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Electron-hole correlations in semiconductor quantum dots with tight-binding wave functions
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The electron-hole states of semiconductor quantum dots are investigated within the framework of empirical
tight-binding descriptions for Si, as an example of an indirect-gap material, and InAs and CdSe as examples of
typical III-V and II-VI direct-gap materials. We significantly improve the energies of the single-particle states
by optimizing tight-binding parameters to give the best effective masses. As a result, the calculated excitonic
gaps agree within 5% error with recent photoluminescence data for Si and CdSe but they agree less well for
InAs. The electron-hole Coulomb interaction is insensitive to different ways of optimizing the tight-binding
parameters. However, it is sensitive to the choice of atomic orbitals; this sensitivity decreases with increasing
dot size. Quantitatively, tight-binding treatments of Coulomb interactions are reliable for dots with radii larger
than 15–20 Å . Further, the effective range of the electron-hole exchange interaction is investigated in detail.
In quantum dots of the direct-gap materials InAs and CdSe, the exchange interaction can be long ranged,
extending over the whole dot when there is no local~onsite! orthogonality between the electron and hole wave
functions. By contrast, for Si quantum dots the extra phase factor due to the indirect gap effectively limits the
range to about 15 Å, independent of the dot size.
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I. INTRODUCTION

The optical and electronic properties of semiconduc
quantum dots have been studied both experimentally1–10 and
theoretically11–20 for a wide range of sizes, shapes, and m
terials. This work is stimulated both by a fundamental int
est in quantum-confined systems and by the applicability
quantum dots in nanoscale devices. Experimentally, sig
cant recent improvements in both growth techniques21 and
single-dot spectroscopy22 have enabled detailed studies
the energy spectra of electron-hole complexes~excitons,
biexcitons, trions, etc.!. Theoretically, the most sophisticate
theoretical approaches are multiband effective-m
theory,4,11 empirical pseudopotential theory,12–14 tight-
binding methods,15–19 and quasiparticle calculations20 with
the GW approximation.23

Quantum dots are intermediate between molecular
bulk systems. This is reflected in the different theoreti
approaches; effective-mass theory treats the dot as a con
bulk system whereas pseudopotential theory aims at a
tailed atomistic description of the wave functions. Tigh
binding theory compromises between these two approa
by including an atomistic description but limiting the loc
degrees of freedom to a small basis set. Therefore, the c
putationally less costly tight-binding method can be used
study large quantum dots, up to 25 nm size, without seve
restricting atomic-scale variations in the wave functio
However, since the tight-binding matrix elements are emp
cally optimized without introducing any specific atomic o
bitals, there is no direct way to calculate other matrix e
ments such as Coulomb and exchange matrix eleme
Therefore, calculations involving electron-hole interactio
0163-1829/2001/63~19!/195318~13!/$20.00 63 1953
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require a selection of specific atomic orbitals that cannot
explicitly related to the tight-binding parameters. Hence
key question that we address in this work is how sensit
the calculated electron-hole properties are to specific cho
of orbitals used to calculate the Coulomb matrix element

We study spherical semiconductor crystallites cente
around an anion atom in a zinc-blende structure. We cho
Si, InAs, and CdSe as examples of an indirect-gap mate
and typical III-V and II-VI direct-gap materials, respectivel
Experimentally, the low-lying exciton energies have be
measured for dots up to 20-Å radius in Si,6 and up to 40-Å
radius in InAs~Ref. 4! and CdSe.3

We use the empirical nearest-neighborsp3s* tight-
binding model24 for the electron and hole single-partic
wave functions. In order to calculate electron-hole Coulo
and exchange matrix elements, we describe the real-s
atomic basis orbitalss,px ,py ,pz , ands* with Slater orbitals
as a starting point. Both the Coulomb and exchange inte
tion are screened by a dielectric function depending on b
dot size and the distance between the particles. The ene
of the electron-hole states are obtained by diagonalizing
configuration-interaction matrix generated by the lowe
lying electron and hole states with typical convergence o
few meV. We examine the sensitivity of the electron-ho
energies on both the choices of atomic basis orbitals and
tight-binding parameters.

Within the tight-binding model, the single-particle Hami
tonian can be improved by either increasing the numbe
basis orbitals or including interactions between more dist
atoms. Ans* orbital was first introduced by Voglet al.24 to
improve the conduction bands near theX point. To some
©2001 The American Physical Society18-1
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degree, ans* orbital can mimic band-structure effects th
should be attributed tod bands. However, it is likely thatd
orbitals need to be added in some materials.19 An alternative
is to add next-nearest-neighbor interactions15 within the
sp3s* model, which could improve the band structure wit
out increasing the computational cost of generating Coulo
matrix elements, since the number of orbitals is unchang
Nevertheless, for the topics we discuss in this work
nearest-neighborsp3s* model is a good starting point. W
here focus on how the single-particle energies can be
proved by tight-binding parameters specifically optimized
give good effective masses, and on how single-particle w
functions from different parameter sets affect the tw
particle Coulomb interactions.

One interesting issue concerning quantum dots is
range of the electron-hole exchange interaction. Fran
schettiet al.25 show that due to the lack of local orthogona
ity between electron and hole wave functions the excha
interaction can extend over the whole dot. We investigate
detail the effective range of the exchange interaction by
plying a cutoff range to the Coulomb potential. The origin
the characteristic range of the exchange interaction is
vealed by the analysis of the ‘‘exchange charge density’
the electron-hole pair.

II. THEORY

A. Hamiltonian of an electron-hole pair

The effective Hamiltonian of an electron-hole pair co
tains a single-particle term with the kinetic and potential e
ergies of an electron and a hole, and a two-particle term w
the electron-hole Coulomb interaction.26 The single-particle
term is implicitly defined through the empirical tight-bindin
matrix elements. The Coulomb interaction between the e
tron and hole is screened by a dielectric functione(ur 8
2r u,R) that is assumed to be a function of both the sepa
tion ur 82r u of the two particles and the dot radiusR. Spin-
orbit couplings are not included in this work.

We use the nearest-neighborsp3s* tight-binding descrip-
tion. The structure of a quantum dot is modeled as an an
centered zinc-blende structure.27 Dangling bonds on the sur
face are removed by explicitly shifting the energies of t
corresponding hybrids well above the highest calcula
electron states. This treatment imitates a dot whose surfa
efficiently passivated with, for example, hydrogen or liga
molecules.

