Global Search for High-Pt Physics at CDF

Ray Culbertson FNAL

Point 1: The list of potential models is endless...

and each has many variations, parameters..

and several could be occurring simultaneously...

Point 2: no significant data hints and no agreement on the most compelling guess..

survey of FNAL grad students: what do you expect next?

Point 3: tying searches to theory has unintended consequences

- ♦ highly specific searches
- ♦ narrow resultsreporting only a single event count, one limit plot
- ♦ discrepancies not fitting the model tend to be avoided instead of investigated
- ♦ not all signatures are covered, some are over covered
- ♦ results become obsolete if theory becomes obsolete
- ♦ if no big limit space, the work is still valuable, but ignored
- ♦ model takes time away from experimental techniques
 We are experimentalists, and should be doing experiments

Search for Chargino-Neutralino Production in $p\bar{p}$ Collisions at $\sqrt{s}=1.96$ TeV

But, but ...

- ♦ that's the way we have always done it
- ♦ without a model there is no motivation
- ♦ model helps tell a story in the paper and presentations
- ♦ model limits advance the theory knowledge
- ♦ strictly optimized searches are good training for students
- ♦ while covering models we can in parasitically cover all signatures

♦ lets us compare with DØ

Themes

Virtually all of the basic techniques used here are the same as other high-pt searches, just automated and scaled up

Statistical evaluations are precise and include trials factors

We are not blind – we constantly look at all the data and iterate

Vista

A panoramic view of the bulk of all kinematic distributions of all high-Pt data

Sleuth

Examine the tails of the SumPt distributions of all high-Pt final states

Vista

- 1) select High-Pt objects
- 2) generate Monte Carlo for SM backgrounds
- 2a) fake rate study
- 3) sort by exclusive final states
- 4) fit correction factors
- 5) compare counts and kinematic distributions
- 6) iterate to debug

The Vista Philosophy

All data are treated as both signal and control one person's control region is other's signal region ...many, many effective control regions! Goal is to identify a discrepancy on which we can base a new physics claim NOT obtain a perfect description of data Nothing gets cut away Keep model simple Focus on discrepancies, ask: is there a mundane explanation? Require any change is physically motivated and improves overall agreement

Select High-Pt Objects

Identify all high-Pt (Pt>17 GeV) and isolated (<~2 GeV) objects:

927 pb⁻¹

- almost all standard (top-like) object definitions
 - ♦ electron (C and P)
 - ♦ muon (CMUP and CMX)
 - ♦ tau (1-prong, central)
 - ♦ photon (C and P)
 - \bullet jet ($|\eta| < 2.5$)
 - ♦ b-jet (vertex tag, central)
 - ♦ MEt

uncl = energy not in jets, photons, or leptons SumEt = |uncl| + |identified objects Et| + |Met|

Select High-Pt Objects

♦ Data was collected by online triggers:

```
e, central, Et>18

\mu, central, Pt> 18

\gamma, cen or plug, Et>25

jet, Et>20 (prescaled), Et>100

central e, Et>4, central \mu, Pt>4

central e or \mu, Et,Pt>4, plug e, Pt>8

\gamma \gamma, cen or plug, Et>18

\tau \tau, central, Pt>10
```


♦ Offline, reduce the sample size, require : electron>25

OR photon>60 GeV

OR two leptons Et>17 GeV

OR jet > 200 GeV, etc

OR one of 10 di-object selections, some prescaled

Sort by Final States

Data sorted by exclusive final state

- ♦ each identified object is exclusive
- ♦ each njet is exclusive
- ♦ require 10 events to create a new box

For all final states, histogram:

- Pt, η , ϕ of objects
- \bullet ΔR , $\Delta \phi$ of pairs
- ♦ mass or m_t of subsets of particles
- ♦ other specialized variables

One Iteration of Background Model

- 1) Basis of all predictions is Monte Carlo
- 2) Allow simulation to predict fakes for high fake rates (b \rightarrow j, $\tau \rightarrow$ e, etc.)
- 3) use explicit misidentification matrix for low fake rates:

$$j \rightarrow b, \gamma, e, \mu, \tau$$

 $b \rightarrow e, \mu, \tau$
 $\gamma \rightarrow e, \mu, \tau$

- 4) fit a set of correction factors to the data
- 5) run data/background comparisons in event counts for each final state and KS test for distributions

Generate the SM

- Sample definitions finely tuned to keep the sizes manageable
- coordinated with offline triggers
- often additional for high-Pt tail
- Generate most by MADEVENT plus showering from PYTHIA
- dijets, γ , $\gamma\gamma$, VV PYTHIA
- V+jets from Mrenna-matched MADEVENT plus showering from PYTHIA
- tt HERWIG
- allow for pile-up, overlap events, add Kt smearing
- Pass all through the full standard CDF GEANT Simulation

Generate non-collision backgrounds

- ♦ beam halo muons can interact in the calorimeter
- ♦ cosmic ray muons can interact in the calorimeter
- ♦ cosmic muons causing reconstructed muons is rare
- ♦ model by scaling observation in events with no vertex

Fake Rate Study

- ♦ generate single isolated particles in central CDF detector
- ♦ standard simulation and reconstruction
- ♦ study rates and Et dependence

$$p(\pi^{0} \rightarrow \gamma)$$

$$p(\tau \rightarrow \gamma)$$

$$p(u \rightarrow \tau) / p(g \rightarrow \tau)$$

$$p(u \rightarrow \gamma) / p(g \rightarrow \gamma)$$

$$p(e^{+} \rightarrow \gamma) * p(\gamma \rightarrow e^{-})$$

reconstructed

	e^+	e^-	μ^+	μ^-	$ au^+$	$ au^-$	γ	j	b
e^+	62228	33	0	0	182	0	2435	28140	0
e^-	24	62324	0	0	0	192	2455	28023	1
μ^+	0	0	50491	0	6	0	0	606	0
μ^-	0	1	0	50294	0	6	0	577	0
γ	1393	1327	0	0	1	1	67679	21468	0
π^0	1204	1228	0	0	5	8	58010	33370	0
π^+	266	0	115	0	41887	6	95	54189	37
π^-	1	361	0	88	13	41355	148	54692	44
K^+	156	1	273	0	42725	7	37	52317	24
K^-	1	248	0	165	28	41562	115	53917	22
B^+	100	0	77	1	100	10	40	66062	25861
B^-	2	85	3	68	11	99	45	66414	25621
B^0	88	27	87	17	77	32	21	65866	25046
$ar{B^0}$	17	79	11	71	41	77	21	66034	25103
generated B^{-}_{0} B^{0}_{0} B^{-}_{0}	126	6	62	0	1485	67	207	79596	11620
D^-	4	134	3	74	64	1400	234	79977	11554
D	60	13	27	2	312	1053	248	88821	5487
$ar{D^0}$	15	46	5	28	1027	253	237	89025	5480
K_L^0	1	4	0	0	71	60	202	96089	26
K_S^0	26	31	2	1	170	525	9715	76196	0
$ au^{\widetilde{+}}$	1711	13	1449	0	4167	2	673	50866	607
$ au^-$	12	1716	0	1474	6	3940	621	51125	580
u	8	10	1	0	446	31	247	94074	26
d	3	4	0	0	64	308	191	94322	22
g	2	0	0	0	17	14	12	81865	99/

