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Electron-hole correlations in semiconductor quantum dots with tight-binding wave functions
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The electron-hole states of semiconductor quantum dots are investigated within the framework of empirical
tight-binding descriptions for Si, as an example of an indirect-gap material, and InAs and CdSe as examples of
typical 11I-V and 1I-VI direct-gap materials. We significantly improve the energies of the single-particle states
by optimizing tight-binding parameters to give the best effective masses. As a result, the calculated excitonic
gaps agree within 5% error with recent photoluminescence data for Si and CdSe but they agree less well for
InAs. The electron-hole Coulomb interaction is insensitive to different ways of optimizing the tight-binding
parameters. However, it is sensitive to the choice of atomic orbitals; this sensitivity decreases with increasing
dot size. Quantitatively, tight-binding treatments of Coulomb interactions are reliable for dots with radii larger
than 15— A . Further, the effective range of the electron-hole exchange interaction is investigated in detail.
In quantum dots of the direct-gap materials InAs and CdSe, the exchange interaction can be long ranged,
extending over the whole dot when there is no Idcaisite orthogonality between the electron and hole wave
functions. By contrast, for Si quantum dots the extra phase factor due to the indirect gap effectively limits the
range to about 15 A, independent of the dot size.
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[. INTRODUCTION require a selection of specific atomic orbitals that cannot be

The optical and electronic properties of semiconductorexplicitly related to the tight-binding parameters. Hence, a
quantum dots have been studied both experimertafignd  key question that we address in this work is how sensitive
theoretically*~?°for a wide range of sizes, shapes, and ma-the calculated electron-hole properties are to specific choices
terials. This work is stimulated both by a fundamental inter-of orbitals used to calculate the Coulomb matrix elements.
est in quantum-confined systems and by the applicability of We study spherical semiconductor crystallites centered
guantum dots in nanoscale devices. Experimentally, signifiaround an anion atom in a zinc-blende structure. We choose
cant recent improvements in both growth techniiemd  Si, InAs, and CdSe as examples of an indirect-gap material,
single-dot spectroscofy have enabled detailed studies of and typical I1I-V and II-VI direct-gap materials, respectively.
the energy spectra of electron-hole complexXesgcitons, Experimentally, the low-lying exciton energies have been
biexcitons, trions, etg.. Theoretically, the most sophisticated measured for dots up to 20-A radius in®3and up to 40-A
theoretical approaches are multiband effective-massadius in InAs(Ref. 4 and CdSE€.
theory'! empirical pseudopotential theoty;** tight- We use the empirical nearest-neighbsp’s* tight-
binding method$®!° and quasiparticle calculatioffswith  binding modet* for the electron and hole single-particle
the GW approximatior?> wave functions. In order to calculate electron-hole Coulomb

Quantum dots are intermediate between molecular andnd exchange matrix elements, we describe the real-space
bulk systems. This is reflected in the different theoreticalatomic basis orbitals, p,,py,p,, ands* with Slater orbitals
approaches; effective-mass theory treats the dot as a confined a starting point. Both the Coulomb and exchange interac-
bulk system whereas pseudopotential theory aims at a deion are screened by a dielectric function depending on both
tailed atomistic description of the wave functions. Tight- dot size and the distance between the particles. The energies
binding theory compromises between these two approaches the electron-hole states are obtained by diagonalizing the
by including an atomistic description but limiting the local configuration-interaction matrix generated by the lowest-
degrees of freedom to a small basis set. Therefore, the conlying electron and hole states with typical convergence of a
putationally less costly tight-binding method can be used tdew meV. We examine the sensitivity of the electron-hole
study large quantum dots, up to 25 nm size, without severelgnergies on both the choices of atomic basis orbitals and the
restricting atomic-scale variations in the wave functions.tight-binding parameters.
However, since the tight-binding matrix elements are empiri-  Within the tight-binding model, the single-particle Hamil-
cally optimized without introducing any specific atomic or- tonian can be improved by either increasing the number of
bitals, there is no direct way to calculate other matrix ele-basis orbitals or including interactions between more distant
ments such as Coulomb and exchange matrix elementatoms. Ans* orbital was first introduced by Vogdt al* to
Therefore, calculations involving electron-hole interactionsimprove the conduction bands near tKepoint. To some
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degree, ars* orbital can mimic band-structure effects that electron-hole spin state, i.e., either the singlet component
should be attributed td bands. However, it is likely thad ~ |0,00 or one of the triplet component$l,1),|1,0), or
orbitals need to be added in some materidlan alternative  |1,—1). This description closely follows that of Leung and
is to add next-nearest-neighbor interactidnwithin the ~ Whaley!’

sp°s* model, which could improve the band structure with-  The single-particle Hamiltonian can be written in terms of
out increasing the computational cost of generating Coulomlthe electron-hole basis set and its eigenvalues,
matrix elements, since the number of orbitals is unchanged.

Nevertheless, for the topics we discuss in this work the _ )
nearest-neighbosps* model is a good starting point. We Hingle™ hE (Ee—En)leh)|jsms)(jsmsl(eh
here focus on how the single-particle energies can be im- EhlsMls

proved by tight-binding parameters specifically optimized toynere E. and E, are the electron and hole energies of the
give good effectivg masses, and on how single-particle Wavgingle-particle Hamiltonian.

functions from different parameter sets affect the two- prgjecting the electron-hole Hamiltonian onto the two-
particle Coulomb interactions. particle basis set yields the electron-hole Hamiltonian with a

One interesting issue concerning quantum dots is thegylomb interactiord and an exchange interactisg”28
range of the electron-hole exchange interaction. France-

. @

schettiet al?® show that due to the lack of local orthogonal-

ity between electron and hole wave functions the exchange Hen= E (I+K)|jsme){jsmg|, 3

interaction can extend over the whole dot. We investigate in JsMs

detail the effective range of the exchange interaction by ap-

plying a cutoff range to the Coulomb potential. The origin of o

the characteristic range of the exchange interaction is re- J=- ,E, |e’h")(eh

vealed by the analysis of the “exchange charge density” of e'hien

the electron-hole pair. W (1) o1 (1) e (1)
xffd3r’d3r AR @

Il. THEORY e(lr'=r[.R)[r'—r|
A. Hamiltonian of an electron-hole pair
The effective Hamiltonian of an electron-hole pair con- K:2§jse,§eh leh") (e

tains a single-particle term with the kinetic and potential en-

ergies of an electron and a hole, and a two-particle term with )3 (0 ) e (1) e (1) (1)

the electron-hole Coulomb interactiéhThe single-particle XJ fd r'dr r—rL R 1] )

term is implicitly defined through the empirical tight-binding

matrix elements. The Coulomb interaction between the elec- . . . .
) . : ) where §, is unity for a singlet state and zero for a triplet

tron and hole is screened by a dielectric functiefjr Js ) ) ]