We obtain an electron-hole basis setueh&u j s ,ms& by mul-
tiplying the electron and hole eigenstates from the solution
the tight-binding Hamiltonian and their spin states. The s
tial part ueh& is the product of an electron and a hole wa
function which is expressed as a linear combination of
tight-binding basis orbitals with amplitudesce;n andch;n8 ,

^re ,rhueh&[ce~re!ch* ~rh!5 (
n,n8

ce;nch;n8
* fn~re!fn8

* ~rh!,

~1!

where the tight-binding orbital indexn includes atom-site
index i and orbital-type indexg. The spin partu j s ,ms& is an
19531
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electron-hole spin state, i.e., either the singlet compon
u0,0& or one of the triplet componentsu1,1&,u1,0&, or
u1,21&. This description closely follows that of Leung an
Whaley.17

The single-particle Hamiltonian can be written in terms
the electron-hole basis set and its eigenvalues,

Hsingle5 (
eh jsms

~Ee2Eh!ueh&u j sms&^ j smsu^ehu, ~2!

whereEe and Eh are the electron and hole energies of t
single-particle Hamiltonian.

Projecting the electron-hole Hamiltonian onto the tw
particle basis set yields the electron-hole Hamiltonian wit
Coulomb interactionJ and an exchange interactionK,17,28

He-h5 (
j sms

~J1K !u j sms&^ j smsu, ~3!

J52 (
e8h8eh

ue8h8&^ehu

3E E d3r 8d3r
ce8

* ~r 8!ce~r 8!ch* ~r !ch8~r !

e~ ur 82r u,R!ur 82r u
, ~4!

K52d j s (
e8h8eh

ue8h8&^ehu

3E E d3r 8d3r
ce8

* ~r 8!ch8~r 8!ch* ~r !ce~r !

e~ ur 82r u,R!ur 82r u
, ~5!

whered j s
is unity for a singlet state and zero for a tripl

state. The factor 2 in front ofd j s
in Eq. ~5! is due to the fact

that the exchange interaction allows two final electron-h
spin statesu↑e ,↓h& and u↓e ,↑h& for an initial stateu↑e ,↓h&
~or u↓e ,↑h&). In contrast, the Coulomb interaction requir
that the spin of the electron should be the same betwee
initial and a final state, as should the spin of the hole. N
that we use atomic units for all the equations in this pap

The Coulomb interactionJ describes the scattering of th
electron frome to e8 and the hole fromh to h8, whereas the
exchange interactionK describes the recombination of a pa
e,h at r and the recreation of a paire8,h8 at r 8. Since we do
not include spin-orbit couplings, the spin states are
coupled to one another in the present Hamiltonian. The
fore, we will use only the spatial partueh& of the electron-
hole basis set from now on. The only constraint that the s
state gives to the Hamiltonian is the spin-selection rule inK.

The matrix elements of the electron-hole interacti
Hamiltonian can be rewritten in terms of integrals over t
tight-binding basis orbitals by replacingce(re) with
(nce;nfn(re) andch(rh) with (nch;nfn(rh) as done in Ref.
17. As a result, the Coulomb and exchange interaction ma
elements are composed of integrals involving four basis
bitals where two orbitals come from the electron wave fun
tions and the other two come from the hole wave functio
8-2
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v~n1 ,n2 ;n3 ,n4!

5E E d3r 8d3r
fn1

* ~r 8!fn2
~r 8!fn3

* ~r !fn4
~r !

e~ ur 82r u,R!ur 82r u
.

~6!

Furthermore, we approximate the Coulomb and exchange
teraction matrix elements by considering only terms hav
at most two distinct basis orbitals following Leung an
Whaley.17 This approximation is reasonable since the in
grals involving more than two different orbitals are typica
small compared to the kept integrals.16,17 Integrals in Eq.~6!
with n15n2[n and n35n4[n8 are Coulomb integrals
vCoul(n,n8), and those withn15n4[n and n25n3[n8 or
with n15n3[n and n25n4[n8 are exchange integrals
vexch(n,n8). The two different kinds of exchange integra
are identical if the tight-binding orbitals are real, as they
in this work.

To make our notations clear, note that the Coulomb a
the exchangeintegrals of the basis orbitals are the intera
tions between the tight-binding basis orbitals. By contra
the Coulomb and the exchangeinteractions JandK are in-
teractions between the electron and hole wave functions
fact, the Coulomb interaction has contributions from both
Coulomb and exchange integrals as does the exchange
action.

Finally, we can describe the electron-hole matrix eleme
in terms of the Coulomb and exchange integrals,

^e8h8uJueh&52 (
n,n8

ce8;n
* ce;nch;n8

* ch8;n8vCoul~n,n8!

2 (
n,n8

ce8;n
* ce;n8ch;n* ch8;n8vexch~n,n8!

2 (
n,n8

ce8;n
* ce;n8ch;n8

* ch8;nvexch~n,n8!,

~7!

^e8h8uKueh&52d j s(
n,n8

ce8;n
* ch8;nch;n8

* ce;n8vCoul~n,n8!

12d j s(
n,n8

ce8;n
* ch8;n8ch;n8

* ce;nvexch~n,n8!

12d j s(
n,n8

ce8;n
* ch8;n8ch;n* ce;n8vexch~n,n8!.

~8!

Note that Eq.~8! corrects typographical errors in Eq.~22! of
Ref. 17.

To evaluate these integrals, we need a real-space des
tion of the tight-binding basis orbitals. To start, we follo
Martin et al.16 and model the tight-binding orbitals wit
atomic Slater orbitals.29 The Slater orbitals are single
exponential functions with the exponent given by the Sla
rules29 designed to yield a good approximation of the effe
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tive radius and the ionization energy. Especially, ans* or-
bital is modeled as an exciteds orbital by promoting one
valence electron to thes orbital of the next shell. The Slate
orbitals are an arbitrary choice in the sense that they are
explicitly related to the tight-binding parameters. Howev
as shown in Sec. III, even in small dots the electron-h
Coulomb interaction isnot very sensitive to variations in the
orbital integrals.

On-site Coulomb and exchange integrals, in which bo
orbitals are centered on the same atom, are calculated us
Monte Carlo method with importance sampling for the rad
integrations. The uncertainty of the Monte Carlo results
within 1%. The angular part is treated exactly by expans
in spherical harmonics. However, the Appendix shows t
the integral values must be considered to be uncertain
about 20–30 % due to the arbitrariness of the orbital cho
and the effects of orthogonalization.

Off-site exchangeintegrals, where the two orbitals ar
centered on two different atom sites, are negligible even
nearest-neighbor integrals. These off site exchange integ
decrease quickly as the distance between atom sites
creases, due to the localization and orthogonality of the
bitals. In particular, we show in the Appendix that ev
nearest-neighbor exchange integrals are negligible as an
fect of orthogonalization between off-site hybrids.

