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Among the many possible topics concerning how
autonomous intelligent systems should be designed, I
will focus on one that is close to work with which I am
familiar. A core problem on which much more work
needs to be done is how to design systems that can
autonomously learn, recognize, and perform complex
tasks in a rapidly changing environment. Such self-
organizing systems should also be able to interact
effectively with humans and other self-organizing
systems in order to achieve goals cooperatively.

In order to make the interface between human and
system as seamless as possible, biological designs,
notably designed inspired by and even emulating
brain architectures, will be helpful. The list of possible
applications is incredibly long, ranging from
autonomous search and data base management tools
on the world wide web, medical data base prediction
to help doctors and other health professionals,
classifiers of complex imagery of multiple types, new
approaches to speech perception in noisy multi-
speaker environments, and controllers of autonomous
mobile robots, to models of normal brain and
behavior, and predictions about how different brain
lesions can generate the behavioral symptoms of
mental disorders.

Available results have already suggested that the
brain designs for sensory and cognitive processes
differ from, and are even computationally
complementary to, the designs for spatial navigation
and action. This complementarity can be noticed by
observing that cognitive knowledge needs to
accumulate in a stable way over a period of years,
with new knowledge not accidentally erasing
previously learned, but still useful, knowledge. This is
the familiar problem of “catastrophic forgetting”. In
contrast, the parameters that control action need to be
continually updated in order to adapt to changes,
including damage, to motor effectors. Here,
catastrophic forgetting is a useful property. Thus,

these systems will need to incorporate new ideas
about parallel processing between information
subsystems that compute complementary properties.

The design of increasingly autonomous intelligent
agents will also require an end-to-end approach, in
which all the aspects of perception, cognition,
emotion, and action are realized in a single system.
Feedback cycles of information processing need to be
designed from perception through action and then
back to perception again, mediated by feedback
through the environment. Such cycles of information
processing can evaluate the effects of system
performance on the environment, and modify the
system where needed to achieve better environmental
control. It has also become clear that, in addition to
these externally mediated cycles of information
processing with the environment, internally mediated
feedback is needed to achieve autonomous system
properties. Such internal feedback realizes properties
of intentionality and attention that are characteristic
of biological intelligence. The design of self-
organizing feedback systems will require a deeper
analysis of nonlinear systems, since various types of
nonlinearity are needed to achieve key system
properties that depend on feedback, such as the
stability of fast learning in a changing environment.

One example of such an autonomous system is the
primate cerebral cortex. All sensory and cognitive
neocortex is organized into laminar circuits, wherein
bottom-up, top-down, and horizontal connections are
synthesized into a unified design. Recent modeling
(Grossberg, 1999; Grossberg, Mingolla, and Ross,
1997; Grossberg and Raizada, 2000; Grossberg and
Williamson, 2000) has clarified how these laminar
circuits are designed (Figure 1) to simultaneously
achieve at least three properties: (1) stable
development and learning of circuit connections and
adaptive weights in response to a changing world,
thereby providing a solution of the stability-



plasticity dilemma ; (2) a seamless fusion of bottom-
up data-driven processing and top-down intentional
processing whereby high-level constraints can
selectively focus attention upon important
information; and (3) the coherent grouping or binding
of spatially distributed information into
representations of objects and events, while
suppressing noise and weaker groupings, without a
loss of analog sensitivity to input values, the so-
called property of analog coherence.

The design of more subtle decision making processes
in an autonomous agent will require more
sophisticated cognitive-emotional interactions,
whereby the information acquired through cognitive
processing is evaluated and selected in terms of

internal system values and goals. Such interactions
help to direct attention selectively to those subsets of
information that predict future success in achieving
system goals. Designs for such systems need to be
able to use unsupervised learning when no evaluative
feedback is available, but to be able to switch to
supervised learning whenever such feedback is
available. In a self-organizing autonomous learning
system, both unsupervised and supervised learning
need to be able to operate without a change of system
design. Taken together, these constraints point to the
development of new types of self-organizing parallel
processing systems wherein nonlinear feedback
within the system and between system and world help
the system to rapidly adapt to a changing world, and
thereby to better represent, predict and control it.
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Figure Caption

Figure 1. Some model cell interactions between the
lateral geniculate nucleus (LGN) and cortical areas V1
and V2 for perceptual grouping and attention:
Excitatory connections are shown with open symbols.
Inhibitory interneurons are shown filled-in black. (a):
The LGN provides bottom-up activation to layer 4 via
two routes. Firstly, it makes a strong connection
directly into layer 4. Secondly, LGN axons send
collaterals into layer 6, and thereby also activate layer
4 via the 6 Õ 4 on-center off-surround path. Thus, the
combined effect of the bottom-up LGN pathways is to
stimulate layer 4 via an on-center off-surround, which
provides divisive contrast normalization of layer 4 cell
responses. (b): Folded feedback  carries attentional
signals from higher cortex into layer 4 of V1, via the
modulatory 6 Õ 4 path. Corticocortical feedback
axons tend preferentially to originate in layer 6 of the
higher area and to terminate in the lower cortex's layer
1, where they can excite the apical dendrites of layer 5
pyramidal cells whose axons send collaterals into
layer 6. Several other routes through which feedback
can pass into V1 layer 6 exist. Having arrived in layer
6, the feedback is then "folded" back up into the
feedforward stream by passing through the 6 Õ 4 on-
center off-surround path. (c): Connecting the 6 Õ 4
on-center off-surround to the layer 2/3 grouping
circuit: like-oriented layer 4 simple cells with opposite
contrast polarities compete (not shown) before
generating half-wave rectified outputs that converge
onto layer 2/3 complex cells in the column above
them. Like attentional signals from higher cortex,
groupings which form within layer 2/3 also send
activation into the folded feedback  path, to enhance
their own positions in layer 4 beneath them via the 6
Õ 4 on-center, and to suppress input to other
groupings via the 6 Õ 4 off-surround. There exist
direct layer 2/3 Õ 6 connections in macaque V1, as
well as indirect routes via layer 5. (d): Top-down
corticogeniculate feedback from V1 layer 6 to LGN
also has an on-center off-surround anatomy, similar to
the 6 Õ 4 path. The on-center feedback selectively
enhances LGN cells that are consistent with the
activation that they cause, and the off-surround
contributes to length-sensitive (endstopped)
responses that facilitate grouping perpendicular to
line ends. (e): The entire V1/V2 circuit: V2 repeats the
laminar pattern of V1 circuitry, but at a larger spatial
scale. In particular, the horizontal layer 2/3
connections have a longer range in V2, allowing
above-threshold perceptual groupings between more
widely spaced inducing stimuli to form. V1 layer 2/3
projects up to V2 layers 6 and 4, just as LGN projects
to layers 6 an 4 of V1. Higher cortical areas send

feedback into V2 which ultimately reaches layer 6, just
as V2 feedback acts on layer 6 of V1. Feedback paths
from higher cortical areas straight into V1 (not shown)
can complement and enhance feedback from V2 into
V1.



The Neurodynamics of Intentionality in Animal Brains May Provide a
Basis for Constructing Devices that are Capable of Intelligent Behavior
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ABSTRACT

Intelligent behavior is characterized by flexible and creative pursuit of
endogenously defined goals.  It has emerged in humans through the
stages of evolution that are manifested in the brains and behaviors of
other animals.  Intentionality is a key concept by which to link brain
dynamics to goal-directed behavior.  The archetypal form of
intentional behavior is an act of observation through time and space,
by which information is sought for the guidance of future action.
Sequences of such acts constitute the key desired property of free-
roving, semi-autonomous devices capable of exploring remote
environments that are inhospitable for humans.  Intentionality
consists of the neurodynamics by which images are created of future
states as goals, of command sequences by which to act in pursuit of
goals, of predicted changes in sensory input resulting from intended
actions (reafference) by which to evaluate performance, and
modification of the device by itself for learning from the
consequences of its intended actions.  These principles are well
known among psychologists and philosophers.  What is new is the
development of nonlinear mesoscopic brain dynamics, by which
using chaos theory to understand and simulate the construction of
meaningful patterns of neural activity that implement the perceptual
process of observation.  The prototypic hardware realization of
intelligent behavior is already apparent in certain classes of robots.
The chaotic neurodynamics of sensory cortices in pattern recognition
is ready for hardware embodiments, which are needed to provide the
eyes, noses and ears of devices for survival and autonomous
operation in complex and unpredictable environments.

Key Words: Chaos theory, Intentionality, Mesoscopic Brain
dynamics, Perception, Reafference

1.0 Neurodynamics of intentionality in the
behavioral act of observation

1.1  The properties of intentionality

The first step in pursuit of an understanding of intentionality
is to ask, what happens in brains during an act of observation?
This is not a passive receipt of information from the world.  It is a
purposive action by which an observer directs the sense organs
toward a selected aspect of the world and interprets the resulting
barrage of sensory stimuli.  The concept of intentionality has been
used to describe this process in different contexts, since its first use
by Aquinas in 1272 [1].  The three salient characteristics of
intentionality as it was developed by him are (a) intent or

directedness toward some future state or goal, (b) wholeness, and
(c) unity [12].  These three aspects correspond to current use of
the term in psychology [with the meaning of purpose], in medicine
[with the meaning of mode of healing and integration of the body],
and in analytic philosophy [with the meaning of the way in which
beliefs and thoughts are connected with ("about") objects and
events in the world, also known as the symbol-grounding problem].

