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Noncanonical Hamiltonian structures are presented both for Yang-Mills/Vlasov plasmas and for ideal fluids 
interacting with Yang-Mills fields. The Hamiltonian structure for the Yang-Mills/Vlasov system passes over to that for 
the Yang-Mills fluid in the “cold-plasma” limit. The resulting Hamiltonian structure is shown to correspond to a Lie 
algebra. 

1. Introduction 

The problem treated here is to find the 
Hamiltonian structure for an ideal fluid in in- 
teraction with self-consistent Yang-Mills fields 
(hence the name: chromohydrodynamics, i.e., 
the color fluid). The Abelian, electromagnetic 
case has been treated by Spencer and Kauf- 
mann [l] and by two of the present authors [2]. 

We use two different methods to attack the 
problem. The first method is to derive a so- 
called “Clebsch” representation for the velocity 
of the fluid by means of a constrained varia- 
tional principle. The variational principle in- 
volves additional variables: Lagrange multi- 
pliers (Clebsch variables) which are, by con- 
struction, canonical variables. This canonical 
structure restricts to a non-canonical structure 
in the original variables. The non-canonical 
structure obtained this way is not completely 
satisfactory, however, because the procedure 
forces a particular choice of gauge. 

The second method is gauge invariant. It 
consists of a series of transformations from a 
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particle system to a fluid description. Starting 
from a set of particles in a Yang-Mills field, we 
pass to the Vlasov description of the cor- 
responding many-body system. Then we restrict 
to the case of a cold plasma, whose equations 
are equivalent to those of a barotropic fluid. The 
Hamiltonian structure-which survives these 
transformations-is gauge invariant, and readily 
provides the needed gauge invariant extension 
of the first Hamiltonian structure. The result is a 
Hamiltonian structure for Yang-Mills fluids 
which we associate with a certain Lie algebra. 

The order of presentation is as follows. Sec- 
tion 2 sets notation for classical Yang-Mills 
fields. 

Section 3 presents Hamilton’s principle for 
the color fluid equations and recasts them as 
canonical Hamiltonian equations. In order to 
perform this step, auxiliary variables are intro- 
duced as Lagrange multipliers, which incor- 
porate the subsidiary fluid equations into 
Hamilton’s principle. The canonical description 
appears in section 4 where we (a) identify 
canonical variables, i.e., coordinate variables 
and conjugate momenta; (b) define a Hamil- 
tonian in these variables; and (c) regain the 
color fluid equations as Hamiltonian equations 
with canonical Poisson structure. In section 5 
we show that the canonical Poisson structure is 

0167-2789/83/OWO4000 /$03.00 @ 1983 North-Holland 



180 John Gibbons et al./The Hamiltonian structure of classical chromohydrodynamics 

compatible with a non-canonical one defined in 
terms of the original, reduced set of variables 
provided a certain gauge condition is satisfied. 
In order to obtain the gauge-invariant Hamil- 
tonian structure of a color fluid, our approach 
after section 4 shifts to consideration of a baro- 
tropic fluid; one whose pressure depends only 
on its density. The equations of motion of such 
a fluid are derivable from a Vlasov equation in 
the “cold plasma” approximation, for which all 
the particles at a point have the same velocity 
and charge. 

Sections 6 through 9 show how the Vlasov 
equation inherits a Hamiltonian structure from 
the particle equations and the barotropic fluid 
equations in turn inherit a Hamiltonian structure 
from the Vlasov equation. Gauge-invariance is 
kept at each step. 

Section 6 reviews the Hamiltonian structure 
of the equations of motion of particles carrying 
a gauge charge in an external Yang-Mills field. 
We derive the canonical, nonrelativistic equa- 
tions of motion, in which the Yang-Mills analog 
of the Lorentz force appears and ‘electric’ and 
‘magnetic’ fields are introduced. 

Section 7 describes the Hamiltonian structure 
of the gauge fields in a gauge-invariant manner. 
Here the scalar potential occurs in the Hamil- 
tonian, but not in the Poisson bracket. On 
choosing the Coulomb gauge, the scalar poten- 
tial vanishes, the Hamiltonian reduces to the 
usual one, and the Hamiltonian structure 
becomes canonical. 

In section 8, the Vlasov equation is derived 
for the composite field-particle system by using 
the Klimontovich exact distribution function. 
In section 9, we consider the cold plasma case 
and derive the barotropic fluid equations with 
their associated Hamiltonian structure. Al- 
though the cold plasma equations lack a term in 
the pressure, this may be inserted by adding to 
the Hamiltonian a term dependent on the den- 
sity alone. Finally, in section 10, we discuss the 
mathematical interpretation of the Hamiltonian 
structure for a color fluid. 