Regarding off-site Coulomb integrals, Leung and
Whaley17 estimate these integrals with the Ohno formula30

modified to include screening,

vCoul~n,n8![vCoul~ ig,i 8g8!5
1

e~ uRi2Ri 8u,R!

3
1

AvCoul
0 ~ ig,ig8!221uRi2Ri 8u

2
, ~9!

whereRi andRi 8 are atom site vectors.vCoul
0 ( ig,ig8) is an

unscreened on-site Coulomb integral. The superscript 0
ignates an unscreened quantity. For the case of binary c
pounds,vCoul

0 ( ig,ig8) is replaced by the average over th
two different atoms. The integrals are screened by the die
tric constant e(uRi2Ri 8u,R). This screening is the only
modification to the original Ohno formula. From here on, w
will refer to this modified Ohno formula in Eq.~9! simply as
the Ohno formula.

To test the validity of the Ohno formula in the case th
two orbitals are on close atom sites, we calculated the
site Coulomb integrals with a Monte Carlo method31 within
1% uncertainty and compared these values with those f
the Ohno formula. The Ohno formula severely undere

TABLE I. Methods for the computations of the Coulomb an
exchange integrals with respect to a site-to-site distance. NN st
for nearest neighbors.

On site NN Beyond NN

Coulomb Monte Carlo Monte Carlo Ohno formula
exchange Monte Carlo neglected neglected
8-3
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TABLE II. On-site unscreenedCoulomb integrals and exchange integrals@defined in the paragraph
following Eq. ~6! in Sec. II A#, of the sp3s* basis set, in units of eV. Integrals for thesp3 orbitals are
calculated based on the hybridized orbitals along the bonding directions defined in Ref. 17.

Element Integral (spa
3 ,spa

3) (spa
3 ,spb

3) (spa
3 ,s* ) (s* ,s* )

Si Coulomb 11.88 8.49 2.87 2.27
Si exchange 11.88 0.78 0.024 2.27
In Coulomb 7.82 5.67 2.30 1.36
In exchange 7.82 0.47 0.024 1.36
As Coulomb 12.13 9.26 2.34 1.73
As exchange 12.13 0.47 0.028 1.73
Cd Coulomb 6.59 5.06 1.77 1.44
Cd exchange 6.59 0.74 0.017 1.44
Se Coulomb 12.85 9.70 2.97 2.38
Se exchange 12.85 0.95 0.030 2.38
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mates the off-site integrals as the distance between two a
sites becomes small. For example, the Coulomb integral
tween the bonding orbitals~see below! from nearest neigh-
bors in a Si quantum dot with radius 18.9 Å given by t
Ohno formula is 0.58 eV, while the Monte Carlo calculati
gives 2.35 eV. For next-nearest neighbors, the Ohno form
and the Monte Carlo calculation give 0.38 and 0.58 eV,
spectively, and for the third-nearest neighbors 0.33 and 0
eV.

The reason that we obtain a big discrepancy between
Ohno formula and the Monte Carlo calculation for the bon
ing orbital integrals is that the effective distance between
bonding orbitals is smaller than the spacing between
nearest-neighbor atom sites. In fact, the spatial overlap of
bonding-orbitals is as big as that of the orbitals on the sa
atom site. In addition, the spatial dependence of the dielec
function is not fully taken into account in the Ohno formul
This approximation becomes critical when the range
variations in the dielectric function is comparable to the
fective distance between orbitals. In that case, the effec
dielectric function cannot be represented bye(uRi2Rj u,R).
Therefore, we use the Monte Carlo values for the on-site
the nearest-neighbor integrals and the Ohno formula for
rest of off-site integrals. For clarity, we summarize the me
ods for the computation of the Coulomb and exchange in
grals in Table I.

We use a size- and distance-dependent dielectric func
to screen the Coulomb and exchange interaction of
electron-hole pair. The dielectric function, as a function
the separationr of two particles and the radiusR of a quan-
tum dot, is approximated by the Thomas-Fermi model
Resta32 and the Penn model generalized for quant
dots.33,34The separation dependence is given by the Thom
Fermi model, while the size dependence is given by the P
model. This way of combining the two models to descri
the dielectric function is taken from Ref. 13,

e~r ,R!5H e`
dot~R!qr0 /@sinhq~r 02r !1qr#, r ,r 0

e`
dot~R!, r>r 0

~10!

where
19531
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e`
dot~R!511~e`

bulk21!
~Egap

bulk1D!2

@Egap
dot~R!1D#2

. ~11!

The Thomas-Fermi wave vectorq is (4/p)1/2(3p2n0)1/6,
where the valence electron densityn0532/a0

3 in a
zinc-blende structure. The screening radiusr 0 is determined
by the condition sinhqr0/qr05e`

dot(R). The shift
D5E22Egap

bulk , where E2 is the energy of the first pro
nounced peak in the bulk absorption spectrum. The ener
Egap

bulk andEgap
dot(R) are the single-particle gaps for bulk and

dot with radiusR, respectively.e`
bulk is the dielectric constan

for the bulk material.
The unscreened on-site Coulomb and exchange integ

for thesp3s* basis set are listed in Table II, and the screen
on-site Coulomb integrals are listed in Table III. Th
screened nearest-neighbor Coulomb integrals are liste
Table IV. The integrals withs andp orbitals are calculated
using the four hybridized orbitals along bonding directio
as defined in Ref. 17.

As shown in Tables II and III, the screening effect
significant even for on-site integrals. This is because
screening radiusr 0 is 2–4 Å and is similar to the effective
radius of the tight-binding basis orbitals. The comparison

TABLE III. On-site screenedCoulomb integrals of thesp3 hy-
bridized orbitals ands* orbital for the Si dot with radiusR518.9
Å, InAs with R521.1 Å, and CdSe withR521.1 Å, in units of eV.
The integrals are screened by the dielectric function in Eq.~10!,
which is a function of electron-hole separation and of the radius
the quantum dot. For comparison, the values in parentheses ar
integrals obtained from full screening with the dielectric constan
the long-distance limite`

dot(R).

Element (spa
3 ,spa

3) (spa
3 ,spb

3) (spa
3 ,s* ) (s* ,s* )

Si 3.16~1.26! 1.67 ~0.91! 0.32 ~0.31! 0.26 ~0.24!
In 1.26 ~0.80! 0.77 ~0.58! 0.24 ~0.24! 0.17 ~0.14!
As 2.33~1.24! 1.33 ~0.95! 0.28 ~0.24! 0.23 ~0.18!
Cd 1.86~1.29! 1.20 ~0.99! 0.35 ~0.35! 0.28 ~0.28!
Se 4.74~2.51! 2.76 ~1.89! 0.58 ~0.58! 0.48 ~0.46!
8-4
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the unscreened and screened on-site integrals shows tha
effective screening of these integrals is generally about
the long-range screening given bye`

dot(R). Further, based on
this observation, we use half of the long-range dielectric c
stant to screen the on-site exchange integrals that we did
calculate explicitly by the Monte Carlo method.35

B. Lowest excitonic states

To obtain the excitonic states near the band edge,
diagonalize the configuration-interaction matrix in theueh&
basis set given by the sum ofHsingleandHe-h defined by Eqs.
~2!–~5!. We include sufficient electron and hole states in
configurations to achieve convergence of the first few ex
tonic states to within a few meV. The typical number
electron and hole states needed is about 10–15 each.

