algorithm using general deci-
mation (top curve) and its greedy counterpart (bot-
tom curve): The curve obtained with the greedy ver-
sion is unstable at low rates.

3.3 Monotonicity

In this section, we show that a rate functional mono-
tonic with the mesh size is necessary and sufficient
for the approximation errors to be monotonic across
rate. To do so, we assume that no suboptimal choice,
as explained in Section 3.3, is made. Under the above
assumptions, we actually show that the slopes �, cor-
responding to optimal choices made during the mesh
decomposition, monotonically decrease across rates.
This fact is stated in the following proposition:

Proposition 3.2 (Monotonicity of the RD Curve).
Consider that �R(Mv) � 0 and �D(Mv) is arbi-
trary, 8v. Call Mv? the optimal domain to decimate
and assume that there is no ancestor a 2 AMv?

such
that Ma is a nonmonotonic domain with respect to a
vertex w 2 Mv? \Ma. Then, for all updated vertices
a 2 AMv?

we have

�(a) > �(v?): (25)

Proof. We have to show that �(v?) is a lowerbound
for f�(v)gv2M . We only have to consider the updated
vertices a 2 AM?

v
, i.e.

�(a) =
�D(Ma)��D(Mv?)

�R(Ma)��R(Mv?)
;8a 2 AM?

v
(26)

Moreover,Mv? satisfies Proposition 3.1, then

�(a) >
Æ�D(Mv?)��D(Mv?)

Æ�R(Mv?)��R(Mv?)

>
(Æ � 1)�D(Mv?)

(Æ � 1)�R(Mv?)

>
�D(Mv?)

�R(Mv?)
> �(v?):

(27)

2

4. EXPERIMENTAL RESULTS

We organize our experimental results as follows: In
Section 4.1, we first demonstrate the efficiency of our
global error estimate using a simpler graphic model,
namely the polyline, i.e piecewise-linear polynomial.
This allows us to run a large number of experiments
and to compare our approach, i.e. using general
decimation and global error, with several algorithms.

Recall that the hierarchy imposed over the vertices
by the 4-8 mesh construction restricts the space of
approximations (Section 1.4). This constraint can be
applied to the polyline model using a binary tree, i.e.
a decimation (or insertion) algorithm must preserve
the tree hierarchy when optimizing the model. We
refer to these algorithms as constrained (Section
4.1). We compare our algorithm to two constrained
approaches using local error: vertex insertion and
vertex decimation.

We also compare our results to the optimal, uncon-
strained, approximations obtained using dynamic pro-
gramming. In the mesh case, this could be seen as the
optimal solutions using irregular triangulations. How-
ever, Agarwal et al. [1] have demonstrated that find-
ing these solutions is NP-Hard. In [2], we explain and
compare approaches to approximate polylines in de-
tail. Finally, we apply our algorithm to terrain data
(Section 4.2).

4.1 Comparison with methods using local error

We use the polyline model to test the efficiency of our
global error estimate for the vertices. Figure 8 shows
an example of constrained decimation. The top curve
is the original one and has 7 interior knots. These knots
are iteratively decimated and the bottom curve can be
seen as the control curve. The binary tree constraining
the decimation is depicted using bold lines in the fig-
ure.

1v

2v

3v

4v

7v
6v

5v

Figure 8. Successive approximations of a polyline
using constrained knot decimation. Knots are itera-
tively decimated from top to bottom. The binary tree
constraining the decimation is depicted using bold
lines.

Our experimental results are shown in Figure 9: The
graph shows a comparison of the RD curves. The rate
is computed as the number of segments forming an
approximation and the distortion is computed in l2
norm with respect to the original curve. We run the
experiment using 256 curves obtained from terrain
data and we average the results of each algorithm. To
compute the average, we normalize the errors and fix
the gain to 50 dB.

The top curve shows the errors of the optimal ap-
proximations found using dynamic programming. The
dashed curve is obtained with our algorithm using gen-
eral decimation and global error. The two bottom

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

45

50

P
S

N
R

 (
dB

)

 optimal
approximations

global error

local error

rate (segments)

 constrained
approximations

insertion

decimation

Figure 9. Comparison of RD curves: The rate is
computed as the number of segments forming an ap-
proximation and the distortion is computed in l2 norm
with respect to the original curve. The top curve is
obtained using dynamic programming. The dashed
curve is obtained with our algorithm. Finally, the two
bottom curves compare the decimation and insertion
approaches using local error.

curves are obtained with greedy insertion and greedy
decimation using local error. Both approaches accu-
mulate errors through the iterative approximation pro-
cess. Hence, the insertion method achieves better qual-
ity than the one using decimation at low rates and,
symmetrically, the decimation method achieves better
quality than the one using insertion at high rates.