2. Notation 

The color fluid we treat is an ideal, classical 
fluid which carries a gauge-charge and moves in 
R” under forces due to self-consistent Yang- 
Mills fields as well as ordinary pressure forces. 
Coordinates in R” are Xi, 15 i I n, while x0 = t is 
the time component. The fluid variables are: 
velocity components ri, 15 i 5 n; mass density 
p; specific entropy 7; self-consistent Yang- 
Mills vector potentials A$0 s p 5 n, 1 i a 5 N ; 
and gauge-charge density G,. The vector poten- 
tials Ai carry both a space-time index, CL, and 
an internal symmetry index, a. The gauge- 
charge densities, G,, also carry an internal 
symmetry index 1 I a 5 N, where N is the 
dimension of the symmetry algebra, 8. 

The component notation A: will be used in- 
terchangably with the matrix notation, e.g., 
A,, = A;&, where basis matrices 2, satisfy Lie- 
algebra commutation relations of a, 

]&, ibl = &Cib, (1) 

and one sums on repeated indices over their 
range as usual. 

The Yang-Mills fields, denoted F,,, are 
related to the potentials A,, by 

F,.,y = $A, - &A,, - [A,, Al. (2) 

These fields are smooth functions of space and 
time which take their values in the Lie algebra 
@5. 

We need to consider multiplication in the Lie 
algebra (55. For a and p in @ we write their 
product as [a, 01, or, if we wish to consider Lie 
bracket multiplication by a as a linear map of 
the algebra to itself, we may write 

[a, /3] = ad,, p = ad(a)@ (3) 

While the first notation is standard, the second 
(parenthetical) notation will be used below 
whenever the expression for a becomes cum- 
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bersome. The algebra @ has a dual, denoted a*; 
the gauge charges of the particles belong to a*, 
The pairing between a* and @ we denote by 
the brackets ( ,); for y in a*, and cz in a, their 
product is written as (y, LY). To the linear opera- 
tion ad, on a, there corresponds another linear 
operation, adz, essentially the transpose, which 
acts on a* as defined by 

(ad% P) = (7, ad&. (4) 

We are now in a position to define the (n f 1) 
operators of covariant differentiation, which act 
on a-valued functions of space and time. They 
are 

D = V-ad,, 

with n components 

Di = & - ad,,,,, 
I 

and 

(5) 

(6) 

D, =$-ad,, 

for the time component. 

(7) 

Similarly, one defines other operators, which 
act on @*-valued functions 

D*=V+ad*, 

with components 

DT = $ + adXi, 
i 

(8) 

(9) 

and 

DT=$+ad& (IO) 

If (Y and /3 are functions of space and time with 

values in @* and a, respectively, then 

$(a, P> = OXa, P> + (a, QP). (11) 

From the covariant derivative operators we 
define the fields, 

[Div 01~ ad,, 
[Di, Dj] = ad,,. 

This gives field components 

Ei = -$+%+[Ai,A,1=F,, 
I 

Bij= --$$+$+&,A,]= -I$ 

I I 

(12) 

(13) 

We have chosen space to have dimension n ; 
thus, the l-form E has n components Ei, and 
the 2-form B has n(n - 1)/2 independent com- 
ponents B,(i <j) with the antisymmetry pro- 
perty Bij = - Bji. 

Finally, to construct the Hamiltonian, we 
need an invertible linear map from the algebra 
to its dual. If the algebra has the finite dimen- 
sion lV, then (Y in (8 may be represented by the 
operator ad,, which in any basis on @ is a 
N X N matrix (Yk)i, say. Then a map from @ X @ 

to W (the Killing form) is provided by the rule, 

(14) 

for (Y, /3 Ea. We then define *(Y, an element of 
a*, for any (Y in @ by 

(*a, P) = K(a, PI. (15) 

Clearly, *(Y is a linear function of cu ; also, if @I 
is semi-simple, this map is invertible. Note that 
(a*, [p, -y]) is antisymmetric in all its arguments 
CX, p, y. Hence, we may derive 

*(Da) = D* *a. (16) 
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The Yang-Mills fields satisfy equations The suggestive notation is 

*(D,F,J = J,, (17) 

where J,, with components Jo = G, Ji = uiG, is 
the gauge current density, which is conserved, 

(D X B)j = (DkBki), (U X B)j = VkBki, (22) 

and, for example, 

D$J, = 0, (18) 

ad*(A,) = ads,, (23) 

in accordance with (3). The equations for G, A, 
*E re-express in vector notation the current 
conservation law (18), the field definition (13), 
and the spatial part of the source equations (17), 
respectively. The time component of the source 
equation (17) is the non-abelian version of 
Gauss’s law, 

by antisymmetry of FPY. 
Now we shall simply write down the equa- 

tions of motion for a color fluid and derive their 
canonical and non-canonical Hamiltonian struc- 
ture. Our procedure shall adhere to that of refs. 
2 and 3. 