Fake Rates

Primary fake mechanisms:

$$\begin{split} j &\rightarrow e \\ j &\rightarrow q \rightarrow \pi^0 \rightarrow \gamma\gamma \rightarrow \gamma ee \rightarrow e \\ j &\rightarrow \mu \\ j &\rightarrow q \rightarrow \pi^+ \rightarrow \mu\nu \rightarrow \mu \\ j &\rightarrow \tau \\ j &\rightarrow q \rightarrow \pi^+ \rightarrow \tau \\ j &\rightarrow \gamma \\ j &\rightarrow q \rightarrow \pi^0 \rightarrow \gamma\gamma \rightarrow \gamma \end{split}$$

everything depends on j \rightarrow q \rightarrow π

```
μ+
\pi^0
```

Explicit MisID matrix

- ♦ handles low-rate fakes and tweak high-rate fake rates
- ♦ form jets from generator info
- ♦ from fake rate study
 - o define model (quarks vs gluons)
 - modify energy (only 95% of q energy goes into a fake electron)
- ♦ Some values fixed, some modified in the next step (fit)
- ♦ Some explicit energy dependence $j \rightarrow b, j \rightarrow e$ (plug), $j \rightarrow \tau$ and ϕ dependence for muon fakes

(mis)Id

		е	μ	τ	γ	j	b
	е	0.66	·	2e-3	0.02	0.28	
	μ		0.51				
	τ	0.02	0.01	0.04		0.90	6e-3
\	γ	0.03			0.68	0.21	
		1e-4	1e-5	3e-3	3e-4	1	2e-2
	b	1e-4	1e-4	1e-4	5e-5	0.65	0.35

Fit Correction Factors

- ♦ correction categories:

 - ○16 fake rates luminosity 4 efficiencies 23 k-factors

- ♦ fit 44 parameters in all to wide bins in η , Pt for all final states
- ♦ introduced only as necessary, simple well, motivated
- ♦ constraints applied when available
 - W NNLO x-sec, etc.
 - CDF b-tag efficiency, etc.

CDF Run II Preliminary (927 pb⁻¹)

Code	Description	Value	$\sigma_{ m fit}$	$\mu_{ ext{constraint}}$	$\sigma_{ m constraint}$	$\frac{ ext{value} - \mu}{\sigma_{ ext{constraint}}}$
5001	luminosity	927.1	20	901.9	53.11	0.47
5161	k -factor, 2j $\hat{p}_T < 150$	0.96	0.02	1.100	0.050	-2.8
5162	k -factor, 2j 150 $< \hat{p}_T$	1.26	0.03	1.330	0.050	-1.4
5211	misId, $p(e \rightarrow e)$ central	0.99	0.01	0.981	0.007	1.29
5212	misId, $p(e \rightarrow e)$ plug	0.93	0.01	0.940	0.010	-1
5216	misId, $p(\gamma \to \gamma)$ central	0.97	0.02	0.990	0.020	-1
5217	misId, $p(\gamma \to \gamma)$ plug	0.91	0.02	0.910	0.020	0
5219	misId, $p(b \to b)$ central	1	0.04	0.874	0.080	1.58
5285	misId, $p(q \rightarrow \tau)15 < \hat{p}_T < 60$	3.4×10^{-3}	1.0×10^{-4}	0.004	0.0004	-1.5
5401	trigger, $p(e \rightarrow trig)$ central, $\hat{p}_T > 25$	0.98	0.01	0.970	0.010	1
5403	trigger, $p(\mu \to trig)$ CMUP, $\hat{p}_T > 25$	0.92	0.01	0.908	0.010	1.2
5404	trigger, $p(\mu \to trig)$ CMX, $\hat{p}_T > 25$	0.96	0.01	0.954	0.015	0.4

CDF Run II Preliminary (927 pb⁻¹)

Fit Correction Factors

♦Many can be identified with single final states

 $4 \times 2 = 288/133+27$

Code	Category	Explanation	Value	Error	Error(%)
5001	luminosity	CDF integrated luminosity	927.1	20	2.2
5102	k-factor	cosmic_ph	0.686	0.05	7.3
5103	k-factor	cosmic_j	0.4464	0.014	3.1
5121	k-factor	$1\gamma 1$ j photon $+$ jet (s)	0.9492	0.04	4.2
5122	k-factor	$1\gamma 2\mathrm{j}$	1.205	0.05	4.1
5123	k-factor	$1\gamma 3\mathrm{j}$	1.483	0.07	4.7
5124	k-factor	$1\gamma4\mathrm{j}+$	1.968	0.16	8.1
5130	k-factor	$2\gamma 0 ext{j diphoton(+jets)}$	1.809	0.08	4.4
5131	k-factor	$2\gamma 1 \mathrm{j}$	3.417	0.24	7.0
5132	k-factor	$2\gamma 2 \mathrm{j} +$	1.305	0.16	12.3
5141	k-factor	W0j W (+jets)	1.453	0.027	1.9
5142	k-factor	W1j	1.059	0.03	2.8
5143	k-factor	W2j	1.021	0.03	2.9
5144	k-factor	W3j+	0.7582	0.05	6.6
5151	k-factor	Z0j Z (+jets)	1.419	0.024	1.7
5152	k-factor	\mathbf{Z}_{1j}	1.177	0.04	3.4
5153	k-factor	$\mathbf{Z}2\mathbf{j}+$	1.035	0.05	4.8
5161	k-factor	$2j \hat{p}_T < 150 \text{ dijet}$	0.9599	0.022	2.3
5162	k-factor	$2j\ 150 < \hat{p}_T$	1.256	0.028	2.2
5164	k-factor	3j $\hat{p}_T <$ 150 multijet	0.9206	0.021	2.3
5165	k-factor	$3j\ 150 < \hat{p}_T$	1.36	0.032	2.4
5167	k-factor	4j $\hat{p}_T < 150$	0.9893	0.025	2.5
5168	k-factor	4j 150 $<$ \hat{p}_T	1.705	0.04	2.3
5169	k-factor	5j+ low	1.252	0.05	4.0
5211	${f misId}$	$p(e\rightarrow e)$ central	0.9864	0.006	0.6
5212	${f misId}$	$p(e \rightarrow e)$ plug	0.9334	0.009	1.0
5213	misId	$p(\mu \rightarrow \mu)$ CMUP	0.8451	0.008	0.9
5214	misId	$p(\mu \rightarrow \mu) CMX$	0.915	0.011	1.2
5216	misId	$p(\gamma \rightarrow \gamma)$ central	0.9738	0.018	1.8
5217	misId	$p(\gamma \rightarrow \gamma)$ plug	0.9131	0.018	2.0
5219	${f misId}$	$p(b\rightarrow b)$ central	0.9969	0.04	4.0
5245	misId	$\mathrm{p}(\mathrm{e}{ o}\gamma)$ plug	0.04452	0.012	27.0
5256	misId	$p(q\rightarrow e)$ central	9.71×10^{-5}	1.9×10^{-6}	2.0
5257	misId	p(q→e) plug	0.0008761	1.8×10^{-5}	2.1
5261	misId	$p(q\rightarrow \mu)$	1.157×10^{-5}	2.7×10^{-7}	2.3
5273	misId	$p(j \rightarrow b) 25 < p_T$	0.01684	0.00027	1.6
5285	misId	$p(q \rightarrow \tau) 15 < p_T < 60$	0.003414	0.00012	3.5
5286	misId	$p(q \to \tau) 60 < p_T < 200$	0.000381	4×10^{-5}	10.5
5292	misId	$p(q \rightarrow \gamma)$ central	0.000381	1.5×10^{-5}	5.7
	misId misId	- (-) /		0.00013	8.2
5293		$p(q \rightarrow \gamma)$ plug	0.001591		$\frac{8.2}{0.7}$
5401	trigger	$p(e \rightarrow trig)$ central, $p_T > 25$	0.9758	0.007	1.8
5402	trigger	$p(e \rightarrow trig)$ plug, $p_T > 25$	0.835	0.015	
5403	trigger	$p(\mu \rightarrow trig)$ CMUP, $p_T > 25$	0.9166	0.007	0.8
5404	${f trigger}$	$p(\mu \rightarrow trig) CMX, p_T > 25$	0.9613	0.01	1.0