—r|,R) that is assumed to be a function of both the separastate- The factor 2 in front oﬁjs in Eq. (5) is due to the fact

tion |r'—r| of the two particles and the dot radi&s Spin-  that the exchange interaction allows two final electron-hole

orbit couplings are not included in this work. spin stateg1e,|n) and||¢,T) for an initial state|fe,|n)

We use the nearest-neightsp®s* tight-binding descrip-  (or |le,Th)). In contrast, the Coulomb interaction requires
tion. The structure of a quantum dot is modeled as an aniorthat the spin of the electron should be the same between an
centered zinc-blende structufeDangling bonds on the sur- initial and a final state, as should the spin of the hole. Note
face are removed by explicitly shifting the energies of thethat we use atomic units for all the equations in this paper.
corresponding hybrids well above the highest calculated The Coulomb interactiod describes the scattering of the
electron states. This treatment imitates a dot whose surface édectron frometo e’ and the hole fronh to h’, whereas the
efficiently passivated with, for example, hydrogen or ligandexchange interactio describes the recombination of a pair
molecules. e,h atr and the recreation of a pagéf,h’ atr’. Since we do

We obtain an electron-hole basis $eh)|js,ms) by mul-  not include spin-orbit couplings, the spin states are not
tiplying the electron and hole eigenstates from the solution ofoupled to one another in the present Hamiltonian. There-
the tight-binding Hamiltonian and their spin states. The spafore, we will use only the spatial paféh) of the electron-
tial part|eh) is the product of an electron and a hole wavehole basis set from now on. The only constraint that the spin
function which is expressed as a linear combination of thestate gives to the Hamiltonian is the spin-selection ruli.in
tight-binding basis orbitals with amplitudes., andcy,. -, The matrix elements of the electron-hole interaction

Hamiltonian can be rewritten in terms of integrals over the
tight-binding basis orbitals by replacingfe(re) with
(re.rnlem=de(re) i (rn) = E, Ce;nCryin $nlTe) b (M), S 1Cen®n(re) andy(ry) with = cp.nén(ry) as done in Ref.
nn (1)  17.Asaresult, the Coulomb and exchange interaction matrix
elements are composed of integrals involving four basis or-
where the tight-binding orbital inder includes atom-site bitals where two orbitals come from the electron wave func-
indexi and orbital-type index. The spin partjs,ms) is an  tions and the other two come from the hole wave functions,
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w(Ny,Ny;iN3,N,) tive radius and the ionization energy. Especially,sanor-
bital is modeled as an exciteslorbital by promoting one
on (r’)q&nz(r’)(ﬁ;ﬁ (1), (1) valence electron to thgorbital of the next shell. The Slater
:f j d3r’ d3r— qr—r] R)|:’ " orbitals are an arbitrary choice in the sense that they are not
e(|r'=rl, —

explicitly related to the tight-binding parameters. However,
(6) as shown in Sec. Ill, even in small dots the electron-hole
Coulomb interaction isiot very sensitive to variations in the
Furthermore, we approximate the Coulomb and exchange ingrbital integrals.
teraction matrix elements by considering only terms having On-site Coulomb and exchange integrals, in which both
at most two distinct basis orbitals following Leung and orhitals are centered on the same atom, are calculated using a
Whaley!” This approximation is reasonable since the inte-\Monte Carlo method with importance sampling for the radial
grals involving more than two different orbitals are typically integrations. The uncertainty of the Monte Carlo results is
small compared to the kept integrafs'’ Integrals in Eq(6)  within 1%. The angular part is treated exactly by expansion
with ny=n,=n and nz=n,=n’ are Coulomb integrals in spherical harmonics. However, the Appendix shows that
wcou(N,N’), and those witm;=n,=n andn,=nz=n’ or  the integral values must be considered to be uncertain to
with ny=nz=n and n,=n,=n’" are exchange integrals about 20—30 % due to the arbitrariness of the orbital choice
wexe{N,N"). The two different kinds of exchange integrals and the effects of orthogonalization.
are identical if the tight-binding orbitals are real, as they are  Off-site exchangentegrals, where the two orbitals are
in this work. centered on two different atom sites, are negligible even for
To make our notations clear, note that the Coulomb anthearest-neighbor integrals. These off site exchange integrals
the exchangentegrals of the basis orbitals are the interac- decrease quickly as the distance between atom sites in-
tions between the tight-binding basis orbitals. By contrastcreases, due to the localization and orthogonality of the or-
the Coulomb and the exchangeeractions JandK are in-  pitals. In particular, we show in the Appendix that even
teractions between the electron and hole wave functions. |ﬂearest-neighbor exchange integrals are negligible as an ef-
fact, the Coulomb interaction has contributions from both thefect of orthogonalization between off-site hybrids.
Coulomb and exchange integrals as does the exchange inter- Regarding off-site  Coulomb integrals, Leung and
action. Whaley'’ estimate these integrals with the Ohno fornitila
Finally, we can describe the electron-hole matrix elementsnodified to include screening,
in terms of the Coulomb and exchange integrals,

1
e : @cou(MN") = wcouliy,i'y' )= ——————
<e h |J|eh>=—2’ C:r;nce;ncz;nrch’;n’wCouI(nan ) co cou E(|Ri_Ril|,R)
n,n

1
_ * * ! X l
'%, Ce’;nCe;n’Ch;nCh’;n'wexcl{nan ) \/wgoul(i i 7/)—2+|Ri_ Ri'|2

(©)

. . ) whereR; andR;, are atom site vectorsuocm(i v,ivy') is an
- 2 CerinCein’ ChynsChrin@exc{MN'), unscreened on-site Coulomb integral. The superscript 0 des-
nn ignates an unscreened quantity. For the case of binary com-
@) pounds,wOCou,(iy,iy’) is replaced by the average over the
two different atoms. The integrals are screened by the dielec-
tric constante(|R;—R;/|,R). This screening is the only
modification to the original Ohno formula. From here on, we
will refer to this modified Ohno formula in Eq49) simply as
the Ohno formula.

