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Abstract.

After a brief presentation of the orientation pumping megsia as a mean to generate finite
average angular momenta in oriented systems, some comsmguazre drawn for the spin of fission
fragments. Through a crude model approximation for thesgmisconfigurations, the results of
microscopic calculations of fragment deformabilities #nen used to deduce from the above
mechanism, a distribution of fission fragment spins as atfonof the total fragment excitation
energy. A fair qualitative agreement with available datddmonstrated.
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1. INTRODUCTION

It has been well known for a long time from various experinaésburces that fission
fragments (even when resulting from the spontaneous figgian even-even nucleus)
possess quite sizeable angular momenta, typically up totdl®h [1]. Recent detailed
data from GAMMASPHERE experiments for the spontaneousofissif 2°2Cf have
exhibited an increase of this angular momentum with thel toémment excitation
energy [2].

Fission fragment spins and related theoretical explanaio

The current theoretical explanation takes stock on therthkexcitation of collective
angular momentum carrying modes of which the most effeative for this purpose
seems to be the bending mode [3]. Refined calculations alveggtlines have been
performed by M. Zielinska-Pfabe and K. Dietrich years agafd are still utilized [5].
This approach meets with, at least, three difficulties.tRosaccount for the average
spin values one has to resort to a vastly too high temperéabeut 3 MeV) at least
for reasonable collective phonon energies as given in [A¢nTit is unable to provide
any explanation on the above quoted dependence [2] of tmevefh the excitation
energy. Finally it is inconsistent with the observed simiiies between angular gamma



ray distributions of both binary and ternary fissions [6] hhe latter should clearly
perturb the bending mode excitation with respect to whatpeeted in the former case.
It is the point of our approach to insist that in most casedtlik of the fission frag-
ment spins is due to quantal fluctuations rather than to thkefionctuations. Actually
there is more to angular momentum than a mere rotation of gensgtatial distribution,
as experienced in so-called magnetic rotations [7] ornstc vortical modes [8] for in-
stance. Here, we make use of the Heisenberg uncertaintyiperas applied to systems
whose orientation is somewhat fixed. Since, in that caseesamgular information is
known, one gets, as a result, a quantal distribution of tmewi&ally conjugated vari-
able, hence a finite average angular momentum. It is in timsies#hat one may say that
the orientation “pumps” angular momentum [9]. This may hestrated in the example
of a quantal pendulum in the small oscillation anglémit, whose Hamiltonian writes

[10]: )
he[1 o d 1027 1_ .,
The corresponding ground state wave-function is giveWb§) = Noexp(—y82), where

y is proportional to the rigidity paramet€rof the oscillator. The orbital momentur) (
expansion of the latter

W(6) = .i 2 Y0(6) @)
=0

exhibits a weighted gaussian distributiorl ifor largel values with respect t¢/y

a ~ <I +%) exp(—(l%léaz) . (3)

This is an example of this angular moment pumping for suchséesy constrained to
move in a restricted angular domain.

Orientation pumping mechanism

Let us come back now to our fission context and assume thatidsan configuration
is reasonably well described as a product of two separatee-fuactions, as BCS wave-
functions. Upon projecting on good angular momentum eadhexde wave-functions,
and coupling them to a total zero angular momentum (we asshuiaheve describe here
the spontaneous fission of an even-even nucleus and thaatiee angular momentum
IS vanishing so as to minimize any other sources of angulamemb generation in
the fragments but the orientation pumping) we have obtaing@] for a pure rotor
distribution of projected energies that

o 1 1 \*!
<J > B (<J%>intr - <J§>intr) (4)

Where<Ji2>imr stands for the intrinsic expectation value of f}i’-eoperator computed for
the wave-function of fragment It is to be noted that this value isndependent as it




should for angular momentum conservation reasons. Funtbrerif one of the fragment
is spherical then this formula yields vanishing fragmeimspHowever we clearly reach
one limit of our model assumptions, namely the rotationarahter of the projected
spectra which should not be valid in this case.