There are two types of Hamiltonians, depending on
total spin of the electron-hole pair. The Hamiltonian for
spin singlet includes both the Coulomb and the excha
interaction, whereas the Hamiltonian for a spin triplet h
only the Coulomb interaction. By diagonalizing these tw
Hamiltonians separately, we obtain a set of spin-singlet
spin-triplet excitonic states. The lowest excitonic state is
lowest triplet state due to the absence of the positive
change interaction. However, since only spin-singlet sta
are optically allowed, theoptical excitonic gap is the energ
of the lowest spin-singlet state.

This order of the states can be seen most easily by ap
ing first-order perturbation theory to the electron-hole p
made from the highest hole state and the lowest elec
state, which yields

Esinglet5Ee2Eh1^ehuJueh&1^ehuKueh&. ~12!

Etriplet5Ee2Eh1^ehuJueh&. ~13!

The sign of^ehuJueh& is always negative and the sign o
^ehuKueh& is always positive. Therefore, the energy of t

TABLE IV. Nearest-neighborscreenedCoulomb integrals of
the sp3 hybridized orbitals for the Si dot with radiusR518.9 Å,
InAs with R521.1 Å, and CdSe withR521.1 Å, in units of eV.
The integrals are screened by the dielectric function in Eq.~10!.
The values given by the Ohno formula Eq.~9! are listed within
parentheses.

Si bonding Si nonbonding

Si bonding 2.35~0.58! 0.95 ~0.53!
Si nonbonding 0.95~0.53! 0.55 ~0.53!

In bonding In nonbonding

As bonding 1.43~0.54! 0.61 ~0.54!
As nonbonding 0.81~0.53! 0.42 ~0.53!

Cd bonding Cd nonbonding

Se bonding 2.41~1.03! 1.03 ~1.02!
Se nonbonding 1.62~1.02! 0.79 ~1.00!
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lowest spin-triplet excitonic state is smaller than the ene
of the lowest spin-singlet excitonic state by^ehuKueh&
within first-order perturbation theory. The energy differen
between these excitonic states is theexchange splitting. Fur-
ther, we denote the difference between the lowest spin-tri
energy and the single-particle energy gap as theCoulomb
shift, which is ^ehuJueh& in first-order perturbation theory
The Coulomb shift is the main correction to the sing
particle gap since the Coulomb interaction is roughly o
order of magnitude larger than the exchange interaction.

This simple description becomes more complicated wh
configuration interaction is included due to the correlation
several electron-hole configurations near the band ed
However, the main ideas of Coulomb shift and exchan
splitting are still valid. Generally, as we include mo
electron-hole configurations the Coulomb shift and the
change splitting increase and converge.

C. Effective range of the exchange interaction

The long-range component of the exchange interac
was investigated by Franceschetti and co-workers25 with the
pseudopotential method. They show that there is a lo
range component in the monopole-monopole exchange in
action for several direct-gap semiconductor quantum d
To verify this long-range exchange interaction with the tig
binding model, we follow their approach using a cutoff p
tential. With the step functionQ(r ), we replace the Cou-
lomb potential with a cutoff potentialQ(r c2ur 82r u)/ur 8
2r u to obtain an exchange interaction that is a function
the cutoff distancer c .

The unscreened exchange interaction with the cutoff
tential for the electron-hole stateueh& is

^ehuK0~r c!ueh&

5E E d3r 8d3r

3
ce* ~r 8!ch~r 8!ch* ~r !ce~r !

ur 82r u
Q~r c2ur 82r u!

'2 (
n1 ,n2

ce;n1
* ch;n1

ch;n2
* ce;n2

vCoul
0 ~n1 ,n2!

3Q~r c2uRn1
2Rn2

u!14 (
n1 ,n2

ce;n1
* ch;n2

ch;n2
* ce;n1

3vexch
0 ~n1 ,n2!, ~14!

where the superscript 0 refers to the unscreened interac
In line with the discrete spatial character of the tight-bindi
model, we make an approximation that replaces the true
off potential with the one based on the site indic
Q(r c2uRn1

2Rn2
u). If there is a long-range exchange inte

action, it would stem from the first term of Eq.~14! which
includes the Coulomb integrals. The second term, the sum
exchange integrals, has only on-site integrals, since all
site exchange integrals are negligible as shown in the App
dix.
8-5
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To understand the physical origin of the long-range
change, we expand the exchange interactionK0 in a multi-
pole expansion,

^ehuK0ueh&'(
iÞ j

q~Ri !eh* q~Rj !eh

uRi2Rj u
1O~ uRi2Rj u22!

1on-site interaction. ~15!

Here the ‘‘exchange charge density’’q(Ri)eh at atom siteRi
is a monopole moment defined as

q~Ri !eh[E dV ice~r !ch* ~r !

5(
gg8

ce;g~Ri !ch;g8
* ~Ri !E d3rf ig~r !f ig8

* ~r !

5(
gg8

ce;g~Ri !ch;g8
* ~Ri !dgg8

5(
g

ce;g~Ri !ch;g* ~Ri !, ~16!

where*dV i is defined to integrate only the orbitals on th
atom siteRi . For clarity, the tight-binding orbital indexn is
specifically replaced by the atom-site indexi ~or Ri) and the
orbital-type index g. Note that the final expression fo
q(Ri)eh has a sum over only one orbital-type index due
the assumed orthogonality of the tight-binding basis orbit
The distribution of the exchange charge density determ
the long-range character of the exchange interaction. If
exchange charge density is zero, that is, the electron and
states are locally~on-site! orthogonal, there is no exchang
interaction beyond the on-site contribution according to E
~15!. In contrast, if the exchange charge density is nonz
due to the local nonorthogonality of the electron and h
wave functions from site to site, a long-range exchange
teraction is caused by the monopole-monopole interactio

III. RESULTS

A. Real-space description of basis orbitals

The empirical tight-binding model has an inherent dif
culty concerning the tight-binding basis orbitals. The re
space description of the basis orbitals is not provided si
the tight-binding matrix elements are determined by fitting
the bulk band structure. However, to include electron-h
correlations the electron-hole Coulomb and exchange ma
elements need to be calculated, which requires an exp
choice of real-space basis orbitals. Since this choice
largely arbitrary in the sense that there is no way to conn
the chosen basis orbitals to the empirically chosen tig
binding parameters, we need to test to what degree
choice of orbitals affects the electron-hole Coulomb inter
tion.