To test the validity of the Ohno formula in the case that
two orbitals are on close atom sites, we calculated the off-
site Coulomb integrals with a Monte Carlo metfbdithin
1% uncertainty and compared these values with those from
the Ohno formula. The Ohno formula severely underesti-

<e’h’|K|eh>:25J52 C:,;nChr;nC;;n,Ce;n/wcom(n,n,)
n,n’
* *
+28, 2 Chr.nChrinsCheny Cesn®exct{ NN
n,n’

* *
+25J52/ Ce’;nCh’:n’Ch;nCe;n’wexcr(n,n,)-
n.n

8

Note that Eq(8) corrects typographical errors in E@2) of TABLE_I. Method§ for the comput_ations _of th_e Coulomb and
Ref. 17. exchange integrals with respect to a site-to-site distance. NN stands

To evaluate these integrals, we need a real-space descrig! "earest neighbors.

tion of the tight-binding basis orbitals. To start, we follow

Martin et al!® and model the tight-binding orbitals with On site NN Beyond NN
atomic Slater orbital®’> The Slater orbitals are single- Coulomb Monte Carlo  Monte Carlo  Ohno formula
exponential functions with the exponent given by the Slateexchange Monte Carlo neglected neglected

rules® designed to yield a good approximation of the effec
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TABLE II. On-site unscreenedCoulomb integrals and exchange integrfdefined in the paragraph
following Eq. (6) in Sec. Il A], of the sp®s* basis set, in units of eV. Integrals for tis@® orbitals are
calculated based on the hybridized orbitals along the bonding directions defined in Ref. 17.

Element Integral (sp3.spd) (sp,sp) (sp3.,s*) (s*,s%)

Si Coulomb 11.88 8.49 2.87 2.27

Si exchange 11.88 0.78 0.024 2.27

In Coulomb 7.82 5.67 2.30 1.36

In exchange 7.82 0.47 0.024 1.36

As Coulomb 12.13 9.26 2.34 1.73

As exchange 12.13 0.47 0.028 1.73

Cd Coulomb 6.59 5.06 1.77 1.44

Cd exchange 6.59 0.74 0.017 1.44

Se Coulomb 12.85 9.70 2.97 2.38

Se exchange 12.85 0.95 0.030 2.38
mates the off-site integrals as the distance between two atom (EPUk+ A)?
sites becomes small. For example, the Coulomb integral be- eP(R) =1+ (e2™~1) dogt i T (1)
tween the bonding orbitalsee below from nearest neigh- [EgafR)+4]

bors in a Si quantum dot with radius 18.9 A given by the

Ohno formula is 0.58 eV, while the Monte Carlo calculation The Thomas-Fermi wave vectay is (4/m)Y%(37ng)"e,

gives 2.35 eV. For next-nearest neighbors, the Ohno formulwhere the valence electron density,=32/a3 in a
and the Monte Carlo calculation give 0.38 and 0.58 eV, rezinc-blende structure. The screening radigss determined
spectively, and for the third-nearest neighbors 0.33 and 0.36y the condition  sinlyry/qro=¢"°(R). The shift

ev. A=E,—Egax, where E, is the energy of the first pro-

The reason that we obtain a big discrepancy between thgounced peak in the bulk absorption spectrum. The energies

Ohno formula and the Monte Carlo calculation for the bond—Ebglk and Edgg R) are the single-particle gaps for bulk and a
ing orbital integrals is that the effective distance between th%gt with ragiusR respectively®' is the dielectric constant
bonding orbitals is smaller than the spacing between th¢,, ihe bulk mat’erial. ”

nearest-neighbor atom sites. In fact, the spatial overlap of the 1o unscreened on-site Coulomb and exchange integrals

bonding-orbitals is as big as that of the orbitals on the samg, \he s y3s* basis set are listed in Table 11, and the screened
atom site. In addition, the spatial dependence of the d|electr|8n_5ite Coulomb integrals are listed in Table Ill. The

function is not fully taken into account in the Ohno formula. g eened nearest-neighbor Coulomb integrals are listed in
This approximation becomes critical when the range Ofrapie v, The integrals witts and p orbitals are calculated

variations in the dielectric function is comparable to the ef-,qing the four hybridized orbitals along bonding directions
fective distance between orbitals. In that case, the effectlvgs defined in Ref. 17.

dielectric function cannot be represented é‘ﬂ’Ri_RjLR)_' As shown in Tables Il and lll, the screening effect is
Therefore, we use the Monte Carlo values for the on-site andiqificant even for on-site integrals. This is because the

the nearest-neighbor integrals and the Ohno formula for thgcreening radius, is 2—4 A and is similar to the effective

rest of off-site integrals. For clarity, we summarize the meth'radius of the tight-binding basis orbitals. The comparison of

ods for the computation of the Coulomb and exchange inte-
gra:l/s N Tablell. d dist d dent dielectric functi TABLE lIl. On-site screenedCoulomb integrals of thep® hy-

€ use a size- and distance-dependent dielectrC UNCUOR; i, o4 orpitals ands* orbital for the Si dot with radiu®=18.9
to screen the Coulomb and exchange interaction of thg | o \vith R=21.1 A and CdSe witR=21.1 A. in units of eV
electron-hole pair. The dielectric function, as a function ofq,o integrals are screened by the dielectric function in (@),

the separatiom of two particles and the radis of a quan-  \hich is a function of electron-hole separation and of the radius of
tum dot, is approximated by the Thomas-Fermi model Ofihe quantum dot. For comparison, the values in parentheses are the

2 .
Restd 4and the Penn model generalized for gquantumintegrals obtained from full screening with the dielectric constant in
dots****The separation dependence is given by the Thomashe long-distance limie{(R).

Fermi model, while the size dependence is given by the Penn
model. This way of combining the two models to describeElement (spl,spd) (spi.spp)  (sp.s*) (s*,s%)
the dielectric function is taken from Ref. 13,

Si 3.16(1.26 1.67(0.91) 0.32(0.31) 0.26(0.24)

e(R)qro/[sinhq(ro—r)+qr], r<ry In 1.26(0.80 0.77(0.589 0.24(0.24 0.17(0.14

e(r,R)= SOUR) r=r As 2.33(1.24 1.33(0.95 0.28(0.24 0.23(0.18

A 170 (10 cd 1.86(1.29 1.20(0.99 0.35(0.35 0.28(0.29

) Se 4.742.5) 2.76(1.89 0.58(0.589 0.48(0.46
whnere
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TABLE V. Nearest-neighboiscreenedCoulomb integrals of lowest spin-triplet excitonic state is smaller than the energy
the sp® hybridized orbitals for the Si dot with radiu=18.9 A, of the lowest spin-singlet excitonic state h(y-)h|K|eh>
InAs with R=21.1 A, and CdSe wittlR=21.1 A, in units of V.  within first-order perturbation theory. The energy difference
The integrals are screened by the dielectric function in &Q). between these excitonic states is #éxehange splittingFur-
The values given by the Ohno formula E@) are listed within  ther, we denote the difference between the lowest spin-triplet

parentheses. energy and the single-particle energy gap as Goalomb
. : : . shift, which is (eh|J|eh) in first-order perturbation theory.
Si bonding Si nonbonding The Coulomb shift is the main correction to the single-
Si bonding 2.350.59 0.95(0.53 particle gap since the Coulomb interaction is roughly one
Si nonbonding 0.9%0.53 0.55(0.53 order of magnitude larger than the exchange interaction.
This simple description becomes more complicated when
In bonding In nonbonding configuration interaction is i_nclud_ed due to the correlation of
several electron-hole configurations near the band edges.
As bonding 1.430.54 0.61(0.59 However, the main ideas of Coulomb shift and exchange
As nonbonding 0.810.53 0.42(0.53 splitting are still valid. Generally, as we include more
electron-hole configurations the Coulomb shift and the ex-
Cd bonding Cd nonbonding change splitting increase and converge.
2: 28:gg]r1gding 212:5‘182 éggggg C. Effective range of the exchange interaction