Debugging Vignette

- ♦ simple, well-motivated
- ♦ consult with experts
- ♦ excess in e-µ final state
- -observe excess in plug
- -split $p(j\rightarrow e)$ into central and plug
- -poor stats in plug –add photon trigger
- -fit returns a large $\chi 2$
- -tension between e-Met, ej and ejj
- -further investigations revealed central and plug trigger differences
- -split central and plug trigger eff.

Number of Events

Vista Results

- ♦ Vista produces
 - o 344 final states
 - 16K kinematic distributions
 - sorted by discrepancy
- ♦ no normalization excesses
- ♦ reasonable agreement virtually everywhere

Remaining effects on tails do not hint at new physics

Vista Final States

-344

-trials factor included

	Final State	Data	Background	Final State	Data	Background	Final State	Data	Background
	$3j\tau +$	71	113.7 ± 3.6	2e+j	13	9.8 ± 2.2	e+γp	141	144.2 ± 6
	5j	1661	1902.9 ± 50.8	2e+e-	12	4.8 ± 1.2	e+ \(\mu - \psi \)	5-4	42.6 ± 2.7
	$2j\tau +$	233	296.5 ± 5.6	2e+	23	36.1 ± 3.8	$e + \mu + p$	13	10.9 ± 1.3
	be+j	2207	2015.4 ± 28.7	2b $\Sigma p_T > 400 \mathrm{GeV}$	327	335.8 ± 7	e+µ-	153	127.6 ± 4.2
	3j $\Sigma p_T < 400 \mathrm{GeV}$	35436	37294.6 ± 524.3	2b $\Sigma p_T < 400 \text{GeV}$	187	173.1 ± 7.1	e+j	386880	392614 ± 5031.8
	e+3jp	1954	1751.6 ± 42	2b3j $\Sigma p_T < 400~{ m GeV}$	28	33.5 ± 5.5	e+j27	14	15.9 ± 2.9
	be+2j	798	695.3 ± 13.3	2b2j $\Sigma p_T > 400~{ m GeV}$	355	326.3 ± 8.4	e+j++	79	79.3 ± 2.9
	$3j\not p \ \Sigma p_T > 400 \ \mathrm{GeV}$	811	967.5 ± 38.4	2b2j $\Sigma p_T < 400~{ m GeV}$	56	80.2 ± 5	e+jr-	162	148.8 ± 7.6
	$e+\mu+$	26	11.6 ± 1.5	2b2jy	16	15.4 ± 3.6	e+j≠	58648	57391.7 ± 661.6
	e+γ	636	551.2 ± 11.2	2by	37	31.7 ± 4.8	e+j7p	52	76.2 ± 9
	e+3j	28656	27281.5 ± 405.2	2bj $\Sigma p_T > 400 \text{GeV}$	415	393.8 ± 9.1	e+jµ-p	22	13.1 ± 1.7
	b5j	131	95 ± 4.7	2bj $\Sigma p_T < 400 \mathrm{GeV}$	161	195.8 ± 8.3	e+jµ-	28	26.8 ± 2.3
	j27+	50		$2bip \Sigma p_T > 400 \text{ GeV}$	28	23.2 ± 2.6	e+e-41	103	
	j++-	74		2bjy	25	24.7 ± 4.3	e+e-3j	456	473 ± 14.6
•	$b \not = \Sigma p_T > 400 \text{ GeV}$	10		2be+2j≠	15	12.3 ± 1.6	e+e-2jp	30	39 ± 4.6
		286			30	30.5 ± 2.5		2149	2152 ± 40.1
	e+jy			2be+2j			e+e-2j		11.1 ± 2
	e+j#7-	29	14.2 ± 1.8	2be+j	28	29.1 ± 2.8	e+e-++	14	
	$2j \ \Sigma p_T < 400 \text{GeV}$		92437.3 ± 1354.5	2be+	48	45.2 ± 3.7	e+e-p	491	487.9 ± 12
	be+3j	356	298.6 ± 7.7	7+7-	498	428.5 ± 22.7	e+e-γ	127	132.3 ± 4.2
	8j	11	6.1 ± 2.5	77+	177	204.4 ± 5.4	e+e-j		10669.3 ± 123.5
	75	57	35.6 ± 4.9	7#	1952	1945.8 ± 77.1	e+e-jp	157	144 ± 11.2
	6j	335	298.4 ± 14.7	$\mu + \tau +$	18	19.8 ± 2.3	e+e-jγ	26	45.6 ± 4.7
	$4j \Sigma p_T > 400 \text{ GeV}$	39665	40898.8 ± 649.2	$\mu + \tau$	151	179.1 ± 4.7	e+e-	58344	58575.6 ± 603.9
	4j $\Sigma p_T < 400 \text{GeV}$	8241	8403.7 ± 144.7	$\mu + p$	321351	320500 ± 3475.5	b6j	24	15.5 ± 2.3