4.2 Decomposition of terrain data

We apply now our algorithm to terrain data. We run
experiments on 388 terrains [10]. Each matrix of am-
plitudes has size 257 � 257, hence each model has
131’072 triangles. The errors obtained using each ter-
rain is averaged using the maximum error computed as
the distance in l2 norm between the control mesh and
the original mesh. Then, the maximum gain is fixed
to 50 dB and the average curve is shown in Figure 11.
An example of terrain decomposition is shown in Fig-
ure 10.

We give now some timings when computing a com-
plete decomposition. We use a PC equipped with
a Pentium III 500 Mhz and 256 Mb of RAM. The
implementation is in C++ and is not optimized. We
store the 4-8 meshes with the quadtree described
in [18]. For the timings, we use a subset of the
available terrains in [10]. We use 50 terrains with
sizes up to two millions triangles.

The results in Table 1 are obtained by measuring the
average decomposition time for each terrain. Separate
measurements are given for the initialization and the

(a) (b) (c) (d)

Figure 10. Progressive mesh decomposition using global error: Approximation using (a) 6400 triangles (PSNR
33.8 dB), (b) 1600 triangles (PSNR 25.9 dB), (c) 800 triangles (PSNR 22.2 dB) and (d) 400 triangles (PSNR
18.46 dB).

0 2 4 6 8 10 12 14

x 10
4

0

5

10

15

20

25

30

35

40

45

50

rate (triangles)

P
S

N
R

 (
dB

)

Figure 11. Average RD curve: We apply our algo-
rithm to a database of 388 terrains [10]. To compute
the average curve, the errors obtained using each ter-
rain are normalized and the maximum gain is �xed to
50 dB.

decomposition (lines 1-4 and lines 5-12 of the algo-
rithm in Section 2.1, respectively).

triangles n init. time (s) decomposition (s)

2’048 0.003 0.057

8’192 0.011 0.30

32’766 0.05 1.7

131’072 0.24 11.4

524’288 1.07 48

2’097’152 4.81 238

Table 1. Average decomposition times: The timings are
obtained using a PC equipped with a Pentium III 500 Mhz
and 256 Mb of RAM.

5. CONCLUSION

We presented an efficient �(n logn) simplification
algorithm to compute progressive decomposition of
4-8 meshes. Our algorithm uses general decimation
and global error. We showed experimentally that,
using global error, high quality approximations are
obtained. Moreover, the low computational cost of the
algorithm allows us for processing large datasets.

We showed that global error estimates for the vertices
can be computed in �(log2 n) time during the mesh
optimization. We gave an algorithm based on the solu-
tion to a problem called merging domain intersections
presented in [4].

Our algorithm aims at finding the approximations
whose RD characteristics are the curve bounding the
convex hull of all possible solutions. This curve is
called operational RD curve and the approximations
are optimal in the operational RD sense. Although
we did not prove the optimality of our solutions, we
discussed the choices made by the algorithm during
the optimization process. We showed experimentally
that the RD curve corresponding to our solutions is
most of the time monotonic across rate. Also, we
showed that under certain assumptions monotonicity
across rate is obtained.

A. EVALUATION OF MESH FUNCTIONALS

We compute the costs in rate for each domain,
measured as the number of triangles, in closed form
using the results in [4]. More precisely, in [4] we give
closed-forms to compute R(Mv) and R(�Mv).

We use the squared l2 norm as a measure of distortion
between the original mesh and the approximations.
More precisely, each vertex is projected in its cor-

responding triangles in the support of the domain.
Consider the simple case of a matrix of amplitudes
z. Figure 12 shows how errors are measured on
a triangulated quadrilateral. The total distortion is
evaluated similarily on the domain Mv.

Consider the triangulated quadrilateral in the left-
hand side of Figure 12. Each amplitude z i is pro-
jected in a triangle of the support. For example,
z2 is projected in the triangle formed by vertices
(x1; y1; z1); (x5; y5; z5); (x3; y3; z3) (right-hand side
of Figure 12). Denote by z 0i a projected amplitude,
hence the error for each vertex is then given by Æ i =

jzi � z0ij
2. To evaluate the error D(�Mv), all the ver-

tices in the domain are projected in the support of Mv.
The distortion functional is computed as D(�Mv) =P

v2Mv
Æv and D(Mv) = 0. hence �D(Mv) =

�D(�Mv), i.e. intially �D(Mv) < 0 for all the ver-
tices.

z7
z9

z3

z4

z8

z
6

z5

z’2

z’8

z’6

z’
5

z’4
z2

z1

✑5

✑2

✑6

✑8

(x2,y2) (x3,y3)(x1,y1)

(x7,y7)

(x6,y6)(x5,y5)(x4,y4)

(x9,y9)(x8,y8)

Figure 12. Computation of the error in squared l2
norm for a triangulated quad. The left part shows a
top view of the triangualted quad.