The long-range component of the exchange interaction
was investigated by Franceschetti and co-worRasgth the
the unscreened and screened on-site integrals shows that tpgeudopotential method. They show that there is a long-
effective screening of these integrals is generally about halfange component in the monopole-monopole exchange inter-
the long-range screening given BSP{(R). Further, based on action for several direct-gap semiconductor quantum dots.
this observation, we use half of the long-range dielectric conTo verify this long-range exchange interaction with the tight-
stant to screen the on-site exchange integrals that we did nbinding model, we follow their approach using a cutoff po-
calculate explicitly by the Monte Carlo methdd. tential. With the step functio®(r), we replace the Cou-
lomb potential with a cutoff potentia® (ro—|r'—r|)/|r’
—r| to obtain an exchange interaction that is a function of
the cutoff distance...

_To obtain the excitonic states near the band edge, we The unscreened exchange interaction with the cutoff po-
diagonalize the configuration-interaction matrix in f&)  tential for the electron-hole stateh) is

basis set given by the sum Hifj,g andH., defined by Egs.
(2)—(5). We include sufficient electron and hole states in the(eh|K°(rc)|eh>
configurations to achieve convergence of the first few exci-
tonic states to within a few meV. The typical number of :f fdgr,dgr
electron and hole states needed is about 10—15 each.
There are two types of Hamiltonians, depending on the ., .
total spin of the electron-hole pair. The Hamiltonian for a o Yo (TP v (1) ) Oro—|r'— 1))
spin singlet includes both the Coulomb and the exchange Ir'—r| ¢
interaction, whereas the Hamiltonian for a spin triplet has
only the Coulomb interaction. By diagonalizing these two * " 0
Hamiltonians separately, we obtain a set of spin-singlet and ~22 Ce;ny Chin; Chin,Cein,@Coufl N1:M2)

B. Lowest excitonic states

ni,n
spin-triplet excitonic states. The lowest excitonic state is the v

lowest triplet state due to the absence of the positive ex- N N

change interaction. However, since only spin-singlet states X®(r°_|R”1_ R“z|)+4n§12 Cein, Chin,Chin,Ceing
are optically allowed, theptical excitonic gap is the energy

of the lowest spin-singlet state. X e N1,N2), (14

This order of the states can be seen most easily by apply- . . .
y Y app }\//vhere the superscript O refers to the unscreened interaction.

ing first-order perturbation theory to the electron-hole pair’™ * ) . . , -~
made from the highest hole state and the lowest electrof! i@ with the discrete spatial character of the tight-binding
state, which yields model, we make an approximation that replaces the true cut-
off potential with the one based on the site indices
Eqinge= Ee— En+ (eh|J[eh) +(eh/K|eh). (12) ®(rc—|Rnl—Rn2|). If there is a long-range exchange inter-
action, it would stem from the first term of E{L4) which
Etipler= Ee— En+(ehlJ|eh). (13  includes the Coulomb integrals. The second term, the sum of
exchange integrals, has only on-site integrals, since all off-
The sign of(eh|J|eh) is always negative and the sign of site exchange integrals are negligible as shown in the Appen-
(eh|K|eh) is always positive. Therefore, the energy of thedix.
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To understand the physical origin of the long-range ex- & 1
change, we expand the exchange interac8nin a multi- =
pole expansion, %
R)%A(R)) S
(et~ 3, TN Een o g2 < 08
= |R'—R-| J Py
I i j =
LY
+ on-site interaction. (15 <
Here the “exchange charge densitg(R;) ., at atom siteR; % 0.6 -
is a monopole moment defined as S
B R=299 A —&—
an
. — . * = —24. —h—
Q(Rl)eh—j dQie(r) gy (1) % 04 g,’;%#i % -
¥o) R=13.6 A —e—
=3 e (R)Ch, (R) [ & d,0047(1) 2 R—9.3 A —o—
44 | E R=7.5A ——
S 02 ' ! !
=> Ce;y(Ri)Cﬁ;y’(Ri)g'yy’ 0 0.2 04 0.6 0.8 1
vy Scaling factor of onsite integrals, f
:2 Ce;y(Ri)Cﬁ;y(Ri)a (16) FIG. 1. Coulon_1b _energYeh|J(f)|eh) as a function (_)f scaling
Y factorf of the on-site integrals. The Coulomb energy with the high-

. . . . est hole wave function and the lowest electron wave fundtdm
where Jd{; is defined to integrate only the orbitals on the is shown for various radii of Si spherical quantum dots, with the

atom_ _SiteRi . For clarity, the tight-bi_ndi_ng orbital inden is on-site integrals scaled by the factbrThat is w—fw from the
specifically replaced by the atom-site indetor R;) and the  \a1yes in Tables Il and IIl. The off-site integrals are only indirectly
orbital-type indexy. Note that the final expression for gcajed through the on-site integrals in the Ohno formula, ()g.
q(Ri)en has a sum over only one orbital-type index due toThe Coulomb energy is normalized by its value at1. As the dot

the assumed orthogonality of the tight-binding basis orbitalssize increases, the Coulomb energy becomes significantly less sen-
The distribution of the exchange charge density determinesitive to variations in the on-site integrals.

the long-range character of the exchange interaction. If the

exchange charge density is zero, that is, the electron and holletegrals are calculated by replacing the unscreened on-site
states are locallyon-site orthogonal, there is no exchange integrals with the scaled ones in the Ohno formula, @g.
interaction beyond the on-site contribution according to EqNote that the offsite Coulomb integrals are not directly
(15). In contrast, if the exchange charge density is nonzergcaled by the same factor as the on-site integrals, but change
due to the local nonorthogonality of the electron and holeonly indirectly through the scaled unscreened on-site inte-
wave functions from site to site, a long-range exchange ingrals in the Ohno formula. Therefore, this scheme is in effect
teraction is caused by the monopole-monopole interaction. changing atomistic details of the basis orbitals.