	4j27	38	57.5 ± 11	$\mu + p \tau$	22	25.8 ± 2.7	b4j $\Sigma p_T > 400 \text{GeV}$	13	9.2 ± 1.8
	4j++	20	36.9 ± 2.4	$\mu + \gamma$	269	285.5 ± 5.9	b4j $\Sigma p_T < 400 \text{GeV}$	464	499.2 ± 12.4
	$4j\not p \ \Sigma p_T > 400 \ \mathrm{GeV}$	516	525.2 ± 34.5	μ+γp	269	282.2 ± 6.6	b3j $\Sigma p_T > 400 \mathrm{GeV}$	5354	5285 ± 72.4
	4j~p	28	53.8 ± 11	$\mu + \mu - p$	49	61.4 ± 3.5	b3j $\Sigma p_T < 400 \mathrm{GeV}$	1639	1558.9 ± 24.1
	437	3693	3827.2 ± 112.1	$\mu + \mu - \gamma$	32	29.9 ± 2.6	$b3j\not \in \Sigma p_T > 400 \text{ GeV}$	111	116.8 ± 11.2
	4jµ+	576	568.2 ± 26.1	$\mu + \mu$	10648	10845.6 ± 96	b3j7	182	194.1 ± 8.8
	4jμ+p	232		j2 ₇	2196	2200.3 ± 35.2	b3jµ+p	37	34.1 ± 2
	4jμ+μ-	17	20.1 ± 2.5	j2 _Y p	38	27.3 ± 3.2	b3jμ+	47	52.2 ± 3
	37	13	24.2 ± 3	i++	563	585.7 ± 10.2	b2 _Y	15	14.6 ± 2.1
	3j Σp _T > 400 GeV		75939.2 ± 1043.9	$jp \Sigma p_T > 400 \text{ GeV}$	4183	4209.1 ± 56.1	b2j $\Sigma p_T > 400 \mathrm{GeV}$	8812	
	$3j2\gamma$	145	178.1 ± 7.4		49052	48743 ± 546.3	b2j $\Sigma p_T > 400 \mathrm{GeV}$	4691	4646.2 ± 57.7
				jγ					
	3j≠ Σp _T < 400 GeV			jγτ+	106	104 ± 4.1	$b2jp \Sigma p_T > 400 \text{ GeV}$		209.2 ± 8.3
	3jγτ+	13		jγø	913	965.2 ± 41.5	b2jγ	429	425.1 ± 13.1
	3jγṕ	83	102.9 ± 11.1	jμ+		34026.7 ± 510.1	b2jμ+p	46	40.1 ± 2.7
	3jγ		11506.4 ± 190.6	jμ+τ-	29	37.5 ± 4.5	$b2j\mu +$	56	60.6 ± 3.4
	3jμ+ p	1114		jμ+p+τ-	10	9.6 ± 2.1	b++	19	19.9 ± 2.2
	$3j\mu + \mu$	61	84.5 ± 9.2	$j\mu + p$		46316.4 ± 568.2	by	976	1034.8 ± 15.6
	3jμ+	2132		jμ+γp	78	69.8 ± 9.9	bγø	18	16.7 ± 3.1
	3bj $\Sigma p_T > 400 \mathrm{GeV}$	14	9.3 ± 1.9	$j\mu + \gamma$	70	98.4 ± 12.1	$b\mu +$	303	263.5 ± 7.9
	27+	316	290.8 ± 24.2	$j\mu + \mu$ -	1977	2093.3 ± 74.7	$b\mu + p$	204	218.1 ± 6.4
	2γ p	161	176 ± 9.1	e+4j	7144	6661.9 ± 147.2	bj $\Sigma p_T > 400 \text{ GeV}$	9060	9275.7 ± 87.8
	2γ	8482	8349.1 ± 84.1	e+4jp	403	363 ± 9.9	bj $\Sigma p_T < 400 \text{ GeV}$	7236	7030.8 ± 74
	$2j \Sigma p_T > 400 \text{ GeV}$	93408	92789.5 ± 1138.2	e+3j <i>⊤</i> -	11	7.6 ± 1.6	bj2 ₇	13	17.6 ± 3.3
	$2j2\gamma$	645	612.6 ± 18.8	e+3jγ	27	21.7 ± 3.4	bjr+	13	12.9 ± 1.8
	2j++-	15	25 ± 3.5	$e+2\gamma$	47	74.5 ± 5	bjø $\Sigma p_T > 400 \text{ GeV}$	53	60.4 ± 19.9
	$2j\not p \ \Sigma_{PT} > 400 \ { m GeV}$	74	106 ± 7.8	e+2j	126665	122457 ± 1672.6	bjy	937	989.4 ± 20.6
	$2j\not = \Sigma p_T < 400 \text{ GeV}$	43	37.7 ± 100.2	e+2j7-	53	37.3 ± 3.9	bjγ≠	34	30.5 ± 4
	2jγ		33259.9 ± 397.6	e+2j++	20	24.7 ± 2.3	bjµ+p	104	112.6 ± 4.4
	2jyr+	48	41.4 ± 3.4	e+2jp		12130.1 ± 159.4	bjµ+	173	141.4 ± 4.8
	2jγ#	403	425.2 ± 29.7	e+2jy	101	88.9 ± 6.1	be+3j≱	68	52.2 ± 2.2
	2jμ+p	7287		e+7-	609	555.9 ± 10.2	be+2jø	87	65 ± 3.3
		13		e+++	225	211.2 ± 4.7	be+p	330	347.2 ± 6.9
	2jμ+γ¢								
	$2j\mu + \gamma$	41		e+p6	476424	479572 ± 5361.2		211	176.6 ± 5
	2jμ+μ-	374	394.2 ± 24.8	e+p+-	48	35 ± 2.7	be+e-j	22	34.6 ± 2.6
	2jμ+	9513	9362.3 ± 166.8	$e+p \tau +$	20	18.7 ± 1.9	be+e-	62	55 ± 3.1