2. Equations of motion 

The classical equations for an ideal color fluid 
consist of (a) conservation laws for mass, 
entropy, and gauge charge, (b) dynamical Yang- 
Mills equations for the self-consistent fields, and 
(c) the fluid motion equation. In terms of the 
gauge current, 

J, = (G, Gn), 

and fields, 

Ei = Foi, B, = - fii, 

the color fluid equations can be written as 

P * = -div pu, 

*=- r) V’V% 

i;= - div Gu - ad*(AO + u * A)G, 

A=E+DA,, 

*$ = Gu + *(D x B) - ad*(AJ*E, 

d= -(v.V)+‘+G,(E+~XB)), 

(19) 

(20) 

(20 

- G = *(DiEi) = *Ei,i + *[Ei, Ai]. (24) 

This condition is preserved by the equations of 
motion, as one may readily show by direct 
computation with the dynamical equations (21). 

4. Hamilton’s principle 

The color fluid equations (21) result from 
Hamilton’s principle, 

S 9?dtd”x=O, 
I 

(25) 

with constrained Lagrangian density 

55 = &u’ - pe(p, 7) + (*Eiy Ai) - &*Ei, Ei) 

- i(*Bij, Bii) 

+ (G, 1) * A) + (*(DiEi) + Gp A,) + (DtJv, r) 

++(b+divpu)-P(++u*Vq) (26) 

defined in the space of dependent variables, 

{u;P,~;~),~;G,~;*E,A;A~}. (27) 

Variations in Hamilton’s principle produce the 
following equations: 
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Sv : fi = pv + (G, A) + (ad*(A)G, r) 

= PV~ + Pvn + (G, VU, 

Sp:d= -u*V4+iu2-(e+p/p), 

134 :p = -divpv, 

ST/:@= - div pu + paelaq, 

sp:i,= -v.vl), 

(28) 

iW:b= -divGu-ad*(A,,+u*A)G, 

6G:f= -u*VI+(AO+u*A)+ad(Ao+u~A)F, 

S*Ei : Ai = Ei + DiA0, 

SAi : *l?i = Gui + *(D X B)i - ad*(AJ*Ei 

+ Vi ad*(r)G, 

SAo : *(DiEi) + G - ad*(r)G = 0. 

The correct equations for the color fluid are 
obtained when r = 0, which forces the choice of 
the “hydrodynamic” gauge, 

A,+u*A=O. (29) 

This is the Coulomb gauge in the frame co- 
moving with the fluid. With this choice of gauge 
one readily verifies that the variational equa- 
tions (28) along with the expression for k 
produce the correct motion equation for the 
color fluid. 

5. Canonical and non-canonical Hamiltonian 
description 

Since we have Hamilton’s principle (25) for 
the color fluid, it is straightforward to verify in 
the hydrodynamic gauge (29) that eqs. (28) form 
a canonical Hamiltonian system: 

DA=(PA,H}= -F, 
A 

dA = b?A, HI = E. (30) 

These equations reproduce the color fluid 
equations (28) in the space of canonical vari- 
ables, with Lie algebra indices written out, 

PA E w 7), ra, *m; p1 = 4, p2 = q, po+2 = ra, 

qA E {P, P, Gm A?); 41= P, q2 = P, %+2 = Ga. 

(31) 

The canonical pairs are (4, p), etc. and the 
Hamiltonian density is given by 

% = $v2 + pe(p, 7)) + $(*Ei, Ei) + f(*Bij, Bi,) 

- (*(DiEi) + G, Ao), H = J d”xX 

This Hamiltonian density corresponds 

(32) 

to the 

total, conserved energy under imposition of the 
Gauss’s Law condition, (24), which is preserved 
by the dynamics. In eq. (32) one uses the map 
(28a) to evaluate v(pA, qA) in the space of 
canonical variables; and one specifies the gauge 
only after all variational derivatives have been 
performed. 

So far, canonical variables for the color fluid 
have been identified in an extended space of the 
original variables plus auxiliary variables, in- 
troduced as Lagrange multipliers. An energy 
Hamiltonian has also been defined in the 
extended space of variables, whose canonical 
Hamiltonian equations reproduce the color fluid 
equations via the map (28a). 

Now our task is to restrict the canonical 
Poisson structure (30), defined in the extended 
space, back to the original set of variables. We 
perform this restriction again via the map (28a). 
Thereby we derive a non-canonical Poisson 
structure, which is compatible with the canoni- 
cal one and reproduces the color fluid equations 
as a Hamiltonian system in the original vari- 
ables. 