Figure 1 shows the variation of the Coulomb interaction
between the highest hole state and the lowest electron state
with the scaling of the on-site Coulomb and exchange inte-

A. Real-space description of basis orbitals grals. It shows that as the dot size increases, the sensitivity of

The empirical tight-binding model has an inherent diffi- the Coulomb .interactiorll to the on-site integrals decreases.

culty concerning the tight-binding basis orbitals. The real-FOr €xample, if the on-site integrals are reduced by 50%, the

space description of the basis orbitals is not provided sincgeduction in the Coulomb energy varies from 20% in the
the tight-binding matrix elements are determined by fitiing toSMallest shown dot to only 5% at 30-A radius. Since the
the bulk band structure. However, to include electron-hol&contribution from the on-site integrals decreases as the dot
correlations the electron-hole Coulomb and exchange matrigiZ€ increases, the specific model of the real-space functions
elements need to be calculated, which requires an explicfr the basis orbitals is less critical for larger dots.

choice of real-space basis orbitals. Since this choice is W€ can explain this effect by a closer look at the Ohno

largely arbitrary in the sense that there is no way to connedermula for the off-site integrals. In the limit of large dis-
the chosen basis orbitals to the empirically chosen tight;[ances between two atom sites, the off-site integrals become

binding parameters, we need to test to what degree thi8dependent of the on-site integral values. The unscreened
choice of orbitals affects the electron-hole Coulomb interac®ffsite integral in the limit of large distance between the two

Ill. RESULTS

tion. atom sites is

We perform this test by scaling the onsite Coulomb and 1 1
exchange integrals from the values listed in Tables Il and IlI. o (ivi'y')~ _ .
This scaling scheme is an indirect way of testing the sensi- " IR—Ri/| 20,(i7iy)?R—R/|?
tivity on the real-space description. New off-site Coulomb a7
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4.5 T T T T TABLE V. Effective masses of Si with the tight-binding param-
photoluminescence data, —@— eters of Voglet al. (Ref. 24 and our parameters in Table VI, in
4 - with our parameters — 93— _| units of the free-electron mass,; andm,; denote the longitudinal
with parameters of Vogl et al. —7— and transverse effective masses at the lowest conduction energy
nearX. m,; andm, are the effective masseslabf the two highest
= 3.5 &£ 0.6 T 11 valence bands with a light mass and a heavy mass, respectively.
2, % The hole masses are averages of the three directions given in Ref.
= 3 o 0.4 1 38. The cyclotron resonance data are taken from Ref. 36.
5 :
g 25 g 02 - 7] Mg Me¢ my, Myn
S . .
E= © 0 1 Vogl et al. 0.73 1.61 0.18 0.39
5 2 L 0 10 20 30 _| Our parameters 0.91 0.30 0.15 0.55
Dot radius Cyclotron resonance 0.92 0.19 0.15 0.54
1.5 F Si
masses since the parameters are determined by fitting to the
1 l energies of only thd" and X points in the bulk band struc-
5 10 15 20 25 30 ture. The resulting effective masses are listed in Table V.

Dot radius (A) The comparison with the experimental values listed in Table
V shows that their parameters fail to produce good effective

FIG. 2. Excitonic gap of Si spherical quantum dots as a functionasses especially for the transverse effective masses at the
of the dot radius. The photoluminescence data are taken from Refowest conduction energy next
6. The other two sets of excitonic gaps are calculated with the TO improve the effective masses, we replace the param-
tight-binding parameters of Vogt al. (Ref. 24 and our parameters eter set of Voget al?* with our parameter set listed in Table
in Table VI, respectively. Our parameters give significantly betterVIl. Our parameter set is optimized with a genetic algorithm
agreement with experiment than the parameters of #ogl. (Ref. by fitting the effective masses as well as the energies at high
24). This good agreement is due to the improved effective massesymmetry points of the bulk band structifeThe resulting
obtained with our optimized parameters. Inset: Coulomb shift vereffective masses are listed in Table V. One important note is
sus the dot radius. The Coulomb shift does not vary much betweethat we use two different parameter sets to separately opti-
the parameter sets. mize the electron and hole single-particle states. Good effec-
tive masses are impossible to obtain simultaneously for both
Therefore, the off-site integrals become a point-charge interthe conduction and the valence band of Si with one set of
action, making the atomic-scale details of the basis orbitalparameters within the nearest-neighisg’s* tight-binding
irrelevant in this limit. model (see Ref. 38 Consequently, the electron and hole
The significance of Fig. 1 is that it quantifies this qualita- single-particle wave functions, being generated from differ-
tive explanation for decreasing sensitivity with increasingent Hamiltonians, are not orthogonal. However, even though
dot sizes. For example, with a targeted 10% accuracy in ththe orthogonality has not been enforced, the overlaps be-
Coulomb interaction, only a 50% accuracy for the on-sitetween the different electron and hole wave functions are at
integrals is needed for dots of radius larger th@m3, while ~ most 0.001. Thus, we can use these two different parameter
for dots of 10-A radius only a 20% error can be afforded insets to verify how important a role the effective masses play
the on-site integrals. The discussion in the Appendix show# the electronic properties of the quantum dots.
that the dominant integrals must be considered uncertain to Figure 2 shows the improved excitonic gaps with our pa-
about 20—30 %. The tight-binding description of correlationrameter set. To further examine the effect of changing pa-
effects can therefore be considered reliable for dots with ra-
dii larger than 15-20 A . TABLE VI. Tight-binding parameters for electron and hole
states of Si in units of eV. The notatidiRef. 39 of Vogl et al.
(Ref. 29 is used.

B. Excitonic states near the band edge

We apply the tight-binding configuration-interaction E(s) E(p) E(s") V(s:9)
scheme described in Sec. Il A to Si, InAs, and CdSe quan- gjectron —3.060 1.675 4756 —8.114
tum dots in order to calculate the lowest excitonic states nearyq|q —4.777 1.674 8697 —8.465
the band edge. We have included sufficient electron and h°|evog| ot al. —4.200 1.715 6.685 —8.300

states to converge the energies to within a few meV.
For Si, we first used the tight-binding parameters of Vogl

: . : L . V(X, V(X, V(s, V(s*,
et al?* to determine the single-particle Hamiltonian matrix (x.x) (x.y) (s.p) (s%.p)

elements. As shown in Fig. 2, the excitonic gap using their Electron 1.675 21.838 8.236 5.994
tight-binding parameters gives a discrepancy as large as 0.3Hole 1.674 4.919 5.724 6.133
eV compared with experimental d&&he tight-binding pa- Vogl et al. 1.715 4575 5.729 5.375

|24

rameters of Voglet al=" necessarily give poor effective
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TABLE VII. Tight-binding parameters for InAs in units of eV. 2.4 I T T I T
The notationRef. 39 of Vogl et al. (Ref. 24 is used. Indicea and STM —o—
c refer to anion and cation, respectively. PLE ——
2.2 - spd®s* TB single-particle —%— —
E(s.a) E(p.a) E(s.c) E(p.c) PP single-particle —8—
_ _ PP exciton —8—
8.419 0.096 2.244 0.096 9 |- present single-particle —o— _|
\ present exciton —e—
E(s*,a) E(s*,c) V(s,s) V(X,X) V(X,y)

12.147 7.485 —4.267 1.427 5.356 18 |-

V(sa,pc) V(sc,pa) V(s*a,pc) V(s*c,pa)

16 -
4.409 5.326 5.846 4.594

rameters, we can compare the electron-hole interaction ener:
gies with our parameters to those energies obtained with the
parameters of Vogkt al?* In particular, we compare the 1.9
Coulomb shift, the energy difference between the single- :
particle gap, and the lowest triplet excitonic energy. As
shown in the inset in Fig. 2, the Coulomb shifts from the two 1
parameter sets are very similar. This insensitivity indicates
that the better description of the excitonic gap with our pa-
rameter set is mainly due to the better single-particle eigen- 0.8
values and not from a change in the Coulomb matrix ele- )
ments.

