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Abstract.
After a brief presentation of the orientation pumping mechanism as a mean to generate finite

average angular momenta in oriented systems, some consequences are drawn for the spin of fission
fragments. Through a crude model approximation for the scission configurations, the results of
microscopic calculations of fragment deformabilities arethen used to deduce from the above
mechanism, a distribution of fission fragment spins as a function of the total fragment excitation
energy. A fair qualitative agreement with available data isdemonstrated.
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1. INTRODUCTION

It has been well known for a long time from various experimental sources that fission
fragments (even when resulting from the spontaneous fissionof an even-even nucleus)
possess quite sizeable angular momenta, typically up to about 10 h̄ [1]. Recent detailed
data from GAMMASPHERE experiments for the spontaneous fission of 252Cf have
exhibited an increase of this angular momentum with the total fragment excitation
energy [2].

Fission fragment spins and related theoretical explanations

The current theoretical explanation takes stock on the thermal excitation of collective
angular momentum carrying modes of which the most effectiveone for this purpose
seems to be the bending mode [3]. Refined calculations along these lines have been
performed by M. Zielinska-Pfabe and K. Dietrich years ago [4] and are still utilized [5].
This approach meets with, at least, three difficulties. First to account for the average
spin values one has to resort to a vastly too high temperature(about 3 MeV) at least
for reasonable collective phonon energies as given in [4]. Then it is unable to provide
any explanation on the above quoted dependence [2] of the spin with the excitation
energy. Finally it is inconsistent with the observed similarities between angular gamma



ray distributions of both binary and ternary fissions [6] while the latter should clearly
perturb the bending mode excitation with respect to what is expected in the former case.

It is the point of our approach to insist that in most cases thebulk of the fission frag-
ment spins is due to quantal fluctuations rather than to thermal fluctuations. Actually
there is more to angular momentum than a mere rotation of a matter spatial distribution,
as experienced in so-called magnetic rotations [7] or intrinsic vortical modes [8] for in-
stance. Here, we make use of the Heisenberg uncertainty principle as applied to systems
whose orientation is somewhat fixed. Since, in that case, some angular information is
known, one gets, as a result, a quantal distribution of the canonically conjugated vari-
able, hence a finite average angular momentum. It is in that sense that one may say that
the orientation “pumps” angular momentum [9]. This may be illustrated in the example
of a quantal pendulum in the small oscillation angleθ limit, whose Hamiltonian writes
[10]:
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The corresponding ground state wave-function is given byΨ(θ) = N0exp(−γθ2), where
γ is proportional to the rigidity parameterC of the oscillator. The orbital momentum (l )
expansion of the latter
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This is an example of this angular moment pumping for such a system constrained to
move in a restrictedθ angular domain.

Orientation pumping mechanism

Let us come back now to our fission context and assume that the scission configuration
is reasonably well described as a product of two separated wave-functions, as BCS wave-
functions. Upon projecting on good angular momentum each ofthese wave-functions,
and coupling them to a total zero angular momentum (we assumethat we describe here
the spontaneous fission of an even-even nucleus and that the relative angular momentum
is vanishing so as to minimize any other sources of angular moment generation in
the fragments but the orientation pumping) we have obtainedin [9] for a pure rotor
distribution of projected energies that

〈J2〉 =
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where〈J2
i 〉intr stands for the intrinsic expectation value of theĴ2 operator computed for

the wave-function of fragmenti. It is to be noted that this value isi-independent as it



should for angular momentum conservation reasons. Furthermore if one of the fragment
is spherical then this formula yields vanishing fragment spins. However we clearly reach
one limit of our model assumptions, namely the rotational character of the projected
spectra which should not be valid in this case.