Intent comprises the endogenous initiation, construction, and
direction of behavior into the world.  It emerges from brains.
Humans, animals and autonomous robots select their own goals,
plan their own tactics, and choose when to begin, modify, and stop
sequences of action.  Humans at least are subjectively aware of
themselves acting, but consciousness is not a necessary property
of intention.  Unity appears in the combining of input from all
sensory modalities into Gestalts, in the coordination of all parts of
the body, both musculoskeletal and autonomic, into adaptive,
flexible, yet focused movements.  Subjectively, unity appears in
the awareness of self and emotion, but again this is not intrinsic to
intention.  Wholeness is revealed by the orderly changes in the self
and its behavior that constitute the development, maturation and
adaptation of the self, within the constraints of its genes or design
principles, and its material, social and industrial environments.
Subjectively, wholeness is revealed in the remembrance of self
through a lifetime of change, although the influences of accumulated
and integrated experience on current behavior are not dependent on
recollection and recognition.  In brief, simulation of intentionality
should be directed toward replicating the mechanisms by which
goal states are constructed, approached and evaluated, and not
toward emulating processes of consciousness, awareness, emotion,
etc. in machines.

1.2 The limbic system is the  chief organ of intentional
behavior

Brain scientists have known for over a century that the
necessary and sufficient part of the vertebrate brain to sustain
minimal intentional behavior is the ventral forebrain, including
those components that comprise the external shell of the
phylogenetically oldest part of the forebrain, the paleocortex, and
the deeper lying nuclei with which the cortex is connected.  These
components suffice to support remarkably adept patterns of
intentional behavior, in dogs after all the newer parts of the
forebrain have been surgically removed [17], and in rats with
neocortex chemically inactivated by spreading depression [3].
Intentional behavior is severely altered or absent after major
damage to the medial temporal lobe of the basal forebrain, as
manifested most widely in Alzheimer's disease.



Phylogenetic evidence comes from observing intentional
behavior in salamanders, which have the simplest of the existing
vertebrate forebrains [21, 28].  The three main parts are sensory
(which, as in small mammals, is predominantly olfactory), motor,
and associational (Figure 1).  These parts can be judged to comprise
the limbic system in all vertebrates, but in the salamander they
have virtually none of the "add-ons" found in brains of higher
vertebrates, hence the simplicity. The associational part contains
the primordial hippocampus with its interconnected septum and
amygdaloid nuclei, striatal nuclei, which are identified in higher
vertebrates as the locus of the functions of spatial orientation (the
"cognitive map") and temporal integration in learning (the
organization of long and short term memory).  These processes are
essential, inasmuch as intentional action takes place into the world,
and even the simplest action, such as searching for food or evading
predators, requires an animal to know where it is with respect to
its world, where its prey or refuge is, and what its spatial and
temporal progress is during sequences of attack or escape.  The
feedback loops that support the flow of neural activity in the
neurodynamics of intentionality are schematized in Figure 2.

Figure 1.  This schematic illustrates the sensory, motor, and
associational components of the right hemisphere (seen from
above) of the simplest extant vertebrate brain in the salamander.
The bidirectional connections between these 3 major subdivisions
of the forebrain provide for the macroscopic interactions that
support the neurodynamics of the process of intentionality: goal
formation, action, perception, and learning from the sensory
consequences of the action taken into the environment.  These
components are form the prototype of the limbic system, which is
found in all vertebrate brains, typically buried within exuberant
growth of other "add-on" structures that operate in concert with
the limbic system.

1.3 Neurodynamic manifestations of intentionality in brain
activity of the primary sensory cortices: the  EEG
(electroencephalogram , 'local field potential' )

The crucial question for neuroscientists is, how are the
patterns of neural activity that sustain intentional behavior
constructed in brains prior to perception?  An answer is provided
by studies of electrical activity of the primary sensory cortices of
animals that  trained to respond to conditioned stimuli [2, 8, 10-12,

14, 22, 23].  The construction is not by recall of stored patterns
but by pattern formation in distributed nonlinear systems with
connections that have been modified cumulatively through learning.
The manner in which this take place involves hierarchical ordering
of neural activity between microscopic, mesoscopic and
macroscopic levels having differing time and space scales.  Cortical
neurons are selectively activated by sensory receptors and made to
generate microscopic activity in the form of trains of action
potentials (pulses) on their axons..  These and neighboring neurons
by their synaptic interactions form a population forms that "binds"
their activity into mesoscopic patterns 14, 18, 19, 29, 30].  These
mesoscopic brain activity patterns are revealed by electrical fields
of potential (EEGs) generated by interactive masses of neurons are
induced by the arrival of stimuli, which trigger sequences of 1st
order state transitions.  These sequential states in turn converge
into integrated macroscopic patterns that occupy the entirety of
each cerebral hemisphere and give rise to the global patterns of
brain activity, that may be related to the patterns of metabolic
activity that are revealed by non-invasive brain imaging (fMRI,
PET, SPECT, etc.).

Figure 2.  This diagram of brain state space maps the multiple
feedback loops that support the intentional arc.  Flow of neural
activity inside the brain is in two directions.  Forward flow from
the sensory systems to the entorhinal cortex and on to the motor
systems is by spatial AM patterns of action potentials at the
microscopic level, by which transmitting cortices drive the neurons
in their targets.  Feedback flow from the motor systems to the
entorhinal cortex by control loops, and from the entorhinal cortex
to the sensory systems inside the brain, is by spatial AM patterns
of action potentials at the mesoscopic level.  This feedback
constrains and modulates the microscopic activity in the forwardly
transmitting populations.  The mesoscopic feedback messages are
order parameters that bias the attractor landscapes of the sensory
cortices in preafference.  Forward flow supports motor output and
provides the content of percepts.  Feedback flow supports
integrative processes in learning that lead to the wholeness of
intentionality.  They enable the formation of a macroscopic AM
pattern that reflects the integration of the activity of an entire
hemisphere.



Owing to the nonlinear state transitions by which they form,
these mesoscopic brain states are not representations of stimuli,
nor are they simple effects caused by stimuli.  Each learned
stimulus serves to elicit the construction of a pattern that is shaped
by the synaptic modifications between cortical neurons from prior
learning, which vastly outnumber the synapses formed by
incoming sensory axons, and also by the brain stem nuclei that
bathe the forebrain in neuromodulatory chemicals.  Each cortical
activity pattern is a dynamic operator that creates and carries the
meanings of stimuli for the recipient animal.  It reflects the
individual history, present context, and expectancy, corresponding
to the unity and the wholeness of the intentionality.  The patterns
created in each cortex are unique to each animal.  All sensory
cortices transmit their signals into the limbic system, where they
are integrated with each other over time, and the resultant
integrated meaning is transmitted back to the cortices in the
processes of selective attending, expectancy, and the prediction of
future inputs, which together comprise the neural process of
"reafference".

The same kinds of EEG activity as those found in the sensory
and motor cortices are found in various parts of the limbic system.
This discovery indicates that the limbic system also has the
capacity to create its own spatiotemporal patterns of neural
activity.  They are related to past experience and convergent
multisensory input, but they are self-organized.  The limbic system
provides a neural matrix of interconnections, that serves to generate
continually the neural activity that forms goals and directs behavior
toward them.  EEG evidence shows that the process occurs in
discontinuous steps, like frames in a motion picture.  Each step
follows a dynamic state transition, in which a complex assembly of
neuron populations jumps suddenly from one spatiotemporal
pattern to the next, as the behavior evolves.   Being intrinsically
unstable, the limbic system continually transits across states that
emerge, spread into other parts of the brain, and then dissolve to
give rise to new ones, a process that Japanese mathematicians have
described as "chaotic itinerancy" between "attractor ruins"  [34].
Its output controls the brain stem nuclei that serve to regulate its
own excitability levels, implying that it regulates its own
neurohumoral context, enabling it to respond with equal facility to
changes that call for arousal and adaptation or rest and recreation,
both in the body and the environment.  It may be said that the
neurodynamics of the limbic system, assisted by other parts of the
forebrain such as the frontal lobes, initiates the novel and creative
behavior seen in search by  trial and error.

The limbic activity patterns of directed arousal and search are
sent into the motor systems of the brain stem and spinal cord.
Simultaneously, patterns are transmitted to the primary sensory
cortices, preparing them for the consequences of motor actions.
This process has been called "reafference" [12, 35], "corollary
discharge" [32], "focused arousal" [29] and "preafference" [22, 23].
It sensitizes sensory systems to anticipated stimuli prior to their
expected times of arrival   Sensory cortical constructs consist of
brief staccato messages to the limbic system, which convey what is

sought and the result of the search.  After multisensory
convergence, the spatiotemporal activity pattern in the limbic
system is up-dated through temporal integration in the
hippocampus.  Between sensory messages there are return up-
dates from the limbic system to the sensory cortices, whereby each
cortex receives input that has been integrated with the output of
the others, reflecting the unity of intentionality.  Everything that a
human or an animal knows comes from this iterative circular
process of action, reafference, perception, and up-date.  It is done
by successive frames that involve repeated state transitions and
self-organized constructs in the sensory and limbic cortices.  This
neurodynamic system is defined here as the "limbic self" in the
brain of an individual, where intentional behavior is created, with
help from other parts of the forebrain.

An act of observation comprises Aquinas' intentional action of
"stretching forth" and learning from the consequences.  It embodies
the existential "action-perception cycle" of Merleau-Ponty [26].  It
corresponds to Piaget's [27]cycle of "action, assimilation, and
adaptation" in the sensorimotor stage of childhood development.
His postulated sequences of equilibrium, disequilibrium, and re-
equilibration conform to state transitions in brain dynamics, which
initiate and sustain action, construct dynamic patterns in the
sensory cortices, and up-date the limbic patterns by modifying
synapses in the learning that follows the sensory consequences of
intended actions.  For Piaget, cause and effect are chains of events
that have the appearance of linkage corresponding to the unfolding
experience of that exploration, by which a child is trying to make
sense of its world by manipulating objects in it.  The origin of
causal inference is buried deeply in the pre-linguistic exploratory
experience of each of us.  It is not easily accessed by cognitive
analysis or introspection.