To study direct-gap semiconductors, we choose InAs and 0.6 1 I I 1 I
CdSe spherical quantum dots. The InAs tight-binding param- 10 15 20 25 30 35 40

3.2 I I I I I Dot radius (A)
STM —&—
3 PLE —— _| FIG. 4. Excitonic gap and single-particle gap of InAs spherical
present single-particle —o— quantum dots as a function of the dot radius. The measured PLE
present exciton —e— gaps are taken from Ref. 4. The STM gaps are obtained from the
— 28} PP single-particle —8— — tunneling spectra of Milloet al. (Refs. 10 and 37 The pseudo-
> PP exciton —— potential gapsPP are from Ref. 14. Thesp®d®s* tight-binding
: 2.6 (TB) single-particle gaps are plotted using the fitting parameters of
cbso Allan et al. (Ref. 19. The inclusion ofd orbitals and spin-orbit
o coupling raises the gaps as much as 0.2 eV in comparison with our
20 24 - sp’s* model. It is not understood why the experimental curve is so
g much flatter than the theoretical curves.
Mool
eters are generated using the genetic algorithm apprBach,
2 - fitting band gaps and effective massed’aas well as pos-
sible, but neglecting spin-orbit coupling. These parameters
1.8 ] ] ] ] ] are listed in Table VII. The resulting effective masses with

10 15 20 25 30 35 40 these parameters arm,=0.024, m,=0.025, andm,,
D odi i =0.405, wheram, is the effective mass of the lowest con-
ot radius (A) duction band at’, andm,, andm,, are defined as in Table

FIG. 3. Excitonic gap and single-particle gap of CdSe spherica\‘é‘ ]:I_Zg t_llghht.'bmdmg param.Eters f(()jr %ds‘? are taken from"
quantum dots as a function of the dot radius. The photolumines- et. 40. Their parameters give good eflective masses as we

cence excitatiofPLE) gaps are taken from Ref. 3. The scanning as good energies in high symmetry points of the bulk mate-

tunneling spectroscop§STM) gaps are obtained from recent STM "al- _ o
tunnelingd1/dV spectra(Ref. 7 and 3Y. The excitonic gaps of the Figures 3 and 4 show the resulting excitonic gaps versus

pseudopotentiaPP calculationsRef. 13 are about 0.15 eV lower the dot radius. For CdSe quantum dots, our excitonic gaps
than the PLE gaps. Our excitonic gaps are in good agreement witd€ in good agreement with optical gaps measured by photo-
the PLE gaps. The small difference between our single-particle gapsiminescence excitatidn(PLE). We also plot the energy
and the STM quasiparticle gaps indicates that the quasiparticle p@aps measured by scanning tunneling spectros¢8gm)
larization energy is small for these dots. on a single quantum détThe STM gaps are obtained from
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0.1 OlT—T T T 71717 T 1
s-like electron and s-like hole —@—
p-like electron and s-like hole —&—

0.08 0.08 |_p-like electron and p-like hole —y— _|

) : s-like electron and p-like hole —&—

CdSe
0.06 0.06 R=21.1A -

0.04 - - 0.04

0.02 0.02

AAAAAAA

Unscreened exchange interaction, K%(r.) (eV)
Unscreened exchange interaction, K%(r.) (eV)

0 0
0 b 10 15 20 25 30 35 0 5 10 15 20 25 30 35 40 45
Cutoff distance, r, (A) Cutoff distance, r, (A)
FIG. 5. Unscreened exchange energy, @4), as a function of FIG. 6. Unscreened exchange energy, @d), as a function of

the cutoff distance, with the Coulomb potential replaced by a cutoffthe cutoff distance, with the Coulomb potential replaced by a cutoff
potential for various radii of Si spherical quantum dots. The enerpotential for the CdSe spherical quantum dot of radtus21.1 A .

gies are for the highest hole wave function and the lowest electroithe unscreened exchange energy of four different types of electron-
wave function. The curves show that there is an oscillation regiorhole configurations is shown. The electron and hole configurations
for small cutoff distances followed by a saturation region beyond 15re labeled by the dominant angular-momentum component of their
A. This saturation suggests that the effective range of the exchangenvelope functiongRef. 42. Except for thes-like electron and
interaction in Si quantum dots is around 15 A regardless of the dop-like hole configuration, the variation of the exchange interaction
radius. extends over the whole dot.

) i _ C. Effective range of the exchange interaction
the difference between the first prominent peaks of the tun- . . .
One of the interesting issues related to the exchange in-

neling dI/dV spectra with positive and negative bias volt- . e .
9 b b g tseractlon of the electron-hole pair is its effective range. Mo-

ively. Sin he STM experimen li i X
ages, respectively. Since the STM experiment applies bias"* " by the work of Franceschetti al,?® we calculate the
voltages to add or subtract electrons from the quantum dots

this experiment measures quasiparticle energies. For a ﬁniUnSCTeened exchange_ Interaction deflne_d in @) as a
S S Co ﬁnctlon of the cutoff distance, to determine the effective

syste_m, _these quasiparticle energies |_nc|ude (“’“5'“"_9 range of the exchange interaction. As the cutoff distance in-
polarization energy between the particle and the imagg eaqes for a given electron-hole configuration, the exchange
charges on the surface. The polarization energy is roughlyyieraction eventually saturates to a final value. If this satu-
2(1lequ—1len)/R. The small difference between our single- ration occurs over just a few atomic sites, we call it short
particle gaps and the STM gaps therefore suggests that thgnged, while long ranged exchange implies that the satura-
dielectric constant,,, of the surrounding material is rela- tion occurs over distances comparable to the dot size. For Si,
tively close to the dielectric constamt, in the dots. The Fig. 5 shows that for the configuration with the highest hole
results of pseudopotential calculatiGhsre also plotted in  state and the lowest electron state there is a region of strong
the figures for comparison. oscillations below a cutoff distance 0o61A . The strong