We perform this test by scaling the onsite Coulomb a
exchange integrals from the values listed in Tables II and
This scaling scheme is an indirect way of testing the se
tivity on the real-space description. New off-site Coulom
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integrals are calculated by replacing the unscreened on
integrals with the scaled ones in the Ohno formula, Eq.~9!.
Note that the offsite Coulomb integrals are not direc
scaled by the same factor as the on-site integrals, but cha
only indirectly through the scaled unscreened on-site in
grals in the Ohno formula. Therefore, this scheme is in eff
changing atomistic details of the basis orbitals.

Figure 1 shows the variation of the Coulomb interacti
between the highest hole state and the lowest electron
with the scaling of the on-site Coulomb and exchange in
grals. It shows that as the dot size increases, the sensitivi
the Coulomb interaction to the on-site integrals decrea
For example, if the on-site integrals are reduced by 50%,
reduction in the Coulomb energy varies from 20% in t
smallest shown dot to only 5% at 30-Å radius. Since t
contribution from the on-site integrals decreases as the
size increases, the specific model of the real-space funct
for the basis orbitals is less critical for larger dots.

We can explain this effect by a closer look at the Oh
formula for the off-site integrals. In the limit of large dis
tances between two atom sites, the off-site integrals bec
independent of the on-site integral values. The unscree
offsite integral in the limit of large distance between the tw
atom sites is

vCoul
0 ~ ig,i 8g8!'

1

uRi2Ri 8u
2

1

2vCoul
0 ~ ig,ig8!2uRi2Ri 8u

3
.

~17!

FIG. 1. Coulomb energŷehuJ( f )ueh& as a function of scaling
factor f of the on-site integrals. The Coulomb energy with the hig
est hole wave function and the lowest electron wave functionueh&
is shown for various radii of Si spherical quantum dots, with t
on-site integrals scaled by the factorf. That is v→ f v from the
values in Tables II and III. The off-site integrals are only indirec
scaled through the on-site integrals in the Ohno formula, Eq.~9!.
The Coulomb energy is normalized by its value atf 51. As the dot
size increases, the Coulomb energy becomes significantly less
sitive to variations in the on-site integrals.
8-6



te
ta

a
ng
th
it

in
w

n
on
ra

n
a
e

ho

g
ix
e
0

e

the
-
V.

ble
ive
t the

am-
e
m
igh

e is
pti-
fec-
oth

t of

le
er-
gh
be-
at

eter
lay

a-
pa-

io
R
th

tte

s
e
e

-

ergy

vely.
Ref.

le

ELECTRON-HOLE CORRELATIONS IN SEMICONDUCTOR . . . PHYSICAL REVIEW B 63 195318
Therefore, the off-site integrals become a point-charge in
action, making the atomic-scale details of the basis orbi
irrelevant in this limit.

The significance of Fig. 1 is that it quantifies this qualit
tive explanation for decreasing sensitivity with increasi
dot sizes. For example, with a targeted 10% accuracy in
Coulomb interaction, only a 50% accuracy for the on-s
integrals is needed for dots of radius larger than 30 Å , while
for dots of 10-Å radius only a 20% error can be afforded
the on-site integrals. The discussion in the Appendix sho
that the dominant integrals must be considered uncertai
about 20–30 %. The tight-binding description of correlati
effects can therefore be considered reliable for dots with
dii larger than 15–20 Å .

B. Excitonic states near the band edge

We apply the tight-binding configuration-interactio
scheme described in Sec. II A to Si, InAs, and CdSe qu
tum dots in order to calculate the lowest excitonic states n
the band edge. We have included sufficient electron and
states to converge the energies to within a few meV.

For Si, we first used the tight-binding parameters of Vo
et al.24 to determine the single-particle Hamiltonian matr
elements. As shown in Fig. 2, the excitonic gap using th
tight-binding parameters gives a discrepancy as large as
eV compared with experimental data.6 The tight-binding pa-
rameters of Voglet al.24 necessarily give poor effectiv

FIG. 2. Excitonic gap of Si spherical quantum dots as a funct
of the dot radius. The photoluminescence data are taken from
6. The other two sets of excitonic gaps are calculated with
tight-binding parameters of Voglet al. ~Ref. 24! and our parameters
in Table VI, respectively. Our parameters give significantly be
agreement with experiment than the parameters of Voglet al. ~Ref.
24!. This good agreement is due to the improved effective mas
obtained with our optimized parameters. Inset: Coulomb shift v
sus the dot radius. The Coulomb shift does not vary much betw
the parameter sets.
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masses since the parameters are determined by fitting to
energies of only theG andX points in the bulk band struc
ture. The resulting effective masses are listed in Table
The comparison with the experimental values listed in Ta
V shows that their parameters fail to produce good effect
masses especially for the transverse effective masses a
lowest conduction energy nearX.

To improve the effective masses, we replace the par
eter set of Voglet al.24 with our parameter set listed in Tabl
VI. Our parameter set is optimized with a genetic algorith
by fitting the effective masses as well as the energies at h
symmetry points of the bulk band structure.38 The resulting
effective masses are listed in Table V. One important not
that we use two different parameter sets to separately o
mize the electron and hole single-particle states. Good ef
tive masses are impossible to obtain simultaneously for b
the conduction and the valence band of Si with one se
parameters within the nearest-neighborsp3s* tight-binding
model ~see Ref. 38!. Consequently, the electron and ho
single-particle wave functions, being generated from diff
ent Hamiltonians, are not orthogonal. However, even thou
the orthogonality has not been enforced, the overlaps
tween the different electron and hole wave functions are
most 0.001. Thus, we can use these two different param
sets to verify how important a role the effective masses p
in the electronic properties of the quantum dots.

Figure 2 shows the improved excitonic gaps with our p
rameter set. To further examine the effect of changing

n
ef.
e

r

es
r-
en

TABLE V. Effective masses of Si with the tight-binding param
eters of Voglet al. ~Ref. 24! and our parameters in Table VI, in
units of the free-electron mass.mcl andmct denote the longitudinal
and transverse effective masses at the lowest conduction en
nearX. mv l andmvh are the effective masses atG of the two highest
valence bands with a light mass and a heavy mass, respecti
The hole masses are averages of the three directions given in
38. The cyclotron resonance data are taken from Ref. 36.

mcl mct mv l mvh

Vogl et al. 0.73 1.61 0.18 0.39
Our parameters 0.91 0.30 0.15 0.55
Cyclotron resonance 0.92 0.19 0.15 0.54

TABLE VI. Tight-binding parameters for electron and ho
states of Si in units of eV. The notation~Ref. 39! of Vogl et al.
~Ref. 24! is used.