Vista

Table of final states

Final State	Plots	Observed	Expected	Discrepancy (σ)	SM composition	Discrepant Distributions (σ)
3j1tau+	[plots]	71	113.7 +- 3.6	-2.3	Pythia jj $40 < pT < 60 = 27.5$, Pythia jj $60 < pT < 90 = 18.2$, Pythia jj $18 < pT < 40 = 17.8$, Pythia jj $200 < pT < 300 = 17.7$, Pythia jj $150 < pT < 200 = 15.7$, Pythia jj $90 < pT < 120 = 68$, Pythia jj $120 < pT < 150 = 3.8$, Pythia bj $40 < pT < 60 = 1.4$, Pythia jj $300 < pT < 400 = 1.3$, Pythia bj $60 < pT < 90 = 1$, Pythia bj $200 < pT < 300 = 0.7$, Pythia bj $200 < pT < 200 = 0.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, Pythia bj $200 < pT < 200 = 20.4$, P	
5j	[plots]	1661	1902.9 +- 50.8	-1.7	Pythia jj 40 < pT < 60 = 685 8, Pythia jj 18 < pT < 40 = 553 A , Pythia jj 60 < pT < 90 = 429 9, Pythia jj 90 < pT < 120 = 98.8, Pythia jj 40 < pT < 60 = 41.2, Pythia jj 60 < pT < 90 = 28.2, Pythia bj 18 < pT < 40 = 27, Pythia jj 120 < pT < 150 = 17 A , Pythia jj 150 < pT < 200 = 6 A , Pythia jj 90 < pT < 120 = 6.1, Overlaid events = 5.5, Pythia bj 120 < pT < 150 = 1.2, Pythia bj 150 < pT < 200 = 0.7, MadEvent W(\rightarrow ev) jjjj = 0.5, Pythia jj 200 < pT < 300 = 0.5, Herwig tibar = 0.2	mass(j2)j2_pt 7.1 mass(j1) 6.7 mass(j3)j3_pt 6.2 mass(j2,j3,j4) 4.2 mass(j2,j3,j4) 4.2 mass(j1)j1_pt 3.9 mass(j2,j3,j5) 3.5 deltaR(j2,j3) 3.4 mass(j2,j3,j4,j5) 3.3 mass(j2) 2.8 mass(j4)j4_pt 2.5
2j1tau+	[plots]	233	296.5 +- 5.6	-1.6	Pythia jj 40 < pT < 60 = 95.9, Pythia jj 18 < pT < 40 = 67.3, Pythia jj 60 < pT < 90 = 54.3, Pythia jj 200 < pT < 300 = 30.9, Pythia jj 150 < pT < 200 = 19.6, Pythia jj 90 < pT < 120 = 10.8, Pythia jj 120 < pT < 150 = 5.4, Pythia bj 40 < pT < 60 = 4, Pythia jj 300 < pT < 400 = 2, Pythia bj 18 < pT < 40 = 16, Pythia bj 60 < pT < 90 = 15. Pythia bj 200 < pT < 300 = 0.8, Pythia bj 150 < pT < 200 = 0.5, Pythia bj 100 < pT < 90 = 15. Pythia bj 200 < pT < 300 = 0.8, Pythia bj 150 < pT < 200 = 0.5, Pythia bj 200 < pT < 300 < pT	mass(tau+,j1,j2) 3.7 sumPt 3.5 mass(tau+,j2) 3 mass(tau+,j1) 2.7 clusteredObjectsRecoil_pt 2.6 j1_pt 2.5
2j2tau+	[plots]	6	27 +- 4.6	-1.4	Pythia jj $18 < pT < 40 = 11.7$, Pythia jj $40 < pT < 60 = 9.5$, Pythia jj $60 < pT < 90 = 4.1$, Pythia bj $40 < pT < 60 = 0.8$, Pythia jj $90 < pT < 120 = 0.7$, Pythia bj $18 < pT < 40 = 0.1$	
1b1e+1j	[plots]	2207	2015.4 +- 28.7	+1.4	Pythia jj 40 < pT < 60 = 411.6, Pythia bj 40 < pT < 60 = 295.7, Pythia jj 60 < pT < 90 = 233.5, Pythia jj 18 < pT < 40 = 225.5, Pythia bj 18 < pT < 40 = 162.8, Pythia bj 60 < pT < 90 = 155.8, Madlivent W(\rightarrow ev) jjj = 91.4, Pythia gamma j 22 < pT < 45 = 79.7, Madlivent Z(\rightarrow ee) j = 74.4, Pythia jj 90 < pT < 120 = 26.6, Pythia gamma j 12 < pT < 22 = 26.5, Madlivent Z(\rightarrow ee) jj = 23.4, Alpgen W(\rightarrow ev) bb = 13.3, Madlivent W(\rightarrow ev) = 12.4, Pythia jj 120 < pT < 150 = 11.6, Pythia gamma j 80 < pT = 10.4, Madlivent W(\rightarrow ev) jjj = 10.4, Madlivent Z(\rightarrow ee) = 96, Alpgen W(\rightarrow ev) bb j = 8.8, Pythia jj 120 < pT < 150 = 48.9, Pythia jj 150 < pT < 200 = 75, Herwig thar = 5.1, Madlivent Z(\rightarrow ee) = 96, Alpgen W(\rightarrow ev) bb j = 8.8, Pythia jj 120 < pT < 150 = 45, Madlivent Z(\rightarrow ee) bb = 4.1, Madlivent Z(\rightarrow ee) jjj = 2.9, Alpgen W(\rightarrow ev) bb jj = 2.1, Pythia bj 150 < pT < 200 = 18, Pythia jj 200 < pT < 300 = 15, Madlivent W(\rightarrow ev) jjjj = 1.1, Madlivent W(\rightarrow ev) gamma = 0.8, Overlaid events = 0.8, Madlivent W(\rightarrow ev) = 0.6, Pythia bj 10 < pT < 18 = 0.6, Pythia ZZ = 0.5, Madlivent gamma gamma jj = 0.3, Pythia bj 200 < pT < 300 = 0.3, Pythia Z(\rightarrow er τ) = 0.3, Pythia WZ = 0.2	mass(b)/b_pt 9.9 mass(b) 7.2 mass(j)/j_pt 4.3 deltaR(j,b) 4.1 minMass(j) 3.9 mass(j,b) 3.6 uncl_pt 3.5
3j_sumPt0-400	[plots]	35436	37294.6 +- 524.3	-1.1	Pythia jj 18 < pT < 40 = 18129.1, Pythia jj 40 < pT < 60 = 12273.7, Pythia jj 60 < pT < 90 = 3950.7, Pythia bj 18 < pT < 40 = 751.6, Pythia jj 10 < pT < 18 = 749, Pythia bj 40 < pT < 60 = 540.5, Pythia jj 90 < pT < 120 = 520.8, Pythia bj 60 < pT < 90 = 179.5, Pythia jj 120 < pT < 150 = 96.7, Pythia jj 150 < pT < 200 = 27.6, Pythia bj 90 < pT < 120 = 19.7, Pythia gamma j 22 < pT < 45 = 13.8, Pythia bj 10 < pT < 18 = 13.8, Overlaid events = 7.9, Pythia gamma j 12 < pT < 22 = 7.9, MadEvent $Z(\rightarrow ee)$ jj = 3.9, Pythia gamma j 8 < pT < 12 = 2, Pythia bj 120 < pT < 150 = 2, MadEvent $W(\rightarrow ev)$ jjj = 2, MadEvent $W(\rightarrow ev)$ jjj = 2	minDeltaR(j,j) 9.9 mass(j2,j3) 9.9 deltaR(j2,j3) 9.9 deltaEta(j2,j3) 9.9 mass(j2)(j2_pt 9.9
1e+3j1pmiss	[plots]	1954	1751.6 +- 42	+1.1	MadIvent W(→ev) jj = 705.6, MadIvent W(→ev) jjj = 595.3, MadIvent W(→ev) j = 132.6, MadIvent W(→ev) jjjj = 85, Pythia W(→ev) = 56.4, MadIvent W(→ev) = 45.8, Herwig trbar = 26.7, MadIvent Z(→ee) jj = 25.9, Alpgen W(→ev) bb j = 10.3, MadIvent Z(→ee) jjj = 92, MadIvent W(→ev) bb j = 10.3, MadIvent Z(→ee) jjj = 92.9, MadIvent W(→ev) bb j = 5.1, Pythia jj 90 < pT < 120 = 4.4, Overlaid events = 3.5, Pythia jj 40 < pT < 60 = 2.2, Pythia gpama j 80 < pT = 1.9, Pythia jj 150 < pT < 200 = 15, Pythia jj 120 < pT < 150 = 1.5, Pythia jj 200 < pT < 300 = 1.3, Pythia bj 60 < pT < 90 = 1.3, Pythia jj 170 < pT < 80 = 1.2, MadIvent Z(→ev) be = 0.7, Pythia bj 90 < pT < 120 = 0.4, Pythia bj 60 < pT < 90 = 1.3, Pythia Z(→r τ) = 0.5, MadIvent Z(→ev) be = 0.7, Pythia bj 90 < pT < 120 = 0.4, Pythia bj 150 < pT < 200 = 0.4, Pythia bj 18 < pT < 40 = 0.4, Pythia bj 18 < pT < 120 = 0.4, Pythia bj 150 < pT < 200 = 0.4, Pythia bj 18 < pT < 40 = 0.4, Pythia Z(→r τ) = 0.5, MadIvent Z(→r v) gamma = 0.3, MadIvent	mass(j2)/j2_pt 3.4