For InAs quantum dots, there is a significant discrepancyscillations are due to the phase difference between the elec-
as large as 0.2 eV between @mps* tight-binding excitonic  tron and hole states stemming from their different locations
gaps and PLE gagsEight-band effective-mass calculatibns in k space for an indirect-gap material. The oscillations die
and pseudopotential calculatidhsalso fail to describe the out beyond a cutoff distance of about 15 A, suggesting that
experimental data, especially the lack of significant curvathe effective range of the exchange interaction in Si quantum
ture. The recent results of Allagt al!® show that the inclu- dots is around 15 A, regardless of dot size. This short-ranged
sion of d orbitals and spin-orbit interaction raises thg’s* and oscillatory behavior is universal within the configura-
results by almost the needed 0.2 eV. However, their resultsons near the band edges.
do not include the Coulomb shift and should therefore be For the direct-gap InAs and CdSe quantum dots, we cal-
shifted down by 200—-50 meV as the dot size increases. Resulate the unscreened exchange interaction for several of the
cent STM measurements are also plotted in Fig. 4. It is conlowest electron-hole configurations. We label the electron
sistent with the larger dielectric constant of InAs that theand hole states by the dominant angular-momentum charac-
STM results in this case are well above the other curves byer of their “envelope functions.” Here, the envelope func-
an amount similar to the Coulomb shift. tion is defined to be the coefficient of the dominant basis
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(a) s-like electron and s-like hole

I 1 I I | 1 I 1
0.1 |-#like electron and s-like hole —@— _
= | p-like electron and s-like hole —o—
p-like electron and p-like hole —y—
s-like electron and p-like hole —A—
InAs

R=21.1A

0.08

0.06

=8-227% i 2 3

0.04 T35 -3-10

(b) p-like electron and s-like hole
0.02

Unscreened exchange interaction, K%(r.) (eV)

0 5 10 15 20 25 30 35 40 45
Cutoff distance, 7. (A)

FIG. 7. Unscreened exchange energy, @4), as a function of
the cutoff distance, with the Coulomb potential replaced by a cutoff
potential for the InAs spherical quantum dot of radiRis 21.1 A . 3
The unscreened exchange energy of four different types of electron- = 15 T3 -1 0
hole configurations is shown. The electron and hole configurations
are labeled by the dominant angular-momentum component of their .
envelope function¢Ref. 4. Long-range exchange interactions ap- ~ FIG. 8. Exchange charge densif{R)., from Eq.(16) of (a) the

pear for thes-like hole with both thes-like electron and the-like  slike electron ands-like hole configuration, and ofb) the p-like
electron. electron ands-like hole configuration for the CdSe quantum dot

with radius 21.1 A. The exchange charge density is plotted in a

orbital. Thes andp basis orbitals are typically dominant in plane thrc_)ugh the center of the dot. The unit of the horizontal axes
the electron and hole states, respectively. In our calculationd the lattice constant of CdSe. The plots show that the orthogonal-
ap-like hole*42is the highest hole state and siike hole is |t¥ betwegn the fele(;tron and hple Wa\{e fqnctlons is gllobal not local,
the second-highest hole state. This order is opposite that e#lth ap—llk_e o_scnlatlon or a &-like oscillation, res_pectwely. These
pseudopotential theof}?. However, it is possible that the global osqllr_ﬂtlons of the exchange charge de_nsn_y lead to the long-
spin-orbit coupling, which is not included in this work, can range variation of the exchange interactions in Fig. 6.
affect the order of these hole states.

As shown in Figs. 6 and 7, direct-gap quantum dots showorthogonal, which is enforced in effective mass theory due to
a qualitatively different behavior of the exchange interactionthe orthogonality between the Bloch functions of the valence
with respect to the cutoff distance from the behavior for Si.and conduction bands, or globally orthogonal, which is pos-
First, since there is no overall phase difference between thgible in the atomistic pseudopotential and tight-binding theo-
electron and hole states, there is no region with oscillationsies. If the former is true, the exchange charge density would
for small cutoff distances. Second, the exchange interactiohe zero at each site and there would be no monopole-
for a particular electron-hole pair can grow continuously upmonopole interaction. That would make the exchange inter-
to the dot radius. The figures show that the exchange interaction of the electron-hole pair short ranged. By contrast,
action of direct-gap materials is generally long ranged, exwithout on-site orthogonality the exchange charge density
tending over the whole dot. has nonzero values, causing monopole-monopole interac-

To understand why some electron-hole configurationgions that lead to significant long-range exchange interac-
have a slowly varying long-range exchange interaction, weions.
analyze the long-range component by a multipole expansion To show that the character of the orthogonality of the
as written in Eqg.(15). The leading term of the long-range electron-hole configuration determines the long-range behav-
exchange interaction is the monopole-monopole interactiorior of the exchange interaction, we plot in Fig. 8 the ex-
Therefore, the distribution of the monopole moment, or thechange charge density of two electron-hole configurations in
“exchange charge density” defined in E(L6), determines CdSe that have a long-range exchange interaction in Fig. 6.
the range of the long-range exchange interaction. Figure 8 shows the exchange charge densitiapthe s-like

The exchange charge density of an electron-hole pair haalectron ands-like hole configuration, and ofb) the p-like
zero total charge due to the orthogonality between the eleclectron ands-like hole configuration in a plane going
tron and hole wave functions. There are two ways to satisfghrough the center of the dot for CdSe with radius 20.1 A.
this condition: the electron and hole states are either locallfrhis figure shows that there is no local orthogonality be-

2 =
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TABLE VIII. On-site unscreened Coulomb and exchange inte- TABLE IX. Nearest-neighbor unscreened Coulomb and ex-
grals with Lovdin orthogonalized Gaussian-type hybri@-GTO); change integrals with Twdin orthogonalized Gaussian-type hy-
nonorthogonal Gaussian-type hybrid¢O-GTO); and nonorthogo-  brids (O-GTO); nonorthogonal Gaussian-type hybrid¢O-GTO);
nal Slater orbitalSNO-SO. The GTO integrals were calculated and nonorthogonal Slater orbital®lO-SO. The GTO integrals
with the moLPRoO (Ref. 43 package using the atomic pseudopoten-were calculated with thevoLpPro (Ref. 43 package using the
tials from the Los Alamos groupRef. 44. The SO integrals are pseudopotentials from the Los Alamos groiief. 44 for a two-
from our Monte Carlo calculations. The hybridsand b are the  atom molecule with a bond length given by the bulk value. The SO
ones defined asp: andsp; in Ref. 17. integrals are from our Monte Carlo calculations. The indBeand
N designate the bonding and nonbonday hybrids, respectively.