The canonical Poisson bracket in the exten- 
ded space is given by 
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SF SH 6H SF 
-6*Efgjq+S*EqSA; 

a=1,2 ,.:.Jv+2. (33) 

We leave the second piece of the canonical 
bracket unchanged, and consider a transfor- 
mation from variables (p,, q,) into new variables 

0% P, 0, G,) 

fiiiPdL,i; P=P1,0=Plq2* (34) 

As we know from earlier work, [2] and [3], the 
resulting bracket in (AXi, p, u, G,, Ai, *Ei) space 
is given by 

-{F,H}=~i~~p+&+~a,u~ 
k k 

%G 
SH 

+SG. k “sli;i, 

Up to a minus sign, this is the direct sum of the 
canonical (A, E) bracket with the bracket on the 
dual to 

a@“) - (c”(w”)@c”(w”)$c;(R”)). (36) 
il 

In the hydrodynamic gauge (29) the following 
variational derivative vanishes for the Hamil- 
tonian (32), 

SH -= 
SG, ” (37) 

Thus, gauge dependence could be removed at 
this point simply by observing that the correct 

gauge-independent equations for the color fluid 
do result when the bracket (35) is modified as 

{F, H}+{F, H)’ = {F, H} - -$ G,C& s (38) 
D 

to account for non-commutation of the gauge 
charges. This heuristic modification, while cor- 
rect, still requires corroboration by a systematic 
derivation. This corroboration is provided in the 
next section by starting from a particle descrip- 
tion. 

6. The particles 

To obtain a gauge-invariant Hamiltonian 
structure for a color fluid, we reconsider the 
problem from the viewpoint of a particle des- 
cription. 

Let us consider the Hamiltonian structure of 
a system of particles, each with unit mass, in- 
teracting with an external Yang-Mills field. If 
the Ith particle has position xl and momentum 
pI, each in R”, and charge g, in a*, then Hamil- 
ton’s equations are 

(39) 

and the equation of motion for the charge g, is 

These equations define a Poisson bracket be- 
tween functions of the xl, pl and g,, 

To avoid a profusion of indices, we use vec- 
tor or dyadic notation as much as possible. For 
instance, 
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aa ab n aa ab -*-= --9 ax ap z 
,=I aXi api 

[(VA) . i]i = Ai, ,ih (42) 

Expression (41) is a Poisson bracket since it is 
antisymmetric and satisfies the Jacobi identity. 
The only non-trivial terms which occur when 
one checks the Jacobi identity come from the 
explicit dependence of {J, K} on the charges gf. 
However, if the Lie bracket [ , ] satisfies the 
Jacobi identity, as is certainly the case, these 
terms sum to zero. 

To describe non-relativistic motion of parti- 
cles in a gauge field, with vector and scalar 
potentials A, AO, which take values in @, one 
chooses the Hamiltonian 

H = 7 $P, - kl, A(x,, O>l’ - k,, Aok, W. (43) 

Then the equations of 
are, in dyadic notation 

ir = PI - k,, Ah,, O), 

motion for the particles 

14 = (a, V-Q,, 0) - (PI - (a, Ah, ON 
+ kr, VAoh, t)>, 

g, = - ad*(A’(q, t) 

(40 

+ CP~ - k,, NXI, 0)) * Ah, Ok,. 

The third of these may be simplified by using 
the covariant derivative operators DT, 
D*, defined in section 2. It becomes 

DTg, = - 4 . ad*A(x,, t)g, 

= - f, ’ D*g,, (45) 

where in the second step we observe that g, has 
no explicit space dependence. The inter- 
pretation of (45) is that the covariant derivative 
of g, along the trajectory of the lth particle is 
zero. The analog of this result in electrody- 
namics is, of course, that the charge is constant. 

Let us now differentiate the 4 equation with 

respect to time t, to obtain 

f~ = fir - $ (g,, A(x,, 0) 

= (g,, VA(x,, 0) . fr + (a, VAob,, 0) 

- $ (a, Ah, 0). (46) 

In differentiating (g,, A(q, t)) we should bear in 
mind not only the explicit dependence of gf and 
A upon t, but also the implicit dependence of 
A(x,, t) upon t through w,(t): 

&(g,, A& 0) = (g,, A(s, 0) 

+ (g,Y at %+ + (n, - V)A(x,, t)) 

= ( - ad*(Ao + i, l A)g,, A(x,, t)) 

f (a $ + (4 . VMx,, 0) 

= - k,, C~%(S, 0 + ir . &I, th Ah 01) 

+ (a, $ G, - ONx,, 0). (47) 

Substituting this result into (46) produces 

% = (g,, VA(x,, 0) * 4 + k,, VA,&, 0) 

+ k,, Moh t) + 2, . Ah, th Ah, 01) 

- ( 8, g + (4 * VMx,, 0) 

= (& VAob,, th +[Ao(x,, th &I, t)l - g (x,, 0) 

+ h?,, (VU,, t) l 4 - (4 l V)A(x,, t) 

+ E4 l Ah,, 0, Ah, 01)) 

= - (e e,, 0) - 639 4 x m, tN, (48) 

where E and B are as defined in (22). In com- 
ponents, expression (48) can be written as 

2; = -(g,9 Ei(G t))-kl, ADji(% t)). (4% 
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In 3-dimensional space, and with an Abelian 
gauge group, this result reduces to the usual 
Lorentz force law, 

$ = - g,(E(q, t) + i, x B(xl, t)). (50) 

Thus, (49) may be regarded as a nonabelian 
generalization of the equation of motion for 
particles in an electromagnetic field. 