We are all aware of our acts of observation.  It is partly by
expectation of what we are looking for through reafference, partly
by perceiving the changes that our actions make in the dispositions
of our bodies through proprioception, and partly by our selection
of stimuli from the environment through exteroception.  We
perceive our intentional acts as the "causes" of changes in our
perceptions, and the subsequent changes in our bodies as "effects"
[12].  If this hypothesis of limbic dynamics is correct, then
everything that we know we have learned through the action-
perception cycle, including the iterative state changes by which it is
produced in brains of animals and humans.  It is this cycle, in
prototypic form without need for appeal to consciousness, that
must be simulated in our attempts to devise intelligent machines.

2.0 Characteristics of brain states as they are
revealed by EEGs

The "state" of the brain is a description of what it is doing in
some specified time period.  A state transition occurs when the
brain changes and does something else.  For example, locomotion is
a state, within which walking is a rhythmic pattern of activity that
involves large parts of the brain, spinal cord, muscles and bones.
The entire neuromuscular system changes almost instantly with the
transition to a pattern of jogging or running.  Similarly, a sleeping



state can be taken as a whole, or divided into a sequence of slow
wave and REM stages.  Transit to a waking state can occur in a
fraction of a second, whereby the entire brain and body shift gears,
so to speak.  The state of a neuron can be described as active and
firing or as silent, with sudden changes in the firing manifesting
state transitions.  Populations of neurons also have a range of
states, such as slow wave, fast activity, seizure, or silence.  The
mathematics of nonlinear dynamics is designed to study these
states and the transitions by which they are accessed and
abandoned.

2.1 The problem of stability of cortical states

The most critical question to ask about a state is its degree of
stability or resistance to change.  Evaluation is done by perturbing
an object or a system [8].  For example, an object like an egg on a
flat surface is unstable, but a coffee mug is stable.  A person
standing on a moving bus and holding on to a railing is stable, but
someone walking in the aisle is not.  If a person regains his chosen
posture after each perturbation, no matter in which direction the
displacement occurred, that state is regarded as stable, and it is said
to be governed by an attractor.  This is a metaphor to  say that the
system goes ("is attracted") to the state through an interim state of
transience.  The range of displacement from which recovery can
occur defines the basin of attraction, in analogy to a ball rolling to
the bottom of a bowl.  If the perturbation is so strong that it causes
concussion or a broken leg, and the person cannot stand up again,
then the system has been placed outside the basin of attraction, and
a new state supervenes with its own attractor and basin.

Stability is always relative to the time duration of observation
and the criteria for what is chosen to be observed.  In the
perspective of a lifetime, brains appear to be highly stable, in their
numbers of neurons, their architectures and major patterns of
connection, and in the patterns of behavior they produce, including
the character and identity of the individual that can be recognized
and followed for many years.  Brains undergo repeated transitions
from waking to sleeping and back again, coming up refreshed with a
good night or irritable with insomnia, but still, giving the same
persons as the night before.  Personal identity is usually quite
stable.  But in the perspective of the short term, brains are highly
unstable.  Thoughts go fleeting through awareness, and the face and
body twitch with the passing of emotions.  Glimpses of their
internal states of neural activity reveal patterns that are more like
hurricanes than the orderly march of symbols in a computer.  Brain
states and the states of populations of neurons that interact to give
brain function, are highly irregular in spatial form and time course.
They emerge, persist for a small fraction of a second, then
disappear and are replaced by other states.  It is the flexibility and
creativeness of this process that makes it so successful in animals
for their adaptation to rapidly changing and unpredictable
environments, and that makes it the desired platform on which to
base the design of intelligent machines.

2.2 Three types of stable cortical states

In using dynamics we approach the problem by defining three
kinds of stable state, each with its type of attractor.  The simplest
is the point attractor.  The system is at rest unless perturbed, and
it returns to rest when allowed to do so.  As it relaxes to rest, it has
the history of what happened, but that history is lost after
convergence to rest.  Examples of point attractors are silent
neurons or neural populations that have been isolated from the
brain, and also the brain that is depressed into inactivity by injury
or a strong anesthetic, to the point where the EEG has gone flat
(Figure 3, bottom trace).  A special case of a point attractor is
noise.  This state is observed in populations of neurons in the brain
of a subject at rest, with no evidence of overt behavior.  The
neurons fire continually but not in concert with each other. Their
pulses occur in long trains at irregular times.  Knowledge about the
prior pulse trains from each neuron and those of its neighbors up to
the present fails to support the prediction of when the next pulse
will occur.  The state of noise has continual activity with no
history of how it started, and it gives only the expectation that its
amplitude and other statistical properties will persist unchanged.

A system that gives periodic behavior is said to have a limit
cycle attractor.  The classic example is the clock.  When it is
viewed in terms of its ceaseless motion, it is regarded as unstable
until it winds down, runs out of power, and goes to a point
attractor.  If it resumes its regular beat after it is re-set or otherwise
perturbed, it is stable as long as its power lasts.  Its history is
limited to one cycle, after which there is no retention of its
transient approach in its basin to its attractor.  Neurons in
populations rarely fire periodically, and when they appear to do
so, close inspection shows that the activities are in fact irregular
and unpredictable in detail, and when periodic activity does occur,
it is either intentional, as in rhythmic drumming, clapping and
dancing, or it is pathological, as in the periodic oscillations of the
eyes in nystagmus, or of the limbs during Parkinsonian tremor, or
of the cortex during the hypersynchrony of partial complex
seizures that are revealed by near-periodic spike trains (Figure 3,
top trace).



Figure 3.  Four levels of function of the olfactory system are
revealed by EEG recording.  The lowest is the non-interactive
'open loop' state imposed by deep anesthesia, which suppresses
brain activity.  The next is the resting steady state with broad
spectrum 1/f2 aperiodic waves.  The aroused level in which
behavior is generated is shown by the repeated state transitions,
by which bursts are formed that reveal spatial patterns of AM
(amplitude modulation) relating to odorant recognition with
inhalation.  The upper trace shows the pattern of high-amplitude
spikes when an epileptic seizure has been triggered by powerful
electrical stimulation.  This state is likewise chaotic, but with a
reduced correlation dimension.  This state also occurs during
recovery from deep anesthesia on the way to the resting state [9,
31].

The third type of attractor gives aperiodic oscillation of the
kind that is observed in recordings of EEGs.  There is no one or
small number of frequencies at which the system oscillates.  The
system behavior is therefore unpredictable, because performance
can only be projected far into the future for periodic behavior.
This type is now widely known as "chaotic".  The existence of this
type of oscillation was known to Poincaré a century ago, but
systematic study was possible only recently after the full
development of digital computers.  The best known systems with
chaotic attractors have a small number of components and a few
degrees of freedom, as for example, the double-hinged pendulum,
the dripping faucet, and the Lorenz, Chua, and Rössler attractors
[13].  These simple models are stationary, autonomous, and noise-
free, forming the class of "deterministic chaos".   Large and complex
real-world systems, which include neurons and neural populations
are noisy, infinite-dimensional, nonstationary, non-autonomous,
yet capable of chaotic behavior which has been called "stochastic
chaos" [14].  The source is postulated to be the synaptic
interaction of millions of neurons, which create fields of
microscopic noise in cortex, but which are constrained by their own
interactions to generate mesoscopic order parameters that regulate
the spatiotemporal patterns of cortical activity revealed by the
EEG.  These spatiotemporal patterns are revealed by spatial
patterns of amplitude modulation ("AM patterns") of a spatially
coherent aperiodic carrier wave in the gamma range of the EEG.
They appear in time series as bursts of oscillation (Figure 3), and
their spatial patterning indicates the existence of an attractor
landscape, which is actualized in the olfactory system with each
inhalation (Figures 4 and 5 during intentional behavior.

Figure 4.  A bifurcation diagram of the olfactory system state space
is constructed from the EEGs in Figure 3.

The discovery that brain dynamics operates in chaotic
domains has profound implications for the study of higher brain
function [31].  A chaotic system has the capacity to create novel
and unexpected patterns of activity.  It can jump instantly from
one mode of behavior to another, which manifests the facts that it
has a collection of attractors, each with its basin, and that it can
move from one to another in an itinerant trajectory [34].  It retains
in its pathway across its basins its history, which fades into its
past, just as its predictability into its future decreases.  Transitions
between chaotic states constitute the dynamics that we need to
understand how brains perform such remarkable feats as
abstraction of the essentials of figures from complex, unknown and
unpredictable backgrounds, generalization over examples of
recurring objects never twice appearing the same, reliable
assignment to classes that lead to appropriate actions, and constant
up-dating by learning.



Figure 5.  This perspective drawing of a projection from an
infinite dimensional brain state space into 3-space offers a view of
how an attractor landscape of learned basins of attraction is created
with each inhalation.  The selection is made by the input odorant.
If the stimulus is novel or unknown, the system goes into the
chaotic well, which provides the aperiodic umpatterned activity
that drives Hebbian learning for new basin formation.