O-GTO NO-GTO NO-SO

o - Si O-GTO NO-GTO NO-SO
w2, (a,a) of Si 11.95 11.65 11.91
©24,(a,b) of Si 9.44 8.85 9.00 ©gou(B.B) 8.04 10.01 10.60
w{ab) of Si 1.06 0.91 0.73 ©ou(B,N) 5.96 6.65 6.78
©24,(a,a) of In 7.90 8.52 7.82 @gou(N,N) 4.64 4.67 4.89
wZou(ab) of In 6.73 6.54 5.67 ©%ci(B.B) 0.27 6.20
wdcfa,b) of In 0.77 0.67 0.47 0 B.N) 0.11 043
0Zo(@,a) of As 12.99 12,57 12.13 0 N,N) 0.04 0.32
w2.,(a,b) of As 10.00 9.54 9.26
wdc{a,b) of As 1.08 0.99 0.47 InAs 0-GTO NO-GTO NO-SO
0
@cou(@,b) 0 : : : ®2,,(B,N) 5.50 6.39 6.59
ngd{a,b) of Cd 0.70 0.61 0.74 8. (N.B) 502 542 543
RN MR BR S dmw s o e
w(oioul ) : : ' ngcf(BvB) 0.28 4.90
a)exch(a,b) of Se 1.15 1.08 0.90 wO t{B N) 0.16 0.59
€excl ’ : )
d{N,B) 0.04 0.18
. 2 N,N 0.04 0.29
tween the electron and hole wave functions. The orthogonal—we“r( )
ity of the electron and hole wave functions are instead satis-
fied by ap-like global oscillation[case(a)] or a 2s-like case o-610 No-éTo NO-so
global oscillation[case(b)]. These shapes of the global os- 2,,(B,B) 6.94 8.77 9.06
cillations explain why the exchange interaction has growing ,2_ (B B) 6.89 8.66 8.74
and decaying regions over global distances as shown in Figs.wgoul(B’N) 5.66 6.62 6.84
6 and 7. Those electron-hole configurations that do not havewcé (N,B) 4.85 516 5.01
. . ou ' ' ' '
a long-range exchange interaction have a much smaller X-,0_ (N,N) 4.06 411 4.13

change charge density than those configurations that do have g
: ; 0 {B.B) 0.27 4.35
the long-range exchange interaction. These results show thaf”o
local nonorthogonality of the electron and hole wave func- wSXC*{B’N) 0.19 0.69
tions leads to a strong monopole-monopole interaction, andngc*{N’B) 0.03 0.13
that the global variations in the exchange interaction depend“’excf{N’N) 0.04 0.24
on the particular way in which the exchange charge density
globally sums to zero for a specific electron-hole configura-
tion. For excitonic gaps, we obtained good agreement with re-
cent experiments for both Si and CdSe quantum dots. How-
ever, the gaps for InAs quantum dots agree less well with
experiment. Especially for Si, we improved the agreement
We use tight-binding wave functions to calculate With experimental data by optimizing the tight-binding pa-
electron-hole states near the band edge for both direct-gai@meters to give better effective masses compared to the pa-
and indirect-gap quantum dots. First, we examined to whatameters of Voget al?* We also showed that, in contrast to
degree the model of the real-space atomic basis orbitals afhe electron and hole single-particle energies, the electron-
fects the electron-hole Coulomb interaction. We find that thehole Coulomb interaction is not very sensitive to the choice
sensitivity of the Coulomb interaction to the real-space deof parameters.
scription of the basis orbitals decreases quickly as the dot Finally, we studied the effective range of the exchange
size increases. Our results shows that tight-binding descripnateraction. Replacing the Coulomb potential with a cutoff
tions of electron-hole Coulomb interactions in quantum dotgpotential, we explored the dependence of the exchange inter-
should be reliable for dots larger than about 15—20-A radiusction on the cutoff radius. For direct-gap materials, the lack
even for simple models for the basis orbitals. More detailecf on-site orthogonality causes the exchange interaction to be
calculations of basis orbitals are required for smaller dots. long ranged. For an indirect material Si, the calculations

IV. SUMMARY
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show that the exchange interaction is oscillatory and has aes for two reasonable choices of orbitals; and what is the

range of about 15 A . effect of using nonorthogonal bond hybrids rather than prop-
erly orthogonalized hybrids? The underlying assumption in
ACKNOWLEDGMENTS the tight-binding approach is that the orbitals on different

sites are orthogonal.

Table VIII shows a comparison between orthogonal GTO
éP-GTO), nonorthogonal GTANO-GTO), and nonorthogo-
al SO (NO-SO for on-site Coulomb and exchange inte-

We thank Jeongnim Kim for many helpful discussions.
This work was supported by NSErant No. PHY-9722127
and by the NCSA and OSC supercomputer centers. Part >
the work described in this paper was carried out by the Je ) .
Propulsion LaboratorydPL), California Institute of Technol-  9rais. Typically, the NO-SO and NO-GTO Coulomb inte-
ogy under a contract with the National Aeronautics anddra!s differ by 10%, whereas th@n order of magnitude
Space Administration. The supercomputer used in this invessMalled exchange integrals differ by 20-50%. Orthogonal-
tigation at JPL was provided by funding from the NASA ization generally gives an additional 10% change. The use of

Offices of Earth Science, Aeronautics, and Space Science.nonorthogonal Slater orbitals can therefore be estimated to
imply 20% overall uncertainty in the on-site integrals.

A similar comparison for nearest-neighbor integrals is
shown in Table IX. Here the difference between NO-GTO

Since we use empirical tight-binding wave functions, theand NO-SO is less than 10%, but orthogonalization can yield
choice of specific atomistic orbitals for matrix-element cal-a lowering of up to 30% in the Coulomb integrals between
culations is largely arbitrary. The results presented in théonding orbitals. The most dramatic effect, however, is that
main text were based on Coulomb and exchange integrakthe exchange integrals essentially become negligible when
calculated with Slater's atomic orbitals, obtained from Slat-orthogonalized hybrids are used. Notably, nonorthogonal hy-
er's rules?® In addition, we neglected all off-site exchange brids cannot be used for the bonding-bonding off-site ex-
integrals. An alternative for unscreened integrals is to usehange integrals, since these integrals are quite large without
one of the standard quantum chemistry Gaussian-based comrthogonalization but are reduced by a factor of 20—30 after
mercial packages. However, screened matrix elements canfthogonalization.
not be obtained in this way, since there is no way in these In conclusion, the dominant Coulomb integrals obtained
codes to include a spatially varying screening function. from the Slater orbitals can be considered accurate only to

Although we cannot obtain screened integrals, two impor20—30 % due to the sensitivity to different functional repre-
tant questions can be answered by a comparison betweaentations and to effects of orthogonalization. Further, proper
integrals from Gaussian-type orbitdlSTO) and Slater's or- orthogonalization reveals that all offsite exchange integrals
bitals (SO): what is the typical variation in the integral val- can be neglected, including those between bonding hybrids.
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