6. The fields 

To obtain a more complete description of the 
system, we must construct the equations of 
motion for the fields. These follow from a 
Lagrangian. The Lagrangian density is 

2 = i(*Ei, Ei) - a(*Bij, B,). (511 

Here E and B depend upon Ai, A,; 2 can be 
written as 

&G; * u $-$+ [A,, Ad), 
I 

~-~+[A,Ad)+~~(~-~+[A,Ai]), 

(52) 

Since 2 is independent of aA,/& variation with 
respect to A0 gives 

82 = x (*Ei, - DiSA,), 
I 

64p 
-=*(D.E), 
f&l 

(531 

which must vanish. Consequently, the covariant 
divergence of E is zero. Variation of Ai gives 

82 = (*Ei, D$Ai) + (*B,, - D$Ai). (54) 

Thus, we obtain the equation of motion 

DT*E, = DT*B. Il. (55) 

Eqs. (53) and (55) must be supplemented by 
the Bianchi identities, which relate other 
derivatives of the fields. For example, consider 
the Jacobi identity 

II% [Di, Dill = [[Dt, oil, Djl + [Qs 14, Djll- (56) 

This is the same as 

DtBij = DiEi - DiEp (57) 

Similarly, the Jacobi identity for Dip Di and Dk 
gives 

DiBjk + DiBki + DkBij = 0. (58) 

To pass to a Hamiltonian formulation, we 
calculate the conjugate momentum to Ai, 
namely, 

aa - *E. z- ” (59) 

For the variable AO, we are unable to pass to a 
Hamiltonian formulation, since 2 does not 
depend on the time derivative A,. However, the 
function 

R = (*Ei, Ai) - 2 (60) 

expressed in terms of *E, A and A0 may be 
considered as a Hamiltonian in the canonical 
pairs of variables (*Ei, Ai) and a Lagrangian in 
A,,. Such a function is called a Routhian in 
mechanics textbooks. Here 

R = i(ETy Ei) + (ET, DiAJ 

+f * (( 
+ [A, 41) (61) 

and the equations of motion come out in the 
form 
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Ai - - g = E, + D,Ao, 
I 

*$= _.!K 
SA, 

$$--$+[A,,A~] 
I J > 

- adk*E, I, 

with the condition 

(62) 

(63) 

There is no equation of motion for A,; this 
reflects the freedom of choice of gauge. For 
instance, we may set 

AO=O (64) 

in the local neighborhood of any point. The 
Routhian then collapses to a function of *E, and 
A, alone and can be treated (locally) as a 
Hamiltonian. One may then observe that (63) is 
preserved by the equations of motion. 

8. The Vlasov equation 

We now consider the composite system of 
particles and fields together; the Hamiltonian 
for this system is just the sum of the particle 
Hamiltonian (43) and the Routhian for the fields 
(60, namely, 

X=H+R 

= 
N 

A P, - (g,, Ah, Nl* - (g,, Aoh, ON 

+ 
I 

dNx($(*E, * E) + (*E, - DA,‘) + $(*I&~, I?,)). 

(65) 

The Poisson bracket for this system is the direct 
sum of those for the particle and field systems 
separately, 

* _aX -=-2?E 
q - ap,’ p’ ax{’ Q = ad* $f gt, 

*’ sx 
A==, *p= -E 

SA’ o=g. 
0 

(66) 

The particle equations are the same as before, in 

(44) 

i, = PI - (a, Ah O), 

Ii, = (g,, vA(x,, tN . (PI - k,, N-G ON 

+ (g,t VAoh, W 

8, = - ad*(A’(q, t) 

+ (P, - hi?,, Ah,, 0)) * Ah, Ok, 

(67) 

The field equations, however, differ from (62) 
and (63), 

k=E+DA,, 

*I?, = - ad*(Ao)*E, + *(DjB,j) 
M 

-g g,(d -(e A'h,, O))S(x - JG), (68) 

M 
D.*E= - 

F: 
g,Nx -x,). 