2.3  The 1st order cortical state transition is an elemental step in
intention

Systems such as neurons and brains that have multiple chaotic
attractors also have point and limit attractors, each with its basin of
attraction, which serves to provide the generalization gradient
required for perception of recurring stimuli that are never twice the
same.  If the basin is that of a point or a limit cycle attractor, the
system can proceed predictably to an identical end state.  If the
basin leads to a chaotic attractor, the system goes into ceaseless
fluctuation, as long as its energy lasts.  If the starting point is
identical on repeated trials, which can only be assured by
simulation of the dynamics on a digital computer, the same
aperiodic behavior appears.  If the starting point is changed by an
arbitrarily small amount, although the system is still in the same
basin, the trajectory is not identical.  A deterministic chaotic
system that is in the basin of one of its chaotic attractors is
legendary for its sensitivity to the initial conditions.  If the
difference in starting conditions is too small to be originally
detected, it can be inferred from the unfolding behavior of the
system, as the difference in trajectories becomes apparent.  This
observation shows that a chaotic system has the capacity to create

novel patterns constituting endogenous increases in information in
the course of continually constructing its own trajectory into the
future.

Our EEG evidence indicates that every primary sensory
cortex maintains multiple basins corresponding to previously
learned classes of stimuli, as well as to the unstimulated state,
which together form an attractor landscape. They all show evidence
that the vehicle they use for transmission of their output is an
aperiodic carrier wave that is amplitude-modulated in the two
spatial dimensions of cortical coding, and that is gated by extra-
cortical forcing functions in the theta range (2-7 Hz). We note that
we predicted a common code for all sensory systems, on the basis
that the signals from all sensory cortices must be combined in the
limbic system to form gestalts. We postulate that preafferent input
from the limbic system can serve to bias the landscapes in such a
way as to facilitate the capture of the multiple sensory systems by
basins of the attractors corresponding to the goal of the intended
observation, perhaps in the manner of the variable tiling in a
Voronoi diagram.  This chaotic prestimulus state of expectancy
establishes the sensitivities of the cortices, so that the very small
number of sensory action potentials evoked by the expected
stimuli can simultaneously carry the cortical trajectories into the
basins of the appropriate attractors as they are created by the
forcing function, in the case of olfaction by inhalation (Figure 5),
irrespective of which equivalent receptors actually receive the
expected stimuli in the different sensory modalities.  In the absence
of the stimulus, the cortices continue to transmit their outputs to
the limbic system, confirming the continuing absence.  The stimuli
are also selected by the limbic system through orientation of the
sensory receptors in space by sniffing, looking, and listening. We
believe that the basins of attraction in each of the sensory cortices
are shaped by limbic input to sensitize them for receiving and
processing the desired class of stimuli in every modality, whatever
may be the goal at the moment of choice.

3.0 Problems in use of chaotic dynamics in the
development of advanced machine
intelligence

Chaotic dynamics has proved to be extremely difficult to
harness in the service of intelligent machines. Most studies that
purport to control chaos either find ways to suppress it and
replace it with periodic or quasiperiodic fluctuations, or to lock
two or more oscillators into synchrony sharing a common aperiodic
wave form, often as an optimal means for encryptation and secure
transmission. Our aim is to employ chaotic dynamics as the means
for creating novel and endogenous space-time patterns, which must
be the means to achieve any significant degree of autonomy in
devices that must operate far from human guidance, where in order
to function they must make up their courses of action as they go
along. We know of no other way to approach a solution to the
problem of how to introduce creative processes into machines,
other than to simulate the dynamics we have found in animal
brains. To be sure, there are major unsolved problems in this
approach, chief among them that we know too little about the
dynamics of the limbic system.  Hence we find it necessary to



restrict the development of hardware models to the stage of brain-
world interaction that we know best, which is the field of
perception.  In brief, what are the problems in giving eyes, ears and
a nose to a robot, so that it might learn about its environment in
something like the way that even the simpler animals do - by
creating hypotheses and testing them through their own actions?

3.1 Noise stabilization of chaotic dynamics, opening the way to
analog-digital hybrid embodiments

The operations in the olfactory system by which the state
transitions and pattern constructions for pattern classification are
simulated in software and hardware embodiments have been
described in a series of publications [9-12, 14]. Our simulations are
done with a set of approximately 920 interconnected first-order
nonlinear ordinary differential equations, forming what we have
named the KIII model [8]. The basic element, the KO set, is a 2-
stage linear integrator simulated in hardware [6, 7] by 2 operational
amplifiers, whose output is passed through an asymmetric sigmoid
function modeled by 2 diodes back-to-back. Connections between
64 elements are time multiplexed (Figure 6) through a MUX, an
amplifier with voltage-controlled gain, and a DMUX [10].
Switching is controlled by a digital computer at a clock rate suitable
for the pass band of the carrier wave. For each connected pair the
gain is stored in memory, so that the connection strengths are
easily modified during learning. With this device the connectivity
grows by 2-N instead of by N2,. In digital embodiment the
equations have been solved by numerical integration on Unix,
Macintosh, and PC platforms, and by vector programming on the
Cray M/X.

Figure 6. Schematic for connecting KII sets by multiplexing.

Interaction of KO sets of like kind (excitatory or inhibitory)
giving point attractors is modeled by KI sets; interaction of KIe
and KIi sets giving limit cycle attractors is modeled by KII sets.
Three serial KII sets in layers that correspond to the olfactory
bulb, prepyriform cortex, and an intervening control nucleus called
the AON is modeled by the KIII set; if the 3 characteristic

frequencies are incommensurate, and the feedback delays between
the 3 layers are distributed to act as low-pass filters, the solutions
of the equations give the aperiodic waveforms and broad 1/f2

spectra (Figure 7) of EEGs trom the 3 layers. The asymmetric
sigmoid endows the system with the property of nonlinear state
transitions on step inputs, owing to the amplitude-dependent gain
of the KO elements.

In the course of digital simulation it has become apparent that
a minimum of 64 elements will suffice for 2-D pattern classification
under Hebbian and non-Hebbian reinforcement learning [16, 24, 25,
37, 38]. The large number of equations leads to attractor crowding
[15], in which the basins of attraction shrink close to the size of the
digitizing step in using rational numbers for computation, so that
sooner or later the system jumps out of its designated chaotic basin
into a neighboring basin that is most likely to be that of a point or
limit cycle attractor, which kills the system. This problem has been
solved by use of additive noise on the order of 15% of the
amplitude of the aperiodic state variables [4, 5, 13, 15], giving
robust attractor landscapes for learning and pattern classification
[24, 25].  The lesson learned is that deterministic chaos, in which
the system is low-dimensional, stationary, strictly autonomous,
and noise-free, is inappropriate for modeling biological and machine
intelligence. Brains operate with what we call 'stochastic chaos'
[13], which is high-dimensional, nonstationary with regularly
repeated state transitions, engaged with its surround, and deeply
embedded in noise created by KIe sets and manifested in high
densities of action potentials. The noise in digital models is
simulated with random number generators, either rectified to
simulate KIe sets or off-set with d.c. bias to simulate the noise in
KIIei sets.

Figure 7. The power spectrum and amplitude histogram for a
simulated EEG trace from the KIII model, with a section of
the asymmetric nonlinear gain curve, showing the nature of the
nonlinearity that provides for destabilization by the input.
The interactive gain increases with excitatory input.



The finding in digital embodiments that noise is not only
unavoidable but is necessary for stable high-dimensional chaotic
dynamics opens the way to analog embodiments [7], in which
noisy components resemble the characteristics of local pools in
nerve cell assemblies, but which offer much higher rate of temporal
and spatial integration, the use of continuous variables in place of
rational numbers, and the feasibility of implementing the dynamics
on chips suitable for incorporation into mobile devices.

3.2 Embedding devices for perception into autonomous cognitive
machines

The KII sets have multiple robust limit cycle attractors, which
become embedded as chaotic attractors when coupled in serial
layers with distributed delayed feedback. The KIII model is offered
as the prototype for constructing devices in hardware and software
to implement the elementary steps of perception, thus providing
robots with the sensory ports that they need to guide them through
their environments. These steps are the interpretive operations
necessary to normalize, compress, abstract and generalize over
successive inputs preparatory to classification [5, 16, 25, 33, 36].
These cognitive operations are done by the nonlinear operations in
the input stage and by the basins of attraction in the landscape
formed by learning in each of the sensory systems. They are
required in each of the ports providing information to the mobile
device about its visual, auditory, tactile, and chemical
environments. Our tests of the KIII model have shown that it can
learn a new class in half a dozen trials instead of the thousands of
trials required by MLPs, and that new learning occurs without
degradation of previous attractors, although, as in the case of the
olfactory system, the attractors are modified through attractor
crowding.  The superior level of 'intelligence' is demonstrated by
the capacity of the KIII model to separate items in 64-space that
belong to identifiable classes but are not linearly separable. The
classes are, in fact, constructed by the model and are not imposed
from outside, constituting an aspect of autonomy. In other words,
the system creates its own features from its own experience of the
constancy of relations between channels in the 8x8 64-channel
input array.

Formation of a world-view by which the device can guide its
explorations for the means to reach its goals depends on the
integration of the outputs of the several sensory systems, in order
to form a multisensory percept known as a gestalt.  This
integration is easily done when all of the ports have their outputs
in the same form: a vector consisting of a 2-D spatial pattern of
amplitude modulation of a 1-D aperiodic wave form in the gamma
range (nominally 30-60 Hz), which is segmented in time at a frame
rate of nominally 2-7 Hz and frame durations on the order of 0.1
sec. Precise clocking and synchronization are not prerequisite.

The sequential frames deriving from sampling the environment
must then be integrated over time and oriented in space. An
example of how these higher operations might be done was
provided by W. Gray Walter [36] with his electronic tortoises,
which had the capacity for autonomous goal-directed search
involving the adjudication of conflicting needs in an uncertain
environment.

The performances of these devices set a challenging level of
'intelligence' to which to aspire, and they also serve to highlight
some of the difficulties in using the descriptive term "autonomous".
As with animals the devices were untethered, and they learned to
avoid obstacles without need for instruction or intervention, if
within their limited capacities for locomotion.  However, they were
programmed to satisfy their own needs without regard for or
comprehension of anything else's, perhaps in analogy to house
pets, whose sole purpose, however inadvertent, is to provide
enjoyment to their owners, and seldom to do useful work or bend
their talents to the benefits of the owners, or, in the case of the
machines, the designers and builders.