Example Final State

♦ one photon and one tau

Vista Agreements

- ♦ W high S/N, stats
- ♦ e j fakes agreement
- ♦ e 4j Met top sample

Number of Events

Vista Agreements

Good agreement in final states with no influence on fit

Vista Discrepancies

- ♦ 3j discrepancies significant, but also difficult to rule out the mundane
- ♦ under investigation, NLO looks better but has not been completely

explained so far CDF Run II Data $3j \sum p_T < 400 \text{ GeV}$ Overlaid events: 0% CDF Run II Preliminary (927 pb⁻¹) Pythia γ i : 0.1% Pythia bj: 4% 3000 Pvthia ii: 95.9% Number of Events 2000 1000 ∆R(j2,j3)

♦ the same discrepancy apparently affects the jet mass distributions

Vista Discrepancies

- ♦ intrinsic Kt is tuned on a few final states (ee, $\mu\mu$, $\gamma\gamma$..) \blacklozenge does not work on
- $(k_T < m/5) \times$ $p(k_T) \propto$ $[0.8 * gaussian(\mu = 0, \sigma = 2.55 \, \text{GeV} + 0.0085 \, \sum p_T) +$ $0.2 * gaussian(\mu = 0, \sigma = 5.25 \,\text{GeV} + 0.0175 \,\sum p_T)],$
- works well for majority
- some final states

Vista to Sleuth

- ♦ overall Vista shows excellent agreement in almost all areas
- ♦ few discrepancies, but unlikely to be due to new physics

Vista: bulk yields, kinematics

Sleuth: high-Pt tails

♦ "optimized" quasi-model-independent search

Sleuth Overview

Assumptions

- ♦ the new physics appears as *excess* on the SumPt tail
 - high mass, threshold production
 - ♦ the new physics appears mostly in one final state
 - currently no method to combine final states

Limitations

- optimized for models matching assumptions well
- ♦ not sensitive to small mass peaks like Higgs (a bump hunter is obvious addition)
- ♦ less sensitive to low-pt models

Sleuth Method

- 1) Histogram SumPt distributions of all high-Pt final states
- 2) compare to SM prediction
- 3) find most significant region in SumPt plot for each final state
- 4) find overall significance, including trials factor
- 5) iterate to improve bg model if necessary
- 6) stop: evidence of/no evidence of new physics

Sleuth Partitioning

Vista

Sleuth

Lesser generation equivalence

$$e^{\scriptscriptstyle +} \equiv \mu^{\scriptscriptstyle +}$$

Quark jets come in pairs

$$2j \equiv 3j$$

$$4j \equiv 5j$$

$$bj \equiv bb \equiv bjj \equiv bbj$$

Sleuth Statistic

- ♦ for each event, sum data and BG from data to infinity
- ♦ generate pseudoexperiments to access significance
- ♦ this defines P
- ♦ find combined global significance P
- ♦ "discovery" criteria is P
 <0.001

Does this work?

- ♦remove top, refit
- ♦sleuth would "discover" top with ~80pb⁻¹
- ♦actual discovery was about 60pb⁻¹

Does this work?

◆top pseudo-experiments

Does this work?

ll MEt normally

11 MEt after removing WW

- ♦ it would discover WW, even after refitting
- ♦ reasonably sensitive to high mass Higgs
- ♦ not as sensitive to light Higgs as dedicated analysis
- ♦ less sensitive to single top than dedicated analysis

Does this work?

CDF Run II Preliminary (927 pb⁻¹)

Name	Description	Sensitivity
Model 01	GMSB, $\Lambda=82.6$ GeV, $\tan\beta=15,\mu>0,1$ messenger of $M=2\Lambda$	0.020.040.060.08 0.1 0.120.140.160.]8 0.2 0.22 σ _{mis} (pb)
Model 02	$Z'_{(250\mathrm{GeV/c^2})} \to \ell\bar{\ell}$, with $\ell \neq \nu$	1 1.2 14 1.6 1.8 σ_{mis} (pb)
Model 03	$Z'_{(700\mathrm{GeV/c^2})} \to q\bar{q}$	3 3.5 4 4.5 5 5.5 $\sigma_{mis}(pb)$
Model 04	$Z'_{(1{ m TeV/c^2})} o qar{q}$	1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 σ_{mis} (pb)
Model 05	mSUGRA, $M_0 = 100 \; \text{GeV}, M_{1/2} = 180 \; \text{GeV},$ $A_0 = 0, \; \tan \beta = 5, \; \mu > 0$	0 0 5 1 1.5 2 2.5 3 $\sigma_{\rm min} ({ m pb})$
Model 06	mSUGRA, $M_0 = 284 \text{GeV}, M_{1/2} = 100 \text{GeV},$ $A_0 = 0, \tan \beta = 5, \mu < 0$	0.6 0.8 1 1.2 1.4 1.6 1.8 2
Model 07	mSUGRA, $M_0 = 300 \text{ GeV}$, $M_{1/2} = 200 \text{ GeV}$, $A_0 = 0$, $\tan \beta = 5$, $\mu < 0$	-0.2 0 0.2 0.4 0.6 0.8 1 1.2 σ_{min} (pb)

CTICA	tomo	tiog
Sys.	temat	ucs

♦ standard systematic error
analysis would be ~ prohibitive
and is not included

- ◆ discrepancies are debugged and model adjusted (physically, requiring agreement with all data) reducing systematic effects
- ♦ typical variation of a fit parameter gives 10% variation in SM background
- ♦ if we find limits on generic models, varying fit parameters slowly varies limits