2. SEMI-MICROSOPIC DESCRIPTION OF SCISSION
CONFIGURATIONS

Let us consider a nucleus undergoing a fission process afjatich axially symmetri-
cal shapes are assumed. We decompose the total energy akibaifig nuclear system
in the following way:

EtOt(Q(zj(-)) ) Q(zzo)7 Z El + En’(lij?u' (QZO I Q20 I ) + En’?LiCI (QZO 7Q20 ) ) (5)

whereQ(zig, denotes the axial quadrupole moment of the fragmerthosen to represent
the elongation of the fragment — aldis the distance between the fragments centers

of mass. With obvious notatlonEn??“' and Er(ﬁlftc') stand for the mutual Coulombian
and nuclear interaction energies, respectively, wheEgasgenotes the (deformation)

energy of the fragment In the expression (5) dEiot, it is assumed thaE; depends

only on on, which means that the polarization of both fragments wouwleptially be
only considered through this quadrupole mode only. In tlesegmt preliminary crude
study, however, we go as far as to neglect any polarizatimgeiher by computing;,

for given Q(z'(), values corresponding to fully separated nuclei, in the RlepHartree—
Fock plus BCS approach used in [11] for fission barriers datmns and in another
contribution to this workshop [12]. In the calculationf the pairing force parameters
for the corresponding nucleus and the factoflin the one-body term of the center of
mass correction are used. Moreover, we have assumed agigfamight symmetries.
The latter hypothesis sounds reasonable since the groatedsstapes of the considered
nuclei, namely!®®Mo and4%Ba, do not exhibit any energetically significant octupole
distortions [13] and that we neglect any such polarizatiffet evhich would arise
essentially from the Coulomb repulsion of the fission partmbe deformation energy

curvesEi(Qg())) obtained for thé%Mo and14®Ba isotopes are displayed in Fig. 1.

To arrive at a quantitative definition of scission, we staotrf the idea that, at scission,
the nuclear interaction acting between two nucleons wha@se\functions are localized
in different fragments becomes negligible. Moreover wesider that a scission con-
figuration should be accessible from the initial state, ena® be the ground state of
the fissioning nucleus since we are interested in spontaniggsion. This means that
the total energy of such a configuration should be lower thargtound state one. Any
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FIGURE 1. Deformation energy curves of tA&Mo (left) and'®Ba (right) nuclei.

scission configuration should then satisfy the following t@lations:

(nucl)
mut o
= (Cou =exl1 (6)
mut
Eot < Etor - (7)

In the above Eq. (6)¢ is chosen to be 1%. This quantitative condition for scissson
of course somewhat arbitrary. Egs. (6) and (7) lead to a seﬂ)lutions(Q%),Qg%), D)
whereD is a function of(Q(Z%),Q(Z%) ) which both vary in limited ranges because of (7).

As a first approach to the above problem, we approxinEé,fﬁ”') by the expres-
sion given in Ref. [14] obtained by likening the fragmenthitomogeneously charged,
spheroidal droplets with collinear symmetry axes — namwdfission direction:

71767
ESo Q5 Q5. D) = 222 51xq, o) (8)

where the eccentricitiy-like variable is defined through its square:

2_ a2
" 9)

and the (dimensionless) functi@) expressing the departure from two spherical frag-
ments, takes the form:

3141102 +y?) (1+x+y)®
S(X7y) - E X2y2 +PxPy 7x3y3 X

(10)
IN(14+x+Y) (1—3(x+y) + 12xy—4(x° +YZ)))}



in which B[ f (x)] means the even part of the functidfx). In Eq. (9)¢; anda denote
the semi-axes along the axial symmetry — correspondingetfighion direction —and in
the perpendicular direction of the fragmeémespectively. As can be easily seen, prolate
shapesq > a) lead to realk-values, whereas is purely imaginary for oblate shapes
(Gi < &). As expected, we hav®&0, 0) = 1 for two spherical shapes. As for the attractive
nuclear interaction between both fragments we chose thempity potential of Blocki
and Swiatecki [15, 16] expressed as, with their notations:

END — 4nRybd(2). (11)

In this expressiorR is a kind of mean curvature radius and has been calculatedlgxa
for two spheroids from Eq. (4) of Ref. [15] as:

-1
— =l
R= (CZ + C%) . (12)

The values of thggandb parameters of Eq. (11) have been taken from Ref. [15], wiserea
the parametrisation of the universal proximity fucntins the one from Ref. [16].

It is worth mentioning that the above modelisation of scestonfigurations is for-
marly similar to the one sketched in Ref. [17]. An importaiftedlence lies in the way
D is treated (or equivalently, the tip distarte In the present model, the condition (6)
leads to a distribution dD-values, thence a distribution of tip distances, wheredlen
work of Ref. [17] a particulad-value has been considered.