It is already apparent that fully autonomous vehicles are not
in the best interest of researchers and the general public, except as
demonstrations of what might emerge as major problems from this
line of study. It is also clear that such devices can and will be built,
and that the proper path of future management will not be by
techniques of training and aversive conditioning, but by education,
with inculcation of desired values determined by the manufacturers
that will govern the choices that must by definition be made by the
newly autonomous mechanical devices.
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ABSTRACT

Neuromorphic engineering is about the development of
biologically inspired roving machines that can exhibit
intelligent behaviour, learn on-line and in real-time. The
question of how to assess and measure the intelligence of
such machines is essential if progress in neuromorphic
engineering is to be assessed. However, it is awkward to talk
about measuring intelligence without a clear understanding
of the capabilities that researchers aim or dream to equip
neuromorphic systems with. In this communication we
promote the position that metrics for measuring of the
intelligence of neuromorphic systems should be task-based,
should factor in the computational resources, the on-line
learning efficiency, the capability to learn from intermittent
reward that can vary in frequency and importance to the task
at hand, the capability to anticipate events and to modify
decision making processes based on anticipated events, the
capability to balance exploration and exploitation as to
discover new methods or to fine-tune existing methods, and
the ability to optimize the utilization of its resources using
ground rules that maximizes it success. To factor in all these
aspects requires a fundamental assessment of what such
machines achieve as goals and at what cost. We propose that
a simple achievement rule, energy and resource oriented
metric be used.

Keywords: neuromorphic engineering, on-line
learning, reward-based learning, anticipation, exploration
and exploitation, regularity and modularity.

1 Introduction

Neuromorphic engineering was a term coined
by Carver Mead and described the process of
building systems based on biological models
and embedding them in roving machines. In
the last 20 years, neuromorphic engineering
addressed the development of various

biological like processing system such as
retinas, cochleas (Schaik 2000), legged
robots and creatures (Tilden 1994) (Lewis,
Etienne-Cummings et al. 2000), sensorimotor
control (Horiuchi and Koch 1999) (Etienne-
Cummings, Spiegel et al. 2000) and
integration systems (Jabri, Coenen et al.
1997).

Although analog microelectronics was
initially promoted (and continue to some
extent) as the ideal substrate for
neuromorphic information processing
systems (Mead 1989), current works tend to
use many implementation technologies,
hardware and software.

The aim of many neuromorphic engineering
groups is to develop active perception
systems, systems that interact with the
environment in a closed loop fashion1.

Neuromorphic engineering is a synergy
between neuroscience and engineering. The
common neuromorphic methodology is to
identify a task or a function, to explore and
identify brain areas from neuroscientific
knowledge (anatomy, physiology,

                                                

1 The Telluride Neuromorphic Engineering workshop
is a yearly meeting where research groups meet and
collaborate. See http://zig.ini.unizh.ch/telluride2000.



psychophysics, …), to develop
computational models that encapsulate the
information processing at some level of
abstraction, and to develop implementations
of the models. The determination of an
acceptable level of abstraction of the
biological systems during the computational
model development is a challenging task, and
is typically done as to preserve some essence
of the biological information or mechanical
processes.

In assessing the intelligence of engineering
machines, and because of its close
relationship to the neuroscientific
community, neuromorphic engineering has
traditionally relied on several levels of
metrics. Not all metrics are necessarily
directly related to the behaviour of the
machines and the classification of the
intelligence of such behaviour. The common
levels are:

• Device/circuits

• Representation

• Organization

• Behaviour with and without artificial
lesions

• Learning & behaviour adaptation

In these assessments, tasks have commonly
been related to the biological systems being
modeled: specific brain areas, the central
nervous system, and the mechanical
apparatus. We elaborate on these tasks in the
next section.

2 Neuromorphic Tasks – Present and
Future

2.1 Peripherals systems

Biologically based or inspired peripheral
systems are probably the most researched
neuromorphic systems. The development of
silicon-based implementations of retinas and
cochleas has been pioneered in Carver
Mead’s laboratory in the eighties. Artificial
olfactory and somatosensory systems have
also been researched and developed.

It is clear why most early neuromorphic
research focused on peripheral systems: They
are the sensors and they drive the motor
responses of biological systems, and they are
the most understood, in particular in the case
of primates.

The research and development of
neuromorphic peripheral systems has also
contributed to better understanding of the
biological devices and they incorporation in
systems.

2.2 Sensorimotor Systems

Over the last decade sensorimotor systems
have been developed. Sensorimotor system
are broad in their definition but are supposed
to implement forms of sensory (visual,
auditory, infrared, sonar) to motor mapping,
where the motor are actions that aim at
performing forms of active perception,
navigation and tracking, or orienting to
stimuli in the environment.

Experimental sensorimotor systems have
incorporated abilities by incorporating
simplified models of the superior colliculus,
goal reaching and simple navigation abilities
by incorporating computational models of the
basal ganglia and ventral tegmental area,
predictive control abilities by incorporating



computation models of the cerebellum, and
spatial representation learning by
incorporating computational models of the
hippocampal formation.

Sensorimotor systems have so far included
sophisticated adaptive learning abilities
implemented in software. The measuring of
the intelligence of such systems has largely
been a matter of retrieving behavioral
properties that resemble those of animal,
when the systems are implementing
sensorimotor tasks, or by observing the
behaviour of the system when software
lesions are performed. In that case the deficit
of the systems are typically compared to
those of animal that have had specific brain
areas severed or temporarily disabled.

Analog Very Large Scale Integration
(aVLSI) systems with adaptive abilities have
also been implemented and typically mimic
to some extent their biological counter parts.
The assessment of the intelligence of such
system has largely been a matter of
comparing the signal processing or collective
computation of the devices to the biological
counterparts. These could also be seen as
task-oriented comparison. An example is an
implementation of the retina with adaptive
intensity saturation control. Another example
is a silicon cochlea that implements adaptive
gain control.

2.3 Cognitive Systems

If one defines cognitive systems as being
capable of performing higher order
processing by utilizing first order information
and generating higher order knowledge,
some sensorimotor systems would qualify of
being “cognitive”.

An example is a sensorimotor system similar
to that of Fig 1 which implements abstract
computational of the cerebellum, basal
ganglia and ventral tegmental area.

In this system the cerebellum performs
sensory prediction and coordinate
transformation from world coordinate to
robot centered coordinate. The predicted
sensory signal (visual target position) is then
used by the basal ganglia to associate a motor
command with the visual target as to keep it
as much as possible in front of it. If the basal
ganglia are lesioned, the robot looses its
motor ability. If the cerebellum is lesioned,
the tracking lags the object.

In survival terms, and such a sensorimotor
system is controlling the hunting abilities of
an animal, a lesion of the cerebellum would
most likely lead to the animal death, although
it can track its prey, though not predictively
to the point that it can catch it (assuming a
mobile prey), or it cannot escape a predator
by anticipating potential contact points.
Interestingly, the hypothetical animal would
be able to anticipate the position and perform
all desired coordinate transformation,
however a lesion of the basal ganglia will
also lead to its death.

2.4 Future of Neuromorphic Systems

With the rapid development in neuroscience
research brought by phenomenal growth in
computation, sensing, signal processing and
imaging technologies, neuromorphic
engineering will increasingly focus on the
implementation of complex motor, sensory
and cognitive processing. The development
of computational models of sub-cortical and
cortical will permit the development of
sophisticated real-time systems, that will go
beyond present sensorimotor loops and will
integrate aspects such as planning, object
recognition, motion and auditory analysis,
and perception. This will put additional
pressure in comparing the performance of
such systems, and hence on the issue of
measurement metrics.



3 Computational Resources

Computational resources in neuromorphic
systems, in particular aVLSI systems tend to
be a central criterion of design. One
attraction of aVLSI neuromorphic systems is
the low power requirements (Mead 1989;
Jabri, Coggins et al. 1996). However, beside
the elegance of the implementation, and
specific application requirements, it is
becoming more difficult to promote analog
as a preferred design methodology, except in
some fairly narrow areas such as world
interfaces. This is not to say that analog
asynchronous parallel computation does not
provide any conceptual computational
advantages. Only that the inspirations for
such advantages have not been met with clear
theoretical support over digital computation
as yet.

Computational resources have also been
considered from the point of view of
compactness, efficiency of representing basic
computational elements such as sensors and
signal processors. Here applications that have
specific requirements such as ultra low
power and high fault tolerance capability
could benefit more from analog than digital
representation. This is particularly the case if
sparse representation is being used. In a
sparse representation of neural networks,
neurons within a hierarchy of computation do
not fire concurrently. The receptive fields of
the neurons are highly tuned/selective and
are independent of each other. This translates
into data-driven architecture with attractive
low power consumption properties.

Given the infancy of neuromorphic systems,
autonomous behaviour has not been
developed beyond adaptive sensing and
signal processing tasks.

4 On-line Learning

Continuous on-line learning with bound
resources represents a challenge because of
the following problems:

1- Frequency of the associations to be
learnt is not sufficiently high to be
captured in a distributed
representation. Note the tuning pf
learning parameters do not
necessarily solve this problem as for
example, the use of large learning rate
can lead to prior information to be
forgotten (catastrophic learning
effects) if no processes are
implemented to move and consolidate
information from soft-term memory
to long-term memory store.