E(s) E(p) E(s* ) V(s,s)

Electron 23.060 1.675 4.756 28.114
Hole 24.777 1.674 8.697 28.465
Vogl et al. 24.200 1.715 6.685 28.300

V(x,x) V(x,y) V(s,p) V(s* ,p)

Electron 1.675 21.838 8.236 5.994
Hole 1.674 4.919 5.724 6.133
Vogl et al. 1.715 4.575 5.729 5.375
8-7



n
t

le
As
o

te
a
e
le

an
m

ch,

ters
ith

-

m
well
te-

sus
aps
oto-

.

ica
e

ng
M

w
a
p

cal
PLE
the

s of

our
so
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rameters, we can compare the electron-hole interaction e
gies with our parameters to those energies obtained with
parameters of Voglet al.24 In particular, we compare the
Coulomb shift, the energy difference between the sing
particle gap, and the lowest triplet excitonic energy.
shown in the inset in Fig. 2, the Coulomb shifts from the tw
parameter sets are very similar. This insensitivity indica
that the better description of the excitonic gap with our p
rameter set is mainly due to the better single-particle eig
values and not from a change in the Coulomb matrix e
ments.

To study direct-gap semiconductors, we choose InAs
CdSe spherical quantum dots. The InAs tight-binding para

TABLE VII. Tight-binding parameters for InAs in units of eV
The notation~Ref. 39! of Vogl et al. ~Ref. 24! is used. Indicesa and
c refer to anion and cation, respectively.

E(s,a) E(p,a) E(s,c) E(p,c)

28.419 0.096 22.244 0.096

E(s* ,a) E(s* ,c) V(s,s) V(x,x) V(x,y)

12.147 7.485 24.267 1.427 5.356

V(sa,pc) V(sc,pa) V(s* a,pc) V(s* c,pa)

4.409 5.326 5.846 4.594

FIG. 3. Excitonic gap and single-particle gap of CdSe spher
quantum dots as a function of the dot radius. The photolumin
cence excitation~PLE! gaps are taken from Ref. 3. The scanni
tunneling spectroscopy~STM! gaps are obtained from recent ST
tunnelingdI/dV spectra~Ref. 7 and 37!. The excitonic gaps of the
pseudopotential~PP! calculations~Ref. 13! are about 0.15 eV lower
than the PLE gaps. Our excitonic gaps are in good agreement
the PLE gaps. The small difference between our single-particle g
and the STM quasiparticle gaps indicates that the quasiparticle
larization energy is small for these dots.
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eters are generated using the genetic algorithm approa38

fitting band gaps and effective masses atG as well as pos-
sible, but neglecting spin-orbit coupling. These parame
are listed in Table VII. The resulting effective masses w
these parameters aremc50.024, mv l50.025, and mvh
50.405, wheremc is the effective mass of the lowest con
duction band atG, andmv l andmvh are defined as in Table
V. The tight-binding parameters for CdSe are taken fro
Ref. 40. Their parameters give good effective masses as
as good energies in high symmetry points of the bulk ma
rial.

Figures 3 and 4 show the resulting excitonic gaps ver
the dot radius. For CdSe quantum dots, our excitonic g
are in good agreement with optical gaps measured by ph
luminescence excitation3 ~PLE!. We also plot the energy
gaps measured by scanning tunneling spectroscopy~STM!
on a single quantum dot.7 The STM gaps are obtained from

l
s-

ith
ps
o-

FIG. 4. Excitonic gap and single-particle gap of InAs spheri
quantum dots as a function of the dot radius. The measured
gaps are taken from Ref. 4. The STM gaps are obtained from
tunneling spectra of Milloet al. ~Refs. 10 and 37! The pseudo-
potential gaps~PP! are from Ref. 14. Thesp3d5s* tight-binding
~TB! single-particle gaps are plotted using the fitting parameter
Allan et al. ~Ref. 19!. The inclusion ofd orbitals and spin-orbit
coupling raises the gaps as much as 0.2 eV in comparison with
sp3s* model. It is not understood why the experimental curve is
much flatter than the theoretical curves.
8-8
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the difference between the first prominent peaks of the t
neling dI/dV spectra with positive and negative bias vo
ages, respectively. Since the STM experiment applies
voltages to add or subtract electrons from the quantum d
this experiment measures quasiparticle energies. For a fi
system, these quasiparticle energies include the~positive!
polarization energy between the particle and the im
charges on the surface. The polarization energy is roug
2(1/eout21/e in)/R. The small difference between our singl
particle gaps and the STM gaps therefore suggests tha
dielectric constanteout of the surrounding material is rela
tively close to the dielectric constante in in the dots. The
results of pseudopotential calculations13 are also plotted in
the figures for comparison.

For InAs quantum dots, there is a significant discrepa
as large as 0.2 eV between oursp3s* tight-binding excitonic
gaps and PLE gaps.4 Eight-band effective-mass calculation4

and pseudopotential calculations14 also fail to describe the
experimental data, especially the lack of significant cur
ture. The recent results of Allanet al.19 show that the inclu-
sion of d orbitals and spin-orbit interaction raises thesp3s*
results by almost the needed 0.2 eV. However, their res
do not include the Coulomb shift and should therefore
shifted down by 200–50 meV as the dot size increases.
cent STM measurements are also plotted in Fig. 4. It is c
sistent with the larger dielectric constant of InAs that t
STM results in this case are well above the other curves
an amount similar to the Coulomb shift.

FIG. 5. Unscreened exchange energy, Eq.~14!, as a function of
the cutoff distance, with the Coulomb potential replaced by a cu
potential for various radii of Si spherical quantum dots. The en
gies are for the highest hole wave function and the lowest elec
wave function. The curves show that there is an oscillation reg
for small cutoff distances followed by a saturation region beyond
Å. This saturation suggests that the effective range of the exch
interaction in Si quantum dots is around 15 Å regardless of the
radius.
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C. Effective range of the exchange interaction

One of the interesting issues related to the exchange
teraction of the electron-hole pair is its effective range. M
tivated by the work of Franceschettiet al.,25 we calculate the
unscreened exchange interaction defined in Eq.~14! as a
function of the cutoff distancer c to determine the effective
range of the exchange interaction. As the cutoff distance
creases for a given electron-hole configuration, the excha
interaction eventually saturates to a final value. If this sa
ration occurs over just a few atomic sites, we call it sh
ranged, while long ranged exchange implies that the sat
tion occurs over distances comparable to the dot size. Fo
Fig. 5 shows that for the configuration with the highest ho
state and the lowest electron state there is a region of st
oscillations below a cutoff distance of 15 Å . The strong
oscillations are due to the phase difference between the e
tron and hole states stemming from their different locatio
in k space for an indirect-gap material. The oscillations
out beyond a cutoff distance of about 15 Å, suggesting t
the effective range of the exchange interaction in Si quan
dots is around 15 Å, regardless of dot size. This short-ran
and oscillatory behavior is universal within the configur
tions near the band edges.