3. FISSION FRAGMENT ANGULAR MOMENTA

In the above described “orientation pumping” mechanism ianthe absence of any
other source of angular momentum, both fragments have the spinJy,q defined as:

Jfrag(Jfrag+ 1) = <J2> (13)

where(J?) is calculated within the crude approximation of Eq. (4).Ha same spirit as
what has been done for the enefgyof the fragment in Sect. 2, we have neglected the

polarization effects in the calculation ¢J]‘2>Imr entering Eq. (4) and used the BCS wave-
function of the isolated nucleusto compute the expectation value of tieoperator.
This has been done for a number deformati@é'é, for both fragments. The resulting
Jrag-value has been obtained as a functionj@ﬁ},Q%)) and plotted as a contour map
in Fig. 2.

In%/iew of calculating the averagk,g-value as a function of the fragment deforma-
tion energyEqet frag defined by:

2
Edef.frag = Z(Ei - Ei(GS)) ) (14)
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FIGURE 2. Contour map ofkag as a function of Q5 Qi2)) for the fragmentatio®®Mo+146Ba.

we need to assign a weight to each configuration satisfyiagvtle scission conditions
(6) and (7), and corresponding to a fixegks frag-value. Before further discussing this,

it is worth noting thatEget frag depends only on the fragment deformati@g%. Lines
of equal total deformation energies in tl(l@g%),Qé%)) plane are reported in Figure 3
for configurations satisfying the scission conditions (64 47). The distribution over
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FIGURE 3. Contour lines of equége frag-values from 0 to 20 MeV fot®®Mo+14Ba scission config-
urations.

various scission configurations having the same total d&ition energy should result
ultimately from an appropriate quantal calculation for tu#lective motion. To mock
it up, in the present preliminary stage, we resort rather‘®atzman” weighte Eot/T
whereT should be a priori of the order of 1 MeV (value chosen here)s Enables to



compute the meadyag-value for a giverEget frag-value as:

1
(Orag) =% Y & 5/ Tohag(Ql. Q55) (15)

1 2
Q%

where we have discretized tlﬁ@(zg,Q%, D) space and used the scission condition (6)

to deduceD for each(Q(zg,Q%) pair. The constani is a normalization coefficient,
equivalent to a partition function:

N = g Eo/T (16)
<1)Z 2
QZO 7Q20

Note that even though the above simulation of the spreadimang scission configura-
tions seem to refer to the approach of Wilkins and collalwosdtl 8], it is quite different

in spirit. We are not resorting here to a thermal distributoit to a quantal fluctuation.
The latter yields a Gaussian distribution provided tha givenEges frag, ON€ makes a
harmonic approximation around the minimumgf:. Upon varyingEget frag: We have
obtained an increasing trend féf,g as shown in Fig. 4 where the reported error bars
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FIGURE 4. Variation of the average angular momentydgag) at scission with the total fragment
deformation energfqet fraq for the 1°Mo+146Ba fragmentation.

are calculated as the variance of the corresponding spimbgdison:

A;lfrag = \/<(Jfrag - <~]frag>)2> : (17)

Assuming that the total excitation energy of fission fragtaeés stored in deformation,
which sounds reasonable at low TXE-values, we can deduoeFig. 4 that the mean
fission fragment spin increases with TXE, which is compatibith the similar experi-
mental trend reported in Ref. [2]. Interestingly, our agerd;,g-value obtained for cold



fission events (no neutrons emitted) is finite and very clogbé experimental one. It
seems however that our spin values might rise somewhat sb@agaa function of TXE.
Nevertheless one should keep in mind the very crude appedinms made here with
respect to the fragment deformations, the angular momeptopection properties of
their intrinsic wave-function descriptions and the oviemdified definition of TXE.

4. CONCLUSION

We have proposed a quantitative criterion for scission gonditions (in terms of the
nuclear and Coulomb mutual energies) and implemented teetation pumping mech-
anism in a semi-microscopic scission point model. Upontifigng the total excitation

energy of the fragments with their deformation energy, weehfaally shown that the
orientation pumping mechanism is able not only to accountife order of magnitude
of the fission fragment spins, but also to reproduce the @xjeital increasing trend of
the average fragment spin as a function of TXE.
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