Code Category Explanation Value Error Error(%) 5001 luminosity CDF integrated luminosity 927.12.2 5102 k-factor cosmic_ph 0.686 0.05 7.3 5103 k-factor 0.4464 0.014 3.1 cosmic_j 5121 k-factor 1γ1j photon+jet(s) 0.9492 0.04 4.2 5122 k-factor $1\gamma 2j$ 1.205 0.054.1 5123 k-factor $1\gamma 3j$ 1.483 0.07 4.7 5124 k-factor $1\gamma 4j+$ 1.968 0.16 8.1 5130 k-factor 2γ0j diphoton(+jets) 1.809 0.08 4.4 7.0 5131 k-factor $2\gamma 1i$ 3.417 0.245132 k-factor $2\gamma 2i+$ 1.305 0.16 12.3 k-factor W0j W (+jets) 5141 1.453 0.0271.9 5142 k-factor 2.8 W1j1.059 0.032.9 5143 k-factor W2i1.021 0.03k-factor 6.6 5144 W3i+0.75820.055151 k-factor Z0j Z (+jets) 1.419 0.0241.7 5152 0.04 k-factor Z1j1.177 3.4 5153 Z2i+0.05 4.8 k-factor 1.035 5161 k-factor $2j \hat{p}_T < 150 \text{ dijet}$ 0.9599 0.022 2.3 2.2 5162 k-factor $2j 150 < \hat{p}_T$ 1.2560.0285164 k-factor 3j $\hat{p}_T < 150$ multijet 0.9206 0.021 2.3 5165 k-factor $3j\ 150 < \hat{p}_T$ 1.360.0322.45167 k-factor 0.9893 0.0252.5 4j $\hat{p}_T < 150$ 5168 k-factor 4j 150 $<\hat{p}_T$ 1.705 0.04 2.3 5169 k-factor 5j+ low 1.2520.054.0 5211 misId p(e→e) central 0.9864 0.0060.6 5212 misId $p(e \rightarrow e)$ plug 0.93340.009 1.0 5213 misId $p(\mu \rightarrow \mu)$ CMUP 0.84510.008 0.9 5214 misId $p(\mu \rightarrow \mu) CMX$ 0.011 1.2 0.9155216 misId $p(\gamma \rightarrow \gamma)$ central 0.97380.018 1.8 5217 misId $p(\gamma \rightarrow \gamma)$ plug 0.91310.0182.0 5219 $p(b\rightarrow b)$ central misId 0.99690.044.0 5245 misId 27.0 $p(e \rightarrow \gamma)$ plug 0.044520.0125256 misId 9.71×10^{-5} 1.9×10^{-6} 2.0p(q→e) central 1.8×10^{-5} 5257 0.0008761 misId p(q→e) plug 2.1 1.157×10^{-5} 2.7×10^{-7} 5261 misId $^{2.3}$ $p(q \rightarrow \mu)$ 5273 misId $p(j\rightarrow b) 25 < p_T$ 0.016840.000271.6 5285 misId 0.00012 $p(q \to \tau) 15 < p_T < 60$ 0.003414 3.5 4×10^{-5} 5286 misId 0.00038110.5 $p(q \to \tau) 60 < p_T < 200$ 1.5×10^{-5} $p(q\rightarrow\gamma)$ central 5292 misId 0.00026515.7 5293 misId 0.00013 8.2 $p(q \rightarrow \gamma)$ plug 0.0015915401 trigger $p(e \rightarrow trig)$ central, $p_T > 25$ 0.97580.0070.75402 trigger $p(e \rightarrow trig)$ plug, $p_T > 25$ 0.8350.0151.8 5403 trigger $p(\mu \rightarrow trig)$ CMUP, $p_T > 25$ 0.91660.0070.8 5404 trigger $p(\mu \rightarrow trig)$ CMX, $p_T > 25$ 0.9613 0.01 1.0

CDF Run II Preliminary (927 pb⁻¹)

including systematics only makes a null result more null

Sleuth Result

And the answer is ...
$$\tilde{\mathcal{P}}=0.46$$

the probability that the most discrepant final state would be more discrepant is 0.46 = no significant excess

this does not prove no new physics

This global search reveals no significant indication of new physics

There exists a simple, well-motivated implementation of the standard model, consistent with the entire high-Pt dataset, that also explains the SumPt tails of all final states

Sleuth Most Discrepant

the most discrepant final states:

SLEUTH Final State	\mathcal{P}
$b \overline{b}$	0.0055
<i>j ≱</i> ⁄	0.0092
$\ell^+\ell'^+\not p jj$	0.011
$\ell^+\ell'^+\not\!p$	0.016
$\tau p \!\!\!/$	0.016

- ◆ Do not reveal hints of new physics
- ♦ are not statistically significant after considering trials factors

Sleuth Most Discrepant

j Met dominated by cosmics

like-sign leptons dominated by fakes

OF Vista/Sleuth Result

Vista

- ♦ scans 16K kinematic distributions
- ♦ debugging background estimate
- ♦ defines a 44 parameter correction model
- ♦ finds no discrepancies indicating new physics

Sleuth

- ♦ applies background model
- ♦ searches high-SumPt tails
- ♦ is sensitive to many new physics models
- ♦ agreement in 72 final states 0.46 probability

The search continues

- ♦ dedicated searches, and Sleuth continue
- ♦ Sleuth 2fb result is nearing completion
- ♦ a discovery could pop up with any increment
- ♦ similar search is underway at DØ
- ♦ value to LHC experiments...

The single most encompassing test of the Standard Model on the energy frontier to date

The Logical Continuation

Bard

- ♦ Given an excess, what particles could have participated
- ♦ search all quantum numbers, vertices using MADGRAPH
- B. Knuteson, S. Mrenna, e-Print: hep-ph/0602101

Marmoset

- ♦ build an "on-shell effective theory" for a set of excesses
- ♦ simulate the consequences, work towards final theory
- N. Arkani-Hamed, P. Schuster, N. Toro, J. Thaler, L. Wang,
- B. Knuteson, S. Mrenna, e-Print: hep-ph/0703088

Quaero

- ♦ test a model against a dataset
- ♦ Can be run by anyone
- ♦ DØ Run I http://mit.fnal.gov/Quaero

TurboSim

Working on this discrepancy

- Likely a showering problem
- little MC tuning since 90's much expected for LHC era
- need to test tunes, but simulation time per event is a very real problem

Turbocharge it!

- Examine ~10M of full sim events
- save parton \rightarrow recon for each particle type, for Pt, η , ϕ
- allow look-up of $N \rightarrow M$
- result is $\sim 1\%$ precision, plenty for most studies, and fast 10ms!
- plenty of other uses...

Vista/Sleuth Family Tree

D0 Run I

- ♦ Phys Rev D 62, 092004, 2000
- ♦ Phys Rev D 62, 012004, 2001
- ♦ Phys Rev Lett 86, 3712, 2001
- ♦ Phys Rev Lett 87, 231801, 2001

Vista@L3

♦ Performed

Vista@Aleph

♦ Performed

Sleuth, Quaero@H1

- ♦ Phys. Lett. B 602: 14-30, 2004
- ♦ Eur. Phys. J. C53:167,2008

CDF Run II

♦ Just blessed → PRL, PRD

D0 Run II

♦ Vista/Sleuth underway

The LHC Generation

designing offline triggers

Vista/Sleuth @ LHC

Search tool

- ♦ LHC unknowns demand a tool to scan final states
- ♦ don't commit to a final state early on
- find the anomalies and attack them

Commissioning tool

- ◆ So far, Sleuth has only been an endgame, a final tuning of background and data comparison
- early on all discrepancies will be problems
 - o presented in a organized way, ordered
 - o complete set wonder about a plot? we got it.
 - o see where the background is coming from
- ♦ high-level compliments low-level work Vista shows where the real physics problems are
- ♦ flows from commissioning into searching

The search continues...