=I 

We now consider the case of many particles. 
To do this, we introduce the exact distribution 
function, f, on the single-particle phase space 
whose coordinates are x, p, and g. This space 
has dimension 2n + IV, where n is the dimension 
of space, and N the dimension of the Lie al- 
gebra, CB. The function f is defined as a sum of 
S-functions, 

f(& PI 8; t) = 7 6(x - G(P - p,hQ - ix,). (69) 

We see that f satisfies 

af 
at’ 7 f I af af 

*---++, 
af 

a* --+ &,- . 
aPf ( > ag, 

That is, 

af af af ~+tvz+F-+ ap 

(70) 

(71) 
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where 

ah 
v=&- 

F= _?$ h = SIP - k A(x, Q)l* - k, Adx, t)), 

(72) 

In the notation of section 8, (eq. (42)) we may 
write 

$+Ih,f}, =O, (73) 

where we use the single-particle Poisson 
bracket. This equation is itself Hamiltonian. For 
if we rewrite the Hamiltonian of the system as, 

X = 
I 

61~ - (8, Ah, Wl’ 

- (g, Ark, W d”rd”p dNg 

+ $(E*, 
I 

* E) + (*E, * DAJ + i(*B, Be) d”X, 

(74) 

then we obtain trivially 

h=?. 

Consequently, eq. (73) becomes 

$+ E,f =o. 1 I w I 

(75) 

(76) 

This equation is Hamiltonian when associated 
with the Poisson bracket 

W, Jl, = j f {t$ $1, d”x d”p dNg (77) 

which satisfies the Jacobi identity for function- 
als H, J, on the single-particle phase space; the 

only troublesome terms here vanish because of 
the Jacobi identity for the single-particle bracket 

1 9 11. 
The Hamiltonian nature of (76) does not 

depend upon the form of f, so we may safely 
generalize it to the case when f is smooth. Such 
an equation, known as a Vlasov equation, may 
be derived from the physical system under the 
assumption that two-particle correlations are 
negligible. The smooth function f is then the 
average of the exact distribution taken over 
some ensemble of states. 

The equations of motion are thus 

(78) 
aA iw 
at=-’ 

a*E sx -= -- 
at SA’ 

s%! 
$-&= 0. 

The Hamiltonian structure (78) is the exten- 
sion to nonabelian gauge fields of the Marsden- 
Weinstein structure [5] for the Maxwell-Vlasov 
equations. The field part of the bracket is the 
same here as for Maxwell’s equations. The 
difference lies in the particle bracket, from 
which the f-equation is constructed, for now the 
charge of a particle is not independent of time. 
If we restrict this bracket to an Abelian theory, 
then y, as defined in (72~) to be the time deriva- 
tive of the charge of a particle, will vanish. Then 
the equations reduce to the Maxwell-Vlasov 
equations; for each charge g, we may consider 
the single particle phase space of 2n dimensions 
with coordinates (x, p), instead of the (2n + N) 
dimensional phase space we have here. This 
Poisson bracket then collapses to the direct sum 
of the Kirillov bracket for the Vlasov equation 
[6] and the canonical bracket for the field equa- 
tions, which is the Marsden-Weinstein struc- 
ture. 
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The equation for f reads, in full, 

+ [(&+P -(g,AN+$‘]$ 

- 
( [ 
g, (P - (s, AN * A + Ao, $]> = 0. (79) 

From this, the particle density, 

P = 
I 

f d”p dNg, 

must satisfy 

(80) 

P + I (P - k A)) * 2 d”p dNg 

+I[(g,~A).(~-(g,A))].~d”pd~g=O. 

(81) 

The term in cTJA,,/c~x - aflap in (79) is an exact p 

derivative and has dropped out accordingly. So 
has the term in aflag, an exact g-derivative. 
Representing g, A, and A,, in some basis yields 

( [ g, (P - (8, A)) * A + -%I,$) 
= Gcgab - (g, A)) * Ab + &I$ 

c 

= - GANP - (g, AN - Ab + &If 

+ C&g,AC . Ab 

= - C&[(p - (g, A)). Ab + &I = 0, (82) 

which vanishes since the sum C;, vanishes. 
Therefore, 

b+V* (p-(g,A))fd”pdNg=O. 
I (83) 

Similarly, we may calculate the charge con- 

servation equation. We take 

G = 
I 

gf d”p dNg 

and obtain 

g + 
I 

g(p - (gA)) * 2 d”p dNg + 

+ 1 [g(g, $ A). (P - k A)]. $ d”p dNg 

(84) 

- I g -& Ciha t(P - (g, A)) * Ab + &I d”p dNg 
E 

= 0. (85) 

which simplifies to 

++v. 
I 

g&r - (g, Nlf d”p dNg 

+ 
I 

C$,g,[(p -(g, A)) *Ab + A;] d”p dNg = 0. 