2- In cases where statistical properties of
the sensed signals are to be
discovered on-line, sample size
effects, and non-stationarity of the
signals are very problematic. For
example if independent component
analysis techniques are being used to
discover feature detectors (Bell and
Sejnowski 1995), such discovery
using information maximization
techniques and mutual independence
criteria of the features would be more
difficult to achieve if performed on-
line.

3- Rapid and flexible learning schedules
is necessary in situations where
autonomous systems requires to learn
at various rates and in real-time.  This
imposes constraints on propagation of
information in the system and on its
time constants. For example systems
doing sequence learning require
significant memory resources in the
form of analog or digital delay lines
and the performance of credit



assignment through time over the
present and historical information.

The learning issues above represent
significant challenges to the incorporation of
online and continuous learning. The
proposition of metrics for these sort of
capabilities is premature, given we do not
really know the how, when and where of
such capabilities.

5 Anticipation

An important element in neuromorphic
systems research is the development of the
concept of anticipation within the context of
autonomy. The system described earlier in
Section 2.3 is an example demonstrating an
anticipation property. A roving robot that can
anticipate undesirable events would
maximize its mission success. Anticipation
or prediction of sensory or motor control
(predictive control) have been attributed as a
role to the cerebellum (Coenen and
Sejnowski 1996; Coenen 1998), in addition
to the traditional attributed role of motor
learning (Marr 1969; Albus 1971).

Present computational models of the
cerebellum have addressed individual
sensory (or a few) and motor prediction
capability. Computational models that
demonstrate abilities to adaptively and
continuously deal with a large number of
sensory modality and motor learning skills
are still to be developed. Such skills will be
essential to autonomous machines that are
expected to perform tasks such as navigation
in complex terrains or to perform object
manipulation. Anticipation is also important
for planning because it affects the
performance of the machine and its
interaction with the environment and its
objects.

Measuring anticipation can be very
subjective. However factoring anticipation in
the overall goal of a machine will provide
easier means for assessment.

6 Curiosity, Exploration and
Exploitation

Autonomous machines should possess
elements of “curiosity”. For instance, it is
known that reinforcement based learning
algorithms depend on forms of exploration
(Sutton and Barto 1981). However,
exploration has so far been implemented in
terms of probabilistic random actions aimed
at exploring the state-space with hope of
discovering policies that can be effective in
achieving specific goals. The issues of either
exploring more effectively or in a directed
way, or to explore better policies and
solutions are not well understood.

Another important aspect of autonomous
systems is that of exploitation of infrequent,
but yet important information encountered
during machine experiences. The interactions
between exploration and exploitation are
fundamental in that regard. Reinforcement
based learning algorithms have assumed that
rewards are specified as end-achievements to
the learning machine. The ability to discover
and capture sensorimotor associations to yet
unspecified goals (and reward) is essential to
the rapid learning and the effective
exploitation of sensorimotor experiences. To
achieve this, the learning machines must be
able to recognize unspecified or unscheduled
rewards by forms of assessment of its
sensory state and its sensory-reward memory.

7 Robustness and fault tolerance

Autonomous systems have to be robust and
fault tolerant. We discussed in Section 3
sparse representation and their low power



property as well as their potential role in
more effective learning by decorrelating
features. It is not clear however, without
clear redundancy in the underlying resources
(e.g. synapses and neurons), that sparse
representation alone lead to more fault
tolerance. It is also conceivable that other
additional encoding representations, such as
population-based be a source of fault
tolerance (see for instance motor population
coding (Georgopoulos 1995)).

Fault tolerance has been attributed to
traditional neural network representation
because of the distributed representation that
develop during learning or that have been
hand-crafted. The relationship between pure
distributed representation and neural
correlate is not trivial, nor automatic.
Biological systems have various level of
fault-tolerance, some of which is not
graceful. Although biological systems
survive significant faults, behaviour is
commonly degraded or lost. For example in
humans or monkeys, the level of behaviour
change depends greatly on brain areas that
are damaged.

Then, what role does fault tolerance plays in
measuring intelligence? From an application
point of view, fault tolerance is an important
property of designs and system operation.
Furthermore, with continuous shrinkage in
transistor sizes, the importance of fault-
tolerance in highly complex processing
system will become increasingly important.

Another more important aspect of fault
tolerance requirement is in autonomous
system. Here clearly fault tolerance becomes
a critical element of endurance and graceful
degradation. But is this an important element
of intelligence? Although present machine
intelligence paradigms only addresses fault
tolerance from “an emergent property”
perspective, it is possible that fault-tolerance
was used a ground-rule for evolutionary

development of biological systems, and may
lead to yet unknown computational
architectures.

Hence, for the short-term, the issue of
metrics for fault-tolerance appear to be
relevant for autonomous systems in the
context of performing tasks in harsh
environments and where mechanical and
information resource tolerance are important.
The tolerance can be graded according to the
task and the ability of the machine to
complete it in the presence of faults.

8 Consciousness and control

The debate over the neural correlate of
consciousness is obviously of most interest to
neuromorphic engineering. Our present poor
understanding of the underlying neural
circuits does not imply that it is not a
necessity for autonomous machines. The
complex interactions between awareness,
planning and survival dictates equipping
machines with some level of the “self”. The
level may be primitive at first. Practical
awareness can address sensory representation
of the environment and its representations in
terms of goals and necessities to survival
(e.g. battery charging). The competition of
sensory on motor behaviour will need to
address priorities and dynamic reward. The
representations that emerge from this
computation will represent primitive forms of
awareness that machines will be capable of
processing, but not necessarily of realizing.
Realization may emerge as a balanced
competition between motor plans, behaviour
and reward obtained from behaviour. Hence
the development of task-oriented
neuromorphic systems will allow the
exploration of computational structures and
information processing paradigms that can
embed such a competition.



In the context of intelligence metrics, the
question of consciousness can be stated as
that of resource management. The
development of a metric framework will
have to account for a broad spectrum of
sensory, motor and reward situations that
could be too complex to represent. One can
envision a metric that measures final
outcomes based on the essence of task
completion measured in terms of energy and
survival. That is to be, and to be there in the
right time.

9 Complexity, Hierarchy, Regularity
and Modularity

The development of design methodologies
for highly complex integrated circuits
containing tens of million of transistors have
taught engineers a number of golden rules in
the management of complexity: Hierarchy,
regularity and modularity. These human-
made engineering rules are similar to the
rules that underlie biological systems
structures. Representation and learning
efficiency (in particular online continuous
learning) are the most concerned and affected
by the hierarchy, regularity and modularity
(HRM) of the underlying structures. The
issue of whether HRM issues are relevant to
intelligence metrics is similar to those
discussed earlier in the context of fault
tolerance and representation (e.g.

sparseness). HRM of computational
structures may affect the optimality of an
autonomous system, but may not be critical
to its successful operation. Again, the
importance of HRM as a ground-rule for
autonomy may go beyond optimality and
may be critical to the scalability of the
architecture and representations. Scalability
is relative to the initial conditions and desired
bounds. From a practical point of view, it is
evident that a HRM-based design will be
superior to a design that is flat and that lacks
modularity and regularity.

10 Summary and Conclusions

The issues discussed in this position paper
converge to the conclusion that in the context
of autonomous systems, intelligence metrics
should be task oriented and should embed
factors such as completion, resources and
energy.  Completion is easy to assess, with
the distinction that it is for practical systems
and not for simulations. Resources and
energy could be cast to specific
implementation, whether software or
hardware. Resources will cover aspects of
resources used to perform a task, and those
available to capture the skills to perform the
task. The energy measure will represent the
total energy required to perform a task and
can easily be measure for software and
hardware implementations.
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In this note I argue that to find a Vector of Intel-
ligence (VI) for a performance metric for machines,
it is helpful to look at animal intelligence, which is
clearly defined as a spectrum.

All animals are not equally intelligent at all tasks;
here intelligence refes to performance of various tasks,
and this performance may depend crucially on the an-
imal’s normal behavior. It may be argued that all an-
imals are sufficiently intelligent because they survive
in their ecological environment. Nevertheless, even in
cognitive tasks of the kind normally associated with
human intelligence animals may perform adequately.
Thus rats might find their way through a maze, or
dolphins may be given logical problems to solve, or
the problems might involve some kind of generaliza-
tion. These performances could, in principle, be used
to define a gradation.

If we take the question of AI programs, it may be
argued that the objectives of each define a specific
problem solving ability, and in this sense AI programs
constitute elements in a spectrum. But we think that
it would be useful if the question of gradation of intel-
ligence were to be addressed in a systematic fashion.
The question is best examined in an ecological con-
text; a similar case for an ecological study of machine
vision has been made by Gibson.

The issues that we leave out are those related to
defining consciousness and quantum approaches to
brain processes and intelligence. Although I have
personally worked on these issues, I believe they lie
outside the scope of the NIST Conference on Perfor-
mance Metrics for Intelligent Systems.

On Animal Intelligence

According to Descartes, animal behavior is a series
of unthinking mechanical responses. Such behavior
is an automatic response to stimuli that originate in
the animal’s internal or external environments. In

this view, complex behavior can always be reduced
to a configuration of reflexes where thought plays no
role. According to Descartes only humans are capable
of thought since only they have the capacity to learn
language.