MisID matrix

CDF Rur	ı II Prelimi	nary (92	$27 \text{ pb}^{-1})$										
$ \eta $	0 - 0.6							0.6 - 1.0	1		> 1.0		
p_T	15 - 25 25 - 40 40 - 60 60 - 200 > 200			15 - 25	25 - 40	40 - 60	60 - 200	> 200	15 - 25	25 - 40	> 40		
$e \rightarrow e$	5211	5211	5211	5211	5211	5211	5211	5211	5211	5211	5212	5212	5212
$e \rightarrow \mu$	0	0	0	0	0	0	0	0	0	0	0	0	0
$e \rightarrow \tau$	0	0	0	0	0	0	0	0	0	0	0	0	0
$e \rightarrow \gamma$	4×10^{-3}	4×10^{-3}	4×10^{-3}	4×10^{-3}	4×10^{-3}	4×10^{-3}	4×10^{-3}	4×10^{-3}	4×10^{-3}	4×10^{-3}	5245	5245	5245
$e \rightarrow j$	0	0	0	0	0	0	0	0	0	0	0	0	0
e→b	0	0	0	0	0	0	0	0	0	0	0	0	0
$\mu \rightarrow e$	0	0	0	0	0	0	0	0	0	0	0	0	0
$\mu \rightarrow \mu$	5213	5213	5213	5213	5213	5214	5214	5214	5214	5214	5214	5214	5214
$\mu \rightarrow \tau$	0	0	0	0	0	0	0	0	0	0	0	0	0
$\mu \rightarrow \gamma$	0	0	0	0	0	0	0	0	0	0	0	0	0
$\mu \rightarrow j$	0	0	0	0	0	0	0	0	0	0	0	0	0
$\mu \rightarrow b$	0	0	0	0	0	0	0	0	0	0	0	0	0
$\tau \rightarrow e$	0	0	0	0	0	0	0	0	0	0	0	0	0
$\tau \rightarrow \mu$	0	0	0	0	0	0	0	0	0	0	0	0	0
$\tau \rightarrow \tau$	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0	0	0
$\tau { ightarrow} \gamma$	0	0	0	0	0	0	0	0	0	0	0	0	0
$\tau \rightarrow j$	0	0	0	0	0	0	0	0	0	0	1	1	1
$\tau \rightarrow b$	0	0	0	0	0	0	0	0	0	0	0	0	0
$\gamma \rightarrow e$	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.005	0.005	0.005
$\gamma \rightarrow \mu$	0	0	0	0	0	0	0	0	0	0	0	0	0
$\gamma \! o \! au$	0	0	0	0	0	0	0	0	0	0	0	0	0
$\gamma \rightarrow \gamma$	5216	5216	5216	5216	5216	5216	5216	5216	5216	5216	5217	5217	5217
$\gamma \rightarrow j$	0	0	0	0	0	0	0	0	0	0	0	0	0
$\gamma \rightarrow b$	0	0	0	0	0	0	0	0	0	0	0	0	0
j→e	5256	5256	5256	5256	5256	5256	5256	5256	5256	5256	5257	5257	5257
$j \rightarrow \mu$	1.5×10^{-5}	5261	5261	5261	5261	1.5×10^{-5}	5261	5261	5261	5261	0	0	0
$j \rightarrow \tau$	5285	5285	5285	5286	0.00015	5285	5285	5285	5286	0.00015	0	0	0
$j \rightarrow \gamma$	5292	5292	5292	5292	5292	5292	5292	5292	5292	5292	5293	5293	5293
$j \rightarrow j$	1	1	1	1	1	1	1	1	1	1	1	1	1
j→b	0	5273	5273	5273	5273	0	5273	5273	5273	5273	0	0	0
b→e	0	0	0	0	0	0	0	0	0	0	0	0	0
$b \rightarrow \mu$	0	0	0	0	0	0	0	0	0	0	0	0	0
$b \rightarrow \tau$	0	0	0	0	0	0	0	0	0	0	0	0	0
$b \rightarrow \gamma$	0	0	0	0	0	0	0	0	0	0	0	0	0
b→j	0	0	0	0	0	0	0	0	0	0	1	1	1
b→b	5219	5219	5219	5219	5219	5219	5219	5219	5219	5219	0	0	0

MisID matrix Values

CDF Run II Preliminary (927 pb ⁻¹)														
$ \eta $	0 - 0.6					0.6 - 1.0					>1.0			
p_T	15 - 25	25 - 40	40 - 60	60 - 200	> 200	15 - 25	25 - 40	40 - 60	60 - 200	> 200	15 - 25	25 - 40	> 40	
$e \rightarrow e$	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.93	0.93	0.93	
$e \rightarrow \mu$	0	0	0	0	0	0	0	0	0	0	0	0	0	
$e \rightarrow \tau$	0	0	0	0	0	0	0	0	0	0	0	0	0	
$e \rightarrow \gamma$	4×10^{-3}	0.045	0.045	0.045										
$e \rightarrow j$	0	0	0	0	0	0	0	0	0	0	0	0	0	
e→b	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\mu \rightarrow e$	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\mu \rightarrow \mu$	0.85	0.85	0.85	0.85	0.85	0.92	0.92	0.92	0.92	0.92	0.92	0.92	$\underline{0.92}$	
$\mu \rightarrow \tau$	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\mu \! o \! \gamma$	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\mu \rightarrow j$	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\mu \rightarrow b$	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\tau \rightarrow e$	0	0	0	0	0	0	0	0	0	0	0	0	0	
$ au \! o \! \mu$	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\tau \rightarrow \tau$	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0	0	0	
$ au \! o \! \gamma$	0	0	0	0	0	0	0	0	0	0	0	0	0	
$ au \! o \! \mathrm{j}$	0	0	0	0	0	0	0	0	0	0	1	1	1	
$\tau \rightarrow b$	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\gamma \rightarrow e$	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.005	0.005	0.005	
$\gamma \! o \! \mu$	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\gamma \! o \! au$	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\gamma \rightarrow \gamma$	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.91	0.91	0.91	
$\gamma \rightarrow j$	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\gamma \rightarrow b$	0	0	0	0	0	0	0	0	0	0	0	0	0	
j→e	9.7×10^{-5}	0.00088	0.00088	0.00088										
$j \rightarrow \mu$	1.5×10^{-5}	1.2×10^{-5}	1.2×10^{-5}	1.2×10^{-5}	1.2×10^{-5}	1.5×10^{-5}	1.2×10^{-5}	1.2×10^{-5}	1.2×10^{-5}	1.2×10^{-5}	0	0	0	
$j \rightarrow \tau$	0.0034	0.0034	0.0034	0.00038	0.00015	0.0034	0.0034	0.0034	0.00038	0.00015	0	0	0	
$j \rightarrow \gamma$	0.00027	0.00027	0.00027	$\overline{0.00027}$	0.00027	0.00027	0.00027	0.00027	$\overline{0.00027}$	0.00027	0.0016	0.0016	0.0016	
j→j	1	1	1	1	1	1	1	1	1	1	1	1	1	
j→b	0	0.017	0.017	0.017	0.017	0	0.017	0.017	0.017	0.017	0	0	0	
b→e	0	0	0	0	0	0	0	0	0	0	0	0	0	
$b \rightarrow \mu$	0	0	0	0	0	0	0	0	0	0	0	0	0	
$b \rightarrow \tau$	0	0	0	0	0	0	0	0	0	0	0	0	0	
$b \rightarrow \gamma$	0	0	0	0	0	0	0	0	0	0	0	0	0	
b→j	0	0	0	0	0	0	0	0	0	0	1	1	1	
b→b	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	1	1	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	0	0	0	