036) 

This is the same as 

DTG+D*. 
I 

g(P - (g, &If 0 dNg = 0. (87) 

Similar equations may be calculated for 
higher moments of the momentum and charge. 
These, however, carry no more information 
than the Vlasov equation (79) itself and are 
much more cumbersome. If we go to the “cold 
plasma” approximation by taking 

f = Pk MP - mh t)m3 - $Hx, 0) (88) 

(an Ansatz which is preserved by the Vlasov 
equation), then f and all functionals of f depend 
only upon p, j, g. Consequently, the Hamil- 
tonian structure simplifies and we may derive 
equations for the functions p, a and g. This is 
the subject of the next section. 
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9. The cold plasma 

The state of a cold plasma is uniquely characterized by the following moments; 

P = fd”p dNg, 
I 

M = 
I 

pf d”p dNg = pp, 

G = gf d”p dNg = pg. 

(89) 

On the right we have expressed M and G, the momentum density and charge density, in terms of fi 
and g, which are introduced in (88). Suppose the Hamiltonian functional X depends on f through 
moments alone. By the chain rule, 

f must satisfy 

That is, 

One now calculates +/at; 

ap at=- 
Similarly, one calculates the equation for charge density, 

aG 
at=- I( g $$-$- [$(p.~)]$+(g. [~,$]))d”pdNg 

= -V.($$G)+ad*(g)G. 

The equation for momentum density is found to be 

aM 
at=- I ( 6x af a 8% 

p SM’dx-g 6p+’ ( .“““+(g,$!$)).$)d”pdNg 
SM 

= -(~.V)M-(v~).M-(div~)M-pV~-(G,V~) 

= -V($M)-(V$$M-pV$$-(G,V$$), (94 

(90) 

(76) 

(90 

(92) 

(93) 
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Thus we can express the Hamiltonian structure in terms of p, M, and G as 

(95) 

where the G-G term in the middle is to be read - ad*(SWGG)G, when expanded. To describe a 
barotropic fluid, we take as the Hamiltonian 

X= (IM - (G, A)12/2p - (G, A’} + U(p) + i(*Ei, Ei} + (*Ei, DiAJ + i(*Bb Bii)) d”x, (96) 

which is, apart from the term U(p), the restriction of the Hamiltonian (74) to a cold plasma. The 
Hamiltonian (96) is also the same as (32), in the isentropic case. The term U(p) is the internal energy 
density, which has been introduced so that the fluid will have a pressure. The fluid equations are 

z+ V * (p-‘G(M - (G, A))) + ad*(A’+ p-l(M - (G, A)). A)G = 0, 

F$!+pv($_l~) - (G, V(A” f p-‘(M - (G, A)). A) + V. ((M -F A))M) 

V”-jlG,A)).(M)=O, 

which are to be taken together with the field equations 

D* * “E + G = 0, DT*Ei - p-‘G(Mi -(G, Aj)) = D$*jjij, !$=E+DA! 

The fluid equations simplify considerably upon rewriting them in terms of the fluid velocity, 

u = $(M -(G, A)). 

Namely, 

$+V.(pv)=O, DTG + D* - (Go) = 0, 

and 

(97) 

(98) 

(99) 

m-a 

uou 
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where (v + B)i = viBii. Eq. (101) is the Yang-Mills analog of the equation of motion for a charged 

barotropic fluid. The first two terms compose the comoving derivative of u, the third is the 
generalization of the Lorentz force, and the last is the pressure term when aU/ap is taken to be the 
specific enthalpy of the fluid. 

The gauge-invariant Hamiltonian structure for the full color fluid equations (21) may be written 
immediately now, by analogy with (95), as 

a 
Ti 

P 

u 

G 

M 

'Ei 

4 

=- 

0 0 0 vjP 0 0 

0 0 0 VjU 0 0 

0 0 -ad*( )G VjG 0 0 

Pvi UVi GVi (VjMi + MjVi) 0 0 

0 0 0 0 0 Sij 

0 0 0 0 - Sij 0 

where M = pu + (G, A) is the total momentum density and s(e is the Hamiltonian given in eq. (32). The 
corresponding bracket is eq. (38), with M in (35) replaced by M. 

10. Interpretation of the Poisson bracket 

Every Hamiltonian matrix such as (102) 
linearly dependent upon the field variables must 
come from a certain Lie algebra [7,8,9]. In this 
section we determine the Lie algebra which is 
responsible for the linear part of our matrix 
(102). The bracket (102) is a direct sum of two 
parts: the field part, (E, A), which is canonical; 
and the fluid part, (Mi, G,, p, a), which is not 
canonical. We restrict ourselves to the non- 
canonical fluid part. The procedure we follow is 
explained in detail in [2]. 