Recent investigations of nonhuman animal intelli-
gence not only contradict Cartesian ideas, but also
present fascinating riddles. It had long been thought
that the cognitive capacities of the humans were to be
credited in part to the mediating role of the inner lin-
guistic discourse. Terrace Te85 claims that animals
do think but cannot master language, so the ques-
tion arises as to how thinking can be done without
language:

Recent attempts to teach apes rudimentary
grammatical skills have produced negative
results. The basic obstacle appears to be
at the level of the individual symbol which,
for apes, functions only as a demand. Ev-
idence is lacking that apes can use sym-
bols as names, that is, as a means of sim-
ply transmitting information. Even though
non-human animals lack linguistic compe-
tence, much evidence has recently accumu-
lated that a variety of animals can rep-
resent particular features of their environ-
ment. What then is the non-verbal nature
of animal representations?...[For example]
learning to produce a particular sequence
of four elements (colours), pigeons also ac-
quire knowledge about a relation between
non-adjacent elements and about the ordi-
nal position of a particular element. ([6],
page 113)

Clearly the performance of animals points to rep-
resentation of whole patterns that involves discrimi-
nation at a variety of levels. But if conceptualization
is seen as a result of evolution, it is not necessary
that this would have developed in exactly the same
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manner for all species. Other animals learn concepts
nonverbally, so it is hard for humans, as verbal ani-
mals, to determine their concepts. It is for this reason
that the pigeon has become a favourite with intelli-
gence tests; like humans, it has a highly developed
visual system, and we are therefore likely to employ
similar cognitive categories. It is to be noted that
pigeons and other animals are made to respond in
extremely unnatural conditions in Skinner boxes of
various kinds. The abilities elicited in research must
be taken to be merely suggestive of the intelligence
of the animal, and not the limits of it.

In an ingenious series of experiments Herrnstein
and Loveland He64 were able to elicit responses about
concept learning from pigeons. In another exper-
iment Herrnstein He85 presented 80 photographic
slides of natural scenes to pigeons who were accus-
tomed to pecking at a switch for brief access to feed.
The scenes were comparable but half contained trees
and the rest did not. The tree photographs had full
views of single and multiple trees as well as obscure
and distant views of a variety of types. The slides
were shown in no particular order and the pigeons
were rewarded with food if they pecked at the switch
in response to a tree slide; otherwise nothing was
done. Even before all the slides had been shown the
pigeons were able to discriminate between the tree
and the non-tree slides. To confirm that this ability,
impossible for any machine to match, was not some-
how learnt through the long process of evolution and
hardwired into the brain of the pigeons, another ex-
periment was designed to check the discriminating
ability of pigeons with respect to fish and non-fish
scenes and once again the birds had no problem do-
ing so. Over the years it has been shown that pi-
geons can also distinguish: (1) oak leaves from leaves
of other trees, (ii) scenes with or without bodies of
water, (iii) pictures showing a particular person from
others with no people or different individuals.

Herrnstein He85 summarizes the evidence thus:

Pigeons and other animals can categorize
photographs or drawings as complex as
those encountered in ordinary human ex-
perience. The fundamental riddle posed by
natural categorization is how organisms de-
void of language, and presumably also of
the associated higher cognitive capacities,
can rapidly extract abstract invariances for
some (but not all) stimulus classes contain-
ing instances so variable that we cannot
physically describe either the class rule or
the instances, let alone account for the un-
derlying capacity.

Amongst other examples of animal intelligence
are mynah birds who can recognize trees or peo-
ple in pictures, and signal their identification by vo-
cal utterances—words—instead of pecking at buttons
Tu82, and a parrot who can answer, vocally, ques-
tions about shapes and colors of objects, even those
not seen before Pe83.

Another recent summary of this research is that of
Wasserman Wa95:

[Experiments] support the conclusion that
conceptualization is not unique to human
beings. Neither having a human brain nor
being able to use language is therefore a
precondition for cognition... Complete un-
derstanding of neural activity and function
must encompass the marvelous abilities of
brains other than our own. If it is the busi-
ness of brains to think and to learn, it should
be the business of behavioral neuroscience
to provide a full account of that thinking
and learning in all animals—human and
nonhuman alike.

Gradation of Intelligence

An extremely important insight from experiments of
animal intelligence is that one can attempt to define
different gradations of cognitive function. It is ob-
vious that animals are not as intelligent as humans;
likewise, certain animals appear to be more intelli-
gent than others. For example, pigeons did poorly
at picking a pattern against two other identical ones,
as in picking an A against two B’s. This is a very
simple task for humans. Herrnstein He85 describes
how they seemed to do badly at certain tasks:

• Pigeons did not do well at the categorization
of certain man-made and three-dimensional ob-
jects.

• Pigeons seem to require more information than
humans for constructing a three-dimensional im-
age from a plane representation.

• Pigeons seem to have difficulty in dealing with
problems involving classes of classes. Thus they
do not do very well with the isolation of a rela-
tionship among variables, as against a represen-
tation of a set of exemplars.

In a later experiment Herrnstein et al. He89
trained pigeons to follow an abstract relational rule
by pecking at patterns in which one object was inside,
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rather than outside of a closed linear figure. Wasser-
man Wa93,Wa95 devised an experiment to show that
pigeons could be induced to amalgamate two ba-
sic categories into one broader category not defined
by any obvious perceptual features. The birds were
trained to sort slides into two arbitrary categories,
such as category of cars and people and the category
of chairs and flowers. In the second part of this ex-
periment, the pigeons were trained to reassign one
of the stimulus classes in each category to a new re-
sponse key. Next, they were tested to see whether
they would generalize the reassignment to the stim-
ulus class withheld during reassignment training. It
was found that the average score was 87 percent in
the case of stimuli that had been reassigned and 72
percent in the case of stimuli that had not been re-
assigned. This performance, exceeding the level of
chance, indicated that perceptually disparate stimuli
had amalgamated into a new category. A similar ex-
periment was performed on preschool children. The
children’s score was 99 percent for stimuli that had
been reassigned and 80 percent for stimuli that had
not been reassigned. In other words, the children’s
performance was roughly comparable to that of pi-
geons. Clearly, the performance of adult humans at
this task will be superior to that of children or pi-
geons.

Another interesting experiment related to the ab-
stract concept of sameness. Pigeons were trained to
distinguish between arrays composed of a single, re-
peating icon and arrays composed of 16 different icons
chosen out of a library of 32 icons Wa95. During
training each bird encountered only 16 of the 32 icons;
during testing it was presented with arrays made up
of the remaining 16 icons. The average score for train-
ing stimuli was 83 percent and the average score for
testing stimuli was 71 percent. These figures show
that an abstract concept not related to the actual
associations learnt during training had been internal-
ized by the pigeon. And the performance of the pi-
geons was clearly much worse than what one would
expect from humans.

Animal intelligence experiments suggest that one
can speak of different styles of solving AI problems.
Are the cognitive capabilities of pigeons limited be-
cause their style has fundamental limitations? Can
the relatively low scores on the sameness test for pi-
geons be explained on the basis of wide variability in
performance for individual pigeons and the unnatural
conditions in which the experiments are performed?
Is the cognitive style of all animals similar and the
differences in their cognitive capabilities arise from
the differences in the sizes of their mental hardware?

And since current machines do not, and cannot, use
inner representations, is it right to conclude that their
performance can never match that of animals?

Another issue is whether one can define a hierar-
chy of computational tasks that would lead to varying
levels of intelligence. These tasks could be the goals
defined in a sequence, or perhaps a lattice, that could
be set for AI research. If the simplest of these tasks
proved intractable for the most powerful of computers
then the verdict would be clear that computers are
designed based on principles that are deficient com-
pared to the style at the basis of animal intelligence.

Recursive Nature of Animal Be-
havior

A useful perspective on animal behavior is its re-
cursive nature, or part-whole hierarchy. Consider-
ing this from the bottom up, animal societies have
been viewed as “superorganisms”. For example, the
ants in an ant colony may be compared to cells, their
castes to tissues and organs, the queen and her drones
to the generative system, and the exchange of liquid
food amongst the colony members to the circulation
of blood and lymph. Furthermore, corresponding to
morphogenesis in organisms the ant colony has so-
ciogenesis, which consists of the processes by which
the individuals undergo changes in caste and behav-
ior. Such recursion has been viewed all the way up
to the earth itself seen as a living entity. Parenthet-
ically, it may be asked whether the earth itself, as a
living but unconscious organism, may not be viewed
like the unconscious brain. Paralleling this recursion
is the individual who can be viewed as a collection of
several “agents” where these agents have sub-agents
which are the sensory mechanisms and so on.

Logical tasks are easy for machines whereas AI
tasks are hard. It might well be that something fun-
damental will be gained in building machines that
have recursively defined behavior in the manner of
life. But how such machines could be designed is not
at all clear.

A hierarchy of intelligence levels can be useful also
in the classification of animal behavior. There does
not appear to be any reason that experiments to
check for intelligent behavior at different levels could
not be devised. Furthermore, experiments could be
conducted to determine the difference in ability for
individual animals. That such experiments have not
been described until now is merely a reflection of the
peculiar history of the field.

3



Concluding Remarks

Study of animal intelligence provides us with new per-
spectives that are useful in representing the perfor-
mance of machines. For example, the fact that pi-
geons learn the concept of sameness shows that this
could not be a result of associative response to cer-
tain learnt patterns. If evolution has led to the devel-
opment of specialized cognitive circuits in the brain
to perform such processing, then one might wish to
endow AI machines with similar circuits. Other ques-
tions arise: Is there a set of abstract processors that
would explain animal performance? If such a set can
be defined, is it unique, or do different animal species
represent collections of different kinds of abstract pro-
cessing that makes each animal come to achieve a
unique set of conceptualizations?

Animal behavior ought to be used as a model to
define a hierarchy of intelligence tasks. This hierar-
chy is likely to be multidimensional. Various kinds of
intelligence tasks could define benchmark problems
that would represent the various gradations of intel-
ligence.