REFERENCES

[1] P.K. Agarwal and P.K. Desikan. An efficient algo-
rithm for terrain simplification. Proceedings ACM-
SIAM Sympo. Discrete Algorithms, pages 139–147,
1997.

[2] L. Balmelli. Rate-distortion optimal mesh sim-
plification for communications. Ph.D dissertation,
Ecole Polytechnique Federale de Lausanne (EPFL),
Switzerland., 2000.

[3] L. Balmelli, S. Ayer, and M. Vetterli. Efficient al-
gorithms for embedded rendering of terrain models.
Proceedings of IEEE Int. Conf. Image Processing
(ICIP), 2:914–918, October 1998.

[4] L. Balmelli, T. Liebling, and M. Vetterli. Computa-
tional analysis of 4-8 meshes with application to sur-
face simplification using global error. Proceeding of
the 13th Canadian Conference Computational Geom-
etry, August 2001.

[5] L. Breiman, J.H. Freidman, R.A. Olshen, and
C.J. Stone. Classification and Regression Trees.
The Wadsworth Statistics/Probability Series, Bel-
mont,CA; Wadsworth, 1984.

[6] E. Catmull. A subdivision algorithm for computer
display of curved surfaces. Ph.D dissertation, Re-
port UTEC-CSs-74-133, Computer Science Depart-
ment, University of Utah, December 1974.

[7] P. Chou, T. Lookabaugh, and R. Gray. Optimal prun-
ing with application to tree-structured source cod-
ing and modeling. IEEE Transactions on Information
Theory, 35(2):299–315, March 1989.

[8] J.H. Clark. A fast algorithm for rendering parametric
surfaces. Proceedings of SIGGRAPH, pages 289–99,
1979.

[9] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry, algo-
rithms and applications. Springer-Verlag, 2000.

[10] Office Federal de Topographie. Pixelkarte 1:25000
cd rom 1,2,3. CH-2084 Wabern, Mai 1997.

[11] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C.
Miller, C. Aldrich, and M. B. Mineev-Weinstein.
Roaming terrain: Real-time optimally adapting
meshes. Proceedings of IEEE Visualization, 1997.

[12] A. Gersho and R. M. Gray. Vector Quantization and
Signal Compression. Kluwer Academic Publishers,
1992.

[13] I. Guskov, W. Swelden, and P. Schröder. Multireso-
lution signal processing for meshes. Proceedings of
SIGGRAPH, pages 325–334, 1999.

[14] P.S. Heckbert and M. Garland. Survey of polygonal
surface simplification algorithms. Carnegie Mellon
University Technical Report, May 1997.

[15] A. Khodakovsky, P. Schröder, and W. Sweldens. Pro-
gressive geometry compression. proceedings of SIG-
GRAPH, pages 271–278, 2000.

[16] L. Kobbelt, J. Vorsatz, and H.-P. Seidel. Multires-
olution hierarchies on unstructured triangle meshes.
Computational Geometry, 14(1-3):5–24, 1999.

[17] U. Labsik, L. Kobbelt, R. Schneider, and H.-P. Sei-
del. Progressive transmission of subdivision surfaces.
Computational Geometry, 15(1-3):25–39, 2000.

[18] L.Balmelli, J.Kovačević, and M. Vetterli. Quadtree
for embedded surface visualization: Constraints and
efficient data structures. Proceedings of IEEE Int.
Conf. Image Processing (ICIP), 2:487–491, October
1999.

[19] P. Lindstrom, D. Koller, W. Ribarsky, L.F. Hodges,
N. Faust, and G.A. Turner. Real-time continuous
level of detail rendering of height fields. Proceedings
of SIGGRAPH, pages 109–118, 1996.

[20] C. Loop. Smooth subdivision surfaces based on trian-
gles. Master’s thesis, University of Utah, Department
of Mathematics, 1987.

[21] R. Pajarola. Large scale terrain visualization using
the restricted quadtree triangulation. Proceedings of
IEEE Visualization, pages 299–305, 1998.

[22] H. Samet. Application of Spatial Data Structures:
Computer Graphics, Image Processing and GIS.
Addison-Wesley Publishing Company, 1990.

[23] L. Velho. Four-face cluster simplification. Proceed-
ings of Shape Modeling International, 2001.

[24] L. Velho and D. Zorin. 4-8 subdivision. Computer-
Aided Geometric Design, Special Issue on Subdivi-
sion Techniques., 2001.

[25] D. Zorin. A method for analysis of C1-continuity
of subdivision surfaces. SIAM Journal of Numerical
Analysis, 37(4):1677–1708, 2000.