2. SEMI-MICROSOPIC DESCRIPTION OF SCISSION
CONFIGURATIONS

Let us consider a nucleus undergoing a fission process all along which axially symmetri-
cal shapes are assumed. We decompose the total energy of the fissioning nuclear system
in the following way:

Etot(Q
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20 ,Q(2)

20 ,D) =
2
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Ei(Q
(i)
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whereQ(i)
20 denotes the axial quadrupole moment of the fragmenti – chosen to represent

the elongation of the fragment – andD is the distance between the fragments centers

of mass. With obvious notations,E(Coul)
mut andE(nucl)

mut stand for the mutual Coulombian
and nuclear interaction energies, respectively, whereasEi denotes the (deformation)
energy of the fragmenti. In the expression (5) ofEtot, it is assumed thatEi depends
only onQ(i)

20, which means that the polarization of both fragments would potentially be
only considered through this quadrupole mode only. In the present preliminary crude
study, however, we go as far as to neglect any polarization altogether by computingEi ,

for given Q(i)
20 values corresponding to fully separated nuclei, in the Skyrme–Hartree–

Fock plus BCS approach used in [11] for fission barriers calculations and in another
contribution to this workshop [12]. In the calculation ofEi , the pairing force parameters
for the corresponding nucleus and the factor 1/Ai in the one-body term of the center of
mass correction are used. Moreover, we have assumed axial and left-right symmetries.
The latter hypothesis sounds reasonable since the ground state shapes of the considered
nuclei, namely106Mo and146Ba, do not exhibit any energetically significant octupole
distortions [13] and that we neglect any such polarization effet which would arise
essentially from the Coulomb repulsion of the fission partner. The deformation energy

curvesEi(Q
(i)
20) obtained for the106Mo and146Ba isotopes are displayed in Fig. 1.

To arrive at a quantitative definition of scission, we start from the idea that, at scission,
the nuclear interaction acting between two nucleons whose wave functions are localized
in different fragments becomes negligible. Moreover we consider that a scission con-
figuration should be accessible from the initial state, chosen to be the ground state of
the fissioning nucleus since we are interested in spontaneous fission. This means that
the total energy of such a configuration should be lower than the ground state one. Any
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FIGURE 1. Deformation energy curves of the106Mo (left) and146Ba (right) nuclei.

scission configuration should then satisfy the following two relations:
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In the above Eq. (6),ε is chosen to be 1%. This quantitative condition for scissionis

of course somewhat arbitrary. Eqs. (6) and (7) lead to a set ofsolutions(Q(1)
20 ,Q(2)

20 ,D)

whereD is a function of(Q(1)
20 ,Q(2)

20 ) which both vary in limited ranges because of (7).

As a first approach to the above problem, we approximateE(Coul)
mut by the expres-

sion given in Ref. [14] obtained by likening the fragments tohomogeneously charged,
spheroidal droplets with collinear symmetry axes – namely the fission direction:
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20 ,Q(2)
20 ,D) =

Z1Z2e2

D
S(x1,x2) (8)

where the eccentricitiy-like variablexi is defined through its square:
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and the (dimensionless) functionS, expressing the departure from two spherical frag-
ments, takes the form:
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in which Px[ f (x)] means the even part of the functionf (x). In Eq. (9)ci andai denote
the semi-axes along the axial symmetry – corresponding to the fission direction – and in
the perpendicular direction of the fragmenti, respectively. As can be easily seen, prolate
shapes (ci > ai) lead to realxi-values, whereasxi is purely imaginary for oblate shapes
(ci < ai). As expected, we haveS(0,0) = 1 for two spherical shapes. As for the attractive
nuclear interaction between both fragments we chose the proximity potential of Blocki
and Swiatecki [15, 16] expressed as, with their notations:

E(nucl)
mut = 4πR̄γ bΦ(ζ ) . (11)

In this expression,̄R is a kind of mean curvature radius and has been calculated exactly
for two spheroids from Eq. (4) of Ref. [15] as:
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The values of theγ andb parameters of Eq. (11) have been taken from Ref. [15], whereas
the parametrisation of the universal proximity fucntionΦ is the one from Ref. [16].

It is worth mentioning that the above modelisation of scission configurations is for-
marly similar to the one sketched in Ref. [17]. An important difference lies in the way
D is treated (or equivalently, the tip distanced). In the present model, the condition (6)
leads to a distribution ofD-values, thence a distribution of tip distances, whereas inthe
work of Ref. [17] a particulard-value has been considered.

3. FISSION FRAGMENT ANGULAR MOMENTA

In the above described “orientation pumping” mechanism andin the absence of any
other source of angular momentum, both fragments have the same spinJfrag defined as:

Jfrag(Jfrag+1) = 〈J2〉 (13)

where〈J2〉 is calculated within the crude approximation of Eq. (4). In the same spirit as
what has been done for the energyEi of the fragmenti in Sect. 2, we have neglected the

polarization effects in the calculation of〈J2〉(i)intr entering Eq. (4) and used the BCS wave-
function of the isolated nucleusi to compute the expectation value of theĴ2 operator.