For the direct-gap InAs and CdSe quantum dots, we c
culate the unscreened exchange interaction for several o
lowest electron-hole configurations. We label the elect
and hole states by the dominant angular-momentum cha
ter of their ‘‘envelope functions.’’ Here, the envelope fun
tion is defined to be the coefficient of the dominant ba

ff
r-
n
n
5
ge
ot

FIG. 6. Unscreened exchange energy, Eq.~14!, as a function of
the cutoff distance, with the Coulomb potential replaced by a cu
potential for the CdSe spherical quantum dot of radiusR521.1 Å .
The unscreened exchange energy of four different types of elect
hole configurations is shown. The electron and hole configurati
are labeled by the dominant angular-momentum component of t
envelope functions~Ref. 42!. Except for thes-like electron and
p-like hole configuration, the variation of the exchange interact
extends over the whole dot.
8-9
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orbital. Thes andp basis orbitals are typically dominant i
the electron and hole states, respectively. In our calculati
a p-like hole41,42 is the highest hole state and ans-like hole is
the second-highest hole state. This order is opposite tha
pseudopotential theory.13 However, it is possible that the
spin-orbit coupling, which is not included in this work, ca
affect the order of these hole states.

As shown in Figs. 6 and 7, direct-gap quantum dots sh
a qualitatively different behavior of the exchange interact
with respect to the cutoff distance from the behavior for
First, since there is no overall phase difference between
electron and hole states, there is no region with oscillati
for small cutoff distances. Second, the exchange interac
for a particular electron-hole pair can grow continuously
to the dot radius. The figures show that the exchange in
action of direct-gap materials is generally long ranged,
tending over the whole dot.

To understand why some electron-hole configuratio
have a slowly varying long-range exchange interaction,
analyze the long-range component by a multipole expan
as written in Eq.~15!. The leading term of the long-rang
exchange interaction is the monopole-monopole interact
Therefore, the distribution of the monopole moment, or
‘‘exchange charge density’’ defined in Eq.~16!, determines
the range of the long-range exchange interaction.

The exchange charge density of an electron-hole pair
zero total charge due to the orthogonality between the e
tron and hole wave functions. There are two ways to sat
this condition: the electron and hole states are either loc

FIG. 7. Unscreened exchange energy, Eq.~14!, as a function of
the cutoff distance, with the Coulomb potential replaced by a cu
potential for the InAs spherical quantum dot of radiusR521.1 Å .
The unscreened exchange energy of four different types of elec
hole configurations is shown. The electron and hole configurat
are labeled by the dominant angular-momentum component of
envelope functions~Ref. 42!. Long-range exchange interactions a
pear for thes-like hole with both thes-like electron and thep-like
electron.
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orthogonal, which is enforced in effective mass theory due
the orthogonality between the Bloch functions of the valen
and conduction bands, or globally orthogonal, which is p
sible in the atomistic pseudopotential and tight-binding th
ries. If the former is true, the exchange charge density wo
be zero at each site and there would be no monop
monopole interaction. That would make the exchange in
action of the electron-hole pair short ranged. By contra
without on-site orthogonality the exchange charge den
has nonzero values, causing monopole-monopole inte
tions that lead to significant long-range exchange inter
tions.

To show that the character of the orthogonality of t
electron-hole configuration determines the long-range beh
ior of the exchange interaction, we plot in Fig. 8 the e
change charge density of two electron-hole configuration
CdSe that have a long-range exchange interaction in Fig
Figure 8 shows the exchange charge density of~a! thes-like
electron ands-like hole configuration, and of~b! the p-like
electron ands-like hole configuration in a plane goin
through the center of the dot for CdSe with radius 20.1
This figure shows that there is no local orthogonality b

ff

n-
s
ir

FIG. 8. Exchange charge densityq(RW )eh from Eq.~16! of ~a! the
s-like electron ands-like hole configuration, and of~b! the p-like
electron ands-like hole configuration for the CdSe quantum d
with radius 21.1 Å. The exchange charge density is plotted i
plane through the center of the dot. The unit of the horizontal a
is the lattice constant of CdSe. The plots show that the orthogo
ity between the electron and hole wave functions is global not lo
with a p-like oscillation or a 2s-like oscillation, respectively. These
global oscillations of the exchange charge density lead to the lo
range variation of the exchange interactions in Fig. 6.
8-10
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tween the electron and hole wave functions. The orthogo
ity of the electron and hole wave functions are instead sa
fied by a p-like global oscillation @case ~a!# or a 2s-like
global oscillation@case~b!#. These shapes of the global o
cillations explain why the exchange interaction has grow
and decaying regions over global distances as shown in F
6 and 7. Those electron-hole configurations that do not h
a long-range exchange interaction have a much smaller
change charge density than those configurations that do
the long-range exchange interaction. These results show
local nonorthogonality of the electron and hole wave fun
tions leads to a strong monopole-monopole interaction,
that the global variations in the exchange interaction dep
on the particular way in which the exchange charge den
globally sums to zero for a specific electron-hole configu
tion.

IV. SUMMARY

We use tight-binding wave functions to calcula
electron-hole states near the band edge for both direct
and indirect-gap quantum dots. First, we examined to w
degree the model of the real-space atomic basis orbitals
fects the electron-hole Coulomb interaction. We find that
sensitivity of the Coulomb interaction to the real-space
scription of the basis orbitals decreases quickly as the
size increases. Our results shows that tight-binding desc
tions of electron-hole Coulomb interactions in quantum d
should be reliable for dots larger than about 15–20-Å rad
even for simple models for the basis orbitals. More detai
calculations of basis orbitals are required for smaller dot

TABLE VIII. On-site unscreened Coulomb and exchange in
grals with Löwdin orthogonalized Gaussian-type hybrids~O-GTO!;
nonorthogonal Gaussian-type hybrids~NO-GTO!; and nonorthogo-
nal Slater orbitals~NO-SO!. The GTO integrals were calculate
with the MOLPRO ~Ref. 43! package using the atomic pseudopote
tials from the Los Alamos group~Ref. 44!. The SO integrals are
from our Monte Carlo calculations. The hybridsa and b are the
ones defined asspa

3 andspb
3 in Ref. 17.

