Proton Polarimetry at RHIC

- provides polarization measurements for experiments goal: 5% precision on P_{BEAM}
- 2. provides polarization and beam properties measurement for accelerator

BROOKHAVEN NATIONAL LABORATORY

DoE MEP Review May 11, 2006

Alessandro Bravar

Polarimetry : Impact on Spin Physics

measured spin asymmetries normalized by P_B to extract Physics Spin Observables RHIC Spin Program requires $\Delta P_{BEAM} / P_{BEAM} \sim 0.05$ normalization \Rightarrow scale uncertainty

How does it work?

clean, well understood scattering process

still an experiment !

detection of recoil alone identifies the elastic process at this low *t*

polarimetry requires large F.o.M. = $A_N^2 \times rate$ for fast measurement

i.e. large σ (fast) + sizable and known A_N

pC elastic scattering in CNI region

 $A_N \sim 1.2 \% \rightarrow$ large statistics > 10⁷ events per measurement

large \times – section \rightarrow fast measurement

absolute calibration \rightarrow

pp elastic scattering with polarized gas jet target

RHIC *pp* accelerator complex & Polarimeters

Setup for pC scattering – the RHIC polarimeters

recoil carbon ions detected with Silicon strip detectors

 2×72 channels read out with WFD

very large statistics per measurement (~ 20×10^6 events) allows detailed analysis

- bunch by bunch analysis
- channel by channel (each channel is an "independent polarimeter")
- 45° detectors: sensitive to vertical and radial components of \overline{P}_{BEAM} \rightarrow unphysical asymmetries

Event Selection & Performance

very clean data, background < 1 % within "banana" cut good separation of recoil carbon from α (C* → α + X) and prompts
δ (ToF) < 3 ns: intrinsic + beam longitudinal profile (⇒ σ_M ~ 1.5 GeV)
very high rate: up to 10⁵ ev / ch / sec

NATIONAL LABORATOR

*p*C Systematics in RHIC:

detector locations (degree)

Bunch by Bunch Polarization

pC Polarimeter systematic issues

fluctuations in measured "raw" asymmetries statistical only sources of systematical errors external in origin absolute calibration at 100 GeV to ~ 15% (2004 run)

expect absolute calibration of to ~ 5% (2005 and 2006 run)

energy scale: 5% to 10% uncertainty

Si entrance window correction for measured recoiling carbon ion energy small change \rightarrow small change in $|t| \rightarrow$ significant change in $A_N(t)$ probably the biggest limitation to become an absolute polarimeter

beam polarization profile

each measurement taken by sweeping the target through the beam \rightarrow average bunch polarization

measured systematic error of relative measurements to $\Delta P < 3\%$

event selections, scalar vs. event analysis, strip by strip analysis, etc.

target system: some issues still remain \rightarrow work in progress

Beam Emittance

measured by sweeping the carbon target through the beam

~ 1 sec. measurement

AGS polarization during acceleration (ramp)

each point = 50 MeV step

 $G\gamma = 1.91 \ E_{BEAM}$

red line: simulation of polarization losses assuming constant A_N

Calibrating pC with the Polarized Gas Jet Target

RHIC polarized Proton beams

sequence of simultaneous measurements:

- 1. target polarization
- 2. transfer $\mathsf{P}_{\mathsf{TARGET}}$ to $\mathsf{P}_{\mathsf{BEAM}}$

 $A_{N}^{BEAM} (t) = A_{N}^{TARGET} (t) \text{ for pp elastic scattering}$ $P_{BEAM} = P_{TARGET} \cdot \varepsilon_{B} / \varepsilon_{T} ("self - calibrating")$

3. measure A_N for pC with same beam

 \Rightarrow CALIBRATION

JET target polarization & performance

the JET ran with an average intensity of 1×10^{17} atoms / sec

- the JET thickness of 1×10^{12} atoms/cm² record intensity
- target polarization cycle +/0/- ~ 500 / 50 / 500 sec

polarization to be scaled down due to a $\sim 3\%$ H₂ background: P_{TARGET} $\sim 0.924 \pm 0.018$ (current understanding)

no depolarization from beam wake fields observed

no effect on RHIC beams: "can run parasitically"

Recoil Si spectrometer

6 Si detectors covering both beams MEASURE

energy (res. < 50 keV) time of flight (res. < 2 ns) scattering angle (res. ~ 5 mrad) of recoil protons from $pp \rightarrow pp$ elastic scattering

RFΔM

"self calibrating"

 $P_{Beam} = P_{Target} \cdot \frac{\varepsilon_{Beam}}{\varepsilon_{Beam}}$ E_{Target}

"Target": ε_{T} – target asymmetry average over beam polarization

"Beam": $\varepsilon_{\rm B}$ – beam asymmetry average over target polarization

largest systematic issue: background below elastic peak, in part included in P_{TARGET}

 $P_{BEAM} = 0.392 \pm 0.021 \text{ (stat)} \pm 0.008 \text{ (} \Delta P_{TARGET} \text{)} \pm 0.014 \text{ (sys)} = 0.392 \pm 0.026 \text{ }$ 2004 ERROR: $\Delta P_{\text{BEAM}} / P_{\text{BEAM}} = 6.6 \%$ 2005, 2006: work in progress D P_{BEAM} / P_{BEAM} < 5 % !

 A_N for $p\uparrow p \rightarrow pp @ 100 \text{ GeV}$

no need of a hadronic spin – flip contribution to describe these data

Conclusions

Very stable operation of carbon polarimeters in 2005 and 2006

Continuous effort to understand and address systematic issues, in particular correlate with beam properties Believe most of issues are understood are addressed

2004 normalization error on A_{LL} (PHENIX) ~ 24%

With combined use of carbon polarimeters + jet target expect to achieve a $\sim 5\%$ relative error on P_{BEAM} (2006 run)

Carbon polarimeter alone ~ 8 % (absolute calibration and energy scale)

Major hardware developments / constructions completed Need to further develop analysis tools