Consider a free C”(R”)-module L of dimen- 
sion n + N + 2. For any two elements in L, 
P = (Xi, Y”, Za), and Q = (&,, Yb, z@), 1 CC i, j 5 
n, lSo,bSN=dim@, l~a,Bs2, there is a 
bracket between them defined by formula (32) 

of 121, 

(u, [P, Q]) = P’BQ (mod ImD), (103) 

where: u stands for variables Ml, G,, p 

and a; (u, B) denotes UkBk> k= 

1 ,*a*, n + N + 2; Im D = X;=, Im a/ax,. Using our 
matrix B from eq. (102) one finds components 

of [P, Ql: 

[P, Q]i = XjXi, j - ZjXi, j; (104) 

[P, Q]” = YaYbCzb + XiP; - XiY ;, 
c= ,..., 1 N; (105) 

[P, Q]” = XiZ; - XiZ;. (W 

We see from (104) that the X-parts commute 
as vector fields {Xia/axi}; while (106) shows that 
{Z”) serve as coordinates in C”(W”)(a) ((106) is 
formula (43) of [21). 

Formula (105) is a new feature, not encoun- 
tered in refs. 2 and 3. This part of the bracket 
can be interpreted as follows. 

Denote by 6 the set of smooth functions on 
W” with values in a Lie algebra 6 Pointwise 
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multiplication naturally makes 6 into a Lie al- 
gebra. Now the Lie algebra S~(lw”) of vector 
fields on R” acts on C% by derivations, 

XCf”(x)Oe,) = Xcf”(x))Oe,, (107) 

for any basis e, in (8. Thus we can form the new 
Lie algebra B(R”> 8 6 (semidirect product; see 
[2], section 4). Formula (105) is the component 
representation of the bracket in ka(R”)@@. In- 
deed, let us take two elements from B(R”)CJ 6: 
(X; Y) = (Xia/aXi; Y” Bee,) and similarly for 
(2; Y). Then the bracket of these elements is 

[(Xi n G; n1= (LX, 21; xm 

- X(Y) + [Y, 81). (108) 

The [X, _%I part of (108) is, of course, just (104). 
The rest is 

X(P)-X(Y)+[Y, PI 

= {XiY: - XiYfi + Y”YbGzb}@ e,, 

which is exactly (105). 

(109) 

This reasoning results in the following 

Proposition. The natural Poisson bracket on the 
dual space of the Lie algebra 

S(R”)SB $ C”(R”)$ C”(R”)) (110) 

is the noncanonical part of the Yang-Mills 
hydrodynamical Poisson bracket (102). 

We comment briefly on the case when we 
have an arbitrary n-dimensional manifold M 
instead of R”. 

Let V: T(M)+M be the tangent bundle of 
M. Let us add to v the trivial bundle (US’@@) x 

M+M, and denote the resulting bundle by II: 
E+ M. Let l-‘(H) be the set of sections of II, 
which can be thought of as the geometric ver- 
sion of the Lie algebra (110). Since II is a vector 
bundle, the cotangent bundle Hi: T*(H) + M 

(see [lo], ch. III) can be reduced to have the 
same dimension of fibers as that of II itself. The 
sections of ii are analogs of the elements of the 
dual space of the Lie algebra (110). 

For any two Hamiltonians H and G, which 
are n-dimensional horizontal forms on the jet 
bundle 0,: J”fi + A4 ([lo], ch. III), the “func- 
tional derivatives” have a natural interpretation 
in terms of the Lie algebra I’(H). Applying then 
the standard procedure which makes a new Lie 
algebra out of functions on the dual space to a 
Lie algebra (see, e.g. [9]) we arrive at a Poisson 
bracket, which is exactly the non-canonical part 
of our bracket (102) when written in local coor- 
dinates. Thus we may construct globally a 
Poisson bracket over the manifold M which 
when written locally is identical to that con- 
structed for R”. 

11. Conclusion 

We have derived the Hamiltonian structure 
(102) for a classical fluid which carries a Yang- 
Mills field. In physical variables, this Hamil- 
tonian structure is expressible as a direct sum, 

*(M;o,p,G)$(E;A). (111) 

The physical picture of the dynamics follows 
accordingly. The quantities u, p, G are dragged 
along in the fluid motion by Lie-derivation with 
respect to the “minimal-coupling” momentum 
density, M = pu + (G, A). This fluid motion is a 
source for the Yang-Mills field, which in turn 
exerts a Lorentz force on the fluid. Hence, the 
Lie algebraic description of the Yang-Mills fluid 
equations, considered as a Hamiltonian system, 
places fluid dynamics and field equations into a 
geometrical framework which mirrors the 
underlying physics. The abelian case has ap- 
plications in electromagnetic plasma theory 
(see, e.g., [2], [31, and [S]). Two areas in physics 
where the non-abelian description could be 
useful are in (a) condensed-matter theories, e.g., 
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the theory of spin-glasses, which is based upon 
the O(3) Yang-Mills algebra, and (6) self-gravi- 
tating fluids in general relativity, which can be 
regarded as a Yang-Mills theory based upon the 
SL(2, C) algebra. 
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