This has been done for a number deformationsQ(i)
20, for both fragments. The resulting

Jfrag-value has been obtained as a function of(Q(1)
20 ,Q(2)

20 ) and plotted as a contour map
in Fig. 2.

In view of calculating the averageJfrag-value as a function of the fragment deforma-
tion energyEdef. frag defined by:

Edef. frag =
2

∑
i=1

(

Ei −E(GS)
i

)

, (14)
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FIGURE 2. Contour map ofJfrag as a function of(Q(1)
20 ,Q(2)

20 ) for the fragmentation106Mo+146Ba.

we need to assign a weight to each configuration satisfying the two scission conditions
(6) and (7), and corresponding to a fixedEdef. frag-value. Before further discussing this,

it is worth noting thatEdef. frag depends only on the fragment deformationsQ(i)
20. Lines

of equal total deformation energies in the
(

Q(1)
20 ,Q(2)

20

)

plane are reported in Figure 3
for configurations satisfying the scission conditions (6) and (7). The distribution over
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0
2

2

3

20

|Enucl /ECoul|=(1.0±0.1)%

Etot < EGS( 252Cf)

∆Edef.frag=1 MeV

Q20(
146Ba) (b)

Q
20

(10
6 M

o
) 

(b
)

-10

0

10

20

30

40

50

-10 0 10 20 30 40 50

FIGURE 3. Contour lines of equalEdef. frag-values from 0 to 20 MeV for106Mo+146Ba scission config-
urations.

various scission configurations having the same total deformation energy should result
ultimately from an appropriate quantal calculation for thecollective motion. To mock
it up, in the present preliminary stage, we resort rather to a“Boltzman” weighte−Etot/T

whereT should be a priori of the order of 1 MeV (value chosen here). This enables to



compute the meanJfrag-value for a givenEdef. frag-value as:

〈Jfrag〉 =
1
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where we have discretized the(Q(1)
20 ,Q(2)

20 ,D) space and used the scission condition (6)

to deduceD for each(Q(1)
20 ,Q(2)

20 ) pair. The constantN is a normalization coefficient,
equivalent to a partition function:

N = ∑
Q(1)

20 ,Q(2)
20

e−Etot/T . (16)

Note that even though the above simulation of the spreading among scission configura-
tions seem to refer to the approach of Wilkins and collaborators [18], it is quite different
in spirit. We are not resorting here to a thermal distribution but to a quantal fluctuation.
The latter yields a Gaussian distribution provided that, ata givenEdef. frag, one makes a
harmonic approximation around the minimum ofEtot. Upon varyingEdef. frag, we have
obtained an increasing trend forJfrag as shown in Fig. 4 where the reported error bars
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FIGURE 4. Variation of the average angular momentum〈Jfrag〉 at scission with the total fragment
deformation energyEdef. frag for the106Mo+146Ba fragmentation.

are calculated as the variance of the corresponding spin distribution:

∆Jfrag =
√

〈(Jfrag−〈Jfrag〉)2〉 . (17)

Assuming that the total excitation energy of fission fragments is stored in deformation,
which sounds reasonable at low TXE-values, we can deduce from Fig. 4 that the mean
fission fragment spin increases with TXE, which is compatible with the similar experi-
mental trend reported in Ref. [2]. Interestingly, our averageJfrag-value obtained for cold



fission events (no neutrons emitted) is finite and very close to the experimental one. It
seems however that our spin values might rise somewhat too fast as a function of TXE.
Nevertheless one should keep in mind the very crude approximations made here with
respect to the fragment deformations, the angular momentumprojection properties of
their intrinsic wave-function descriptions and the over-simplified definition of TXE.

4. CONCLUSION

We have proposed a quantitative criterion for scission configurations (in terms of the
nuclear and Coulomb mutual energies) and implemented the orientation pumping mech-
anism in a semi-microscopic scission point model. Upon identifying the total excitation
energy of the fragments with their deformation energy, we have finally shown that the
orientation pumping mechanism is able not only to account for the order of magnitude
of the fission fragment spins, but also to reproduce the experimental increasing trend of
the average fragment spin as a function of TXE.
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