O-GTO NO-GTO NO-SO

vCoul
0 (a,a) of Si 11.95 11.65 11.91

vCoul
0 (a,b) of Si 9.44 8.85 9.00

vexch
0 (a,b) of Si 1.06 0.91 0.73

vCoul
0 (a,a) of In 7.90 8.52 7.82

vCoul
0 (a,b) of In 6.73 6.54 5.67

vexch
0 (a,b) of In 0.77 0.67 0.47

vCoul
0 (a,a) of As 12.99 12.57 12.13

vCoul
0 (a,b) of As 10.00 9.54 9.26

vexch
0 (a,b) of As 1.08 0.99 0.47

vCoul
0 (a,a) of Cd 7.09 7.81 6.59

vCoul
0 (a,b) of Cd 6.08 5.98 5.06

vexch
0 (a,b) of Cd 0.70 0.61 0.74

vCoul
0 (a,a) of Se 14.14 13.73 12.85

vCoul
0 (a,b) of Se 10.80 10.39 9.70

vexch
0 (a,b) of Se 1.15 1.08 0.90
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For excitonic gaps, we obtained good agreement with
cent experiments for both Si and CdSe quantum dots. H
ever, the gaps for InAs quantum dots agree less well w
experiment. Especially for Si, we improved the agreem
with experimental data by optimizing the tight-binding p
rameters to give better effective masses compared to the
rameters of Voglet al.24 We also showed that, in contrast t
the electron and hole single-particle energies, the elect
hole Coulomb interaction is not very sensitive to the cho
of parameters.

Finally, we studied the effective range of the exchan
interaction. Replacing the Coulomb potential with a cuto
potential, we explored the dependence of the exchange in
action on the cutoff radius. For direct-gap materials, the la
of on-site orthogonality causes the exchange interaction to
long ranged. For an indirect material Si, the calculatio

-

-

TABLE IX. Nearest-neighbor unscreened Coulomb and e
change integrals with Lo¨wdin orthogonalized Gaussian-type hy
brids ~O-GTO!; nonorthogonal Gaussian-type hybrids~NO-GTO!;
and nonorthogonal Slater orbitals~NO-SO!. The GTO integrals
were calculated with theMOLPRO ~Ref. 43! package using the
pseudopotentials from the Los Alamos group~Ref. 44! for a two-
atom molecule with a bond length given by the bulk value. The
integrals are from our Monte Carlo calculations. The indicesB and
N designate the bonding and nonbondingsp3 hybrids, respectively.

Si O-GTO NO-GTO NO-SO

vCoul
0 (B,B) 8.04 10.01 10.60

vCoul
0 (B,N) 5.96 6.65 6.78

vCoul
0 (N,N) 4.64 4.67 4.89

vexch
0 (B,B) 0.27 6.20

vexch
0 (B,N) 0.11 0.43

vexch
0 (N,N) 0.04 0.32

InAs O-GTO NO-GTO NO-SO

vCoul
0 (B,B) 6.94 8.77 9.06

vCoul
0 (B,N) 5.50 6.39 6.59

vCoul
0 (N,B) 5.02 5.42 5.43

vCoul
0 (N,N) 4.12 4.18 4.24

vexch
0 (B,B) 0.28 4.90

vexch
0 (B,N) 0.16 0.59

vexch
0 (N,B) 0.04 0.18

vexch
0 (N,N) 0.04 0.29

CdSe O-GTO NO-GTO NO-SO

vCoul
0 (B,B) 6.94 8.77 9.06

vCoul
0 (B,B) 6.89 8.66 8.74

vCoul
0 (B,N) 5.66 6.62 6.84

vCoul
0 (N,B) 4.85 5.16 5.01

vCoul
0 (N,N) 4.06 4.11 4.13

vexch
0 (B,B) 0.27 4.35

vexch
0 (B,N) 0.19 0.69

vexch
0 (N,B) 0.03 0.13

vexch
0 (N,N) 0.04 0.24
8-11
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show that the exchange interaction is oscillatory and ha
range of about 15 Å .
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APPENDIX

Since we use empirical tight-binding wave functions, t
choice of specific atomistic orbitals for matrix-element c
culations is largely arbitrary. The results presented in
main text were based on Coulomb and exchange integ
calculated with Slater’s atomic orbitals, obtained from Sl
er’s rules.29 In addition, we neglected all off-site exchang
integrals. An alternative for unscreened integrals is to
one of the standard quantum chemistry Gaussian-based
mercial packages. However, screened matrix elements
not be obtained in this way, since there is no way in th
codes to include a spatially varying screening function.

Although we cannot obtain screened integrals, two imp
tant questions can be answered by a comparison betw
integrals from Gaussian-type orbitals~GTO! and Slater’s or-
bitals ~SO!: what is the typical variation in the integral va
D

A

.
.

cia

e

lo

W

.

19531
a

.

of
et

d
s-

.

-
e
ls
-

e
m-
n-
e

r-
en

ues for two reasonable choices of orbitals; and what is
effect of using nonorthogonal bond hybrids rather than pr
erly orthogonalized hybrids? The underlying assumption
the tight-binding approach is that the orbitals on differe
sites are orthogonal.

Table VIII shows a comparison between orthogonal GT
~O-GTO!, nonorthogonal GTO~NO-GTO!, and nonorthogo-
nal SO ~NO-SO! for on-site Coulomb and exchange int
grals. Typically, the NO-SO and NO-GTO Coulomb int
grals differ by 10%, whereas the~an order of magnitude
smaller! exchange integrals differ by 20–50%. Orthogon
ization generally gives an additional 10% change. The us
nonorthogonal Slater orbitals can therefore be estimate
imply 20% overall uncertainty in the on-site integrals.

A similar comparison for nearest-neighbor integrals
shown in Table IX. Here the difference between NO-GT
and NO-SO is less than 10%, but orthogonalization can y
a lowering of up to 30% in the Coulomb integrals betwe
bonding orbitals. The most dramatic effect, however, is t
the exchange integrals essentially become negligible w
orthogonalized hybrids are used. Notably, nonorthogonal
brids cannot be used for the bonding-bonding off-site
change integrals, since these integrals are quite large wit
orthogonalization but are reduced by a factor of 20–30 a
orthogonalization.

In conclusion, the dominant Coulomb integrals obtain
from the Slater orbitals can be considered accurate onl
20–30 % due to the sensitivity to different functional repr
sentations and to effects of orthogonalization. Further, pro
orthogonalization reveals that all offsite exchange integr
can be neglected, including those between bonding hybr
ev.
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