Should VI reflect the degree of recursion in the or-
ganization of the intelligence in the machine? Given
that the neural organization of the brain consists of
”networks of networks”, it appears that this be so.
On similar grounds, one may assert that the perfor-
mance of the machine should span several scales. The
relative scale invariance of the performance will be a
measure of the ”quality” of the intelligence.
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ABSTRACT

Biology often offers valuable example of systems both
for learning and for controlling motion. Work in robotics
has often been inspired by these findings in diverse ways.
Nevertheless, the fundamental aspects that involve visual
landmark learning has never been approached formally. In
this paper we introduce results that explain how the visual
learning works. Furthermore, these tools provide bases to
measure the quality of visual landmark learning. Basically,
the theoretical tools emerge from the navigation vector field
produced by the visual navigation strategy. The learning
process influence the motion vector field whose features are
addressed.

1 INTRODUCTION

Animals are proficient in navigating and diverse meth-
ods of biological navigation have been recently studied and
categorized as [20]: guidance, place recognition - triggered
response, topological and metric navigations. In order to
perform such tasks animals usually deal with identifiable
objects in the environment called landmarks [21].
The use of landmarks in robotics has been extensively

studied [4]. Basically, a landmark needs to possess charac-
teristics such as the stationarity, reliability in recognition,
and uniqueness. These properties must be matched with
the nature of a landmark: landmarks can be artificial or
natural. Of course it is much easier to deal with artificial
landmarks instead of dealing with natural ones, but the
latter are more appealing because their use requires no en-
gineering of the environment. However, a general method
of dealing with natural landmarks still remains to be intro-
duced. The main problem lies in the selection of the most
suitable landmarks [19].
Recently it has been discovered that wasps and bees

perform specific flights during the first journey to a new
place to learn color, shape and distance of landmarks. Such
flights are termed Turn Back and Look (TBL) [11]. Once
the place has been recognized using landmarks, insects can
then accomplish navigation actions accordingly.
Starting from Biological bases, the system described in

this paper selects natural landmarks from the surrounding
environment adopting the TBL phase. Once landmarks
have been selected suitable navigation movements are com-
puted. Iterating the process of computation of the naviga-
tion vector over the whole environment, a vector field is
produced.
Studying the navigation vector field two main results

are provided:

• the visual potential function generating the navigation
vector field represents the driving principle to perform
visual guidance. When proven to be a Lyapunov com-
pliant function, we can state the navigation system
exhibits convergence to the goal.

• The conservativeness of the navigation vector field
provides key information about the quality of land-
mark learning.

Details about the navigation system and the computa-
tion of the potential function can be found in [2] and [3].
This paper addresses the learning process and its orga-

nization is as follows. In Section 2 aspects both related to
findings on biological learning and to biological navigation
will be introduced. In addition, this section addresses for-
mer work and research in the field of landmark learning in
Robotics. In Section 4 the theoretical principles specifically
involved with visual learning are detailed. Final remarks
conclude the paper.

2 BIOLOGICAL FOUNDATIONS

Over many decades, studies of the visual performance
of bees have exploited the fact that bees keep returning
to a profitable feeding site once found, even when it is an
artificial food source established by an experimenter.

2.1 Landmark learning

As soon as the bee encounters a novel place, she turns
by 180 degrees to inspect the place and performs the initial
phase of training, termed the Turn-Back-and-Look (TBL)
phase [10]. A similar behavior was also observed in other
insects thus categorizing this phase a typical behavior of an
insect when a new visual learning phase is needed [22, 23].
In references [10, 11] and [14] the details and results

on the visual parameters learned by TBL are introduced.
Basically, findings show that TBL performed on departure
serves primarily for acquiring depth information by exploit-
ing image motion, whereas color, shape and size of land-
marks are mainly acquired on arrival.
Attempts to understand in detail the geometric signifi-

cance of learning flights have only recently been made. Es-
sentially, the flights are invariant in certain dynamic and
geometric structures thus allowing the insects to artificially
produce visual cues in specific areas of the eyes [24]. Per-
haps, the main reason is that the precision for the homing
mostly depends upon the proximity of chosen landmarks
to the goal [6]. In fact, those flights need to be repeated
whenever some changes in the goal position occur [12].



2.2 Landmark guidance

Landmarks guidance in insects is retinoptically driven
and animals tend to reduce the discrepancies between the
stored view and the actual one by a matching procedure
(reviews in [7] and [21]). The survey work presented in [20]
addresses biological navigating behaviors from a robotics
point of view.
Referring to landmark guidance in bees, the seminal

work is presented in [5]. The authors show how bees
learn landmarks by storing an unprocessed two dimensional
snapshot of the panorama. The model matches landmarks
in the stored snapshot with landmarks in the actual image.
If this match is performed far from the goal every matched
pair could differ both in angular size and compass bearing.
These differences drive a bee toward the right position.

3 RELATED WORK

The guidance model introduced in [5] has some short-
comings and interesting extensions have been addressed in
recent works. Basically, a guidance strategy that operates
with landmarks strives to reduce the differences between
the pre-learnt landmarks at the goal position and the same
landmarks viewed from a different place. The extraction
of landmarks follow different schemas such as in [18] where
visual moments are applied on the panorama image to ex-
tract prominent features or as in [8] and [16] where unique
(small) portions of the whole image, called templates, are
extracted.
Operating with landmarks extracted from the pano-

rama, navigation vectors can be computed. Unfortunately,
none of the work previously reported tries to handle the
mathematical features of the navigation vector fields thus
produced.
A formal interpretation of the visual guidance behavior

is firstly presented in [1] where two fundamental princi-
ples are extracted from the strategy navigation field: the
visual potential function and the measure of conservative-
ness. The latter has been proved to measure the quality of
landmark learning whereas the former is a funnel-shaped
function that explain why guidance strategies operate with
a gradient process to lead the robot to the goal (the global
minimum).

4 THE MOTION FIELD

According to what has been previously expressed, start-
ing with local visual information, a vector needs to be com-
puted by the agent which will be used it to perform the next
movement. In our case, the computation of the navigation
vector is based on information involving the chosen land-
marks. How to get navigation information from landmarks
is briefly introduced here for completeness and details can
be found in [2, 3].
Basically, once landmarks have been learned, they can

provide two kind of information to perform motion:

• their actual size, compared to the size learned at the
goal site, reports how far/close the agent is to the goal
position

• their actual orientation, compared to the orientation
learned at the goal site, speaks about the actual
left/right shift of the agent.

This kind of data come from each individual landmark
and we need to fuse them in order to get the overall naviga-
tion vector. Intriguingly, the fusion procedure has strong
biological bases as detailed in [20].
To formalize aspects related to the motion field gener-

ated in the environment, we call p the vector representing
the robot’s Cartesian position [x y] in a world reference W.
We also define step k the discrete time k of robot dynamic
state.
Let �V (p(k)) = [Vx (p(k)) Vy(p(k))] be the output of the

motion strategy at a given step k, i.e. the robot movement
at step k. If the robot operates in position mode, i.e. at
each step it updates its Cartesian position, then

p(k + 1 ) =p(k) + �V (p(k)) (1)

where p(k) represents the coordinates of robot at step k,
and p(k + 1 ) represents the new position at step k + 1.
The goal position is defined as an equilibrium point p∗ for
the system.
The computation over the whole environment of vector

�V defines a vector field V. Let us consider a partial set of
equivalent statements about a generic vector field V [15].

• any oriented simple closed curve c:
∮
c
V · ds= 0

• V is the gradient of some function U : V= ∇U

The former is related to the concept of conservativeness
of the field. The latter is concerned with the existence of a
potential function generating an unique field. From a dif-
ferent point of view, conservativeness is a measure of the
quality of landmark learning, whereas the existence of a
Lyapunov potential function indicates the robot’s capabil-
ity to reach the goal. The following Section addresses the
former aspect. Details of the other aspect can be found in
[2, 3].
The robot Nomad200 was used to accomplish the tests.

It includes the Fujitsu Tracking Card (TRV) which per-
forms real-time tracking of full color templates at a NTSC
frame rate (30Hz).

5 PRINCIPLES FOR LANDMARK
LEARNING

A landmark must be reliable for accomplishing a task
as detailed in Section 2.1. Landmarks that appear to be
appropriate for human beings are not necessarily appro-
priate for other agents (animals, insects or artificial be-
ings) because of the completely different sensor apparatus
and matching systems [19]. Therefore we need to state the
meaning of landmark reliability in advance for the system
in use before to solve the problem of selecting landmarks.
For our system, a template is a region of the grabbed

image identified by two parameters mx and my represent-
ing the sizes along X and Y axes. The size ranges from
1 to 8, i.e. from small (21 pixels wide) to large (28 pix-
els wide) templates. The TRV can simultaneously track
many templates. For each template the card performs a
match in a sub-area of the actual video frame adopting the
block matching method [9]. This introduces the concept of
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Figure 1: Examples of correlation matrices. These are computed within the local sub-area of the templates
(square box in the pictures).

correlation between the template being used and the actual
video frame. The sub-area is composed of 16×16 positions
in the frame usually taken around the origin (ox, oy) of the
template (its upper-left corner). The whole set of com-
puted correlation measures forms the correlation matrix.
Examples of correlation matrices are reported in figure 1.

We can take advantage of the matrices to compute a
measure that states upon the reliability of the template
under study [17]. As reported in [2, 13] we calculate a figure
r, ranging from 0 to 1, which states how deep is the global
minimum of the matrix in relation to its neighborhood.
Therefore, we define reliable landmarks as templates which
are uniquely identifiable in their neighborhoods: the greater
r the more uniquely identifiable the landmark in its sub-
area.

Once that the measure for the reliability of a landmark
has been stated, the next step consists of searching the
whole panorama for landmarks. There are several degrees

of freedom in searching for the best landmarks within a
video frame [2], but some simplifications can be introduced:
only square templates are used, and the position of a land-
mark is searched for by maximizing the following:

(o∗x, o∗y) = arg max
(ox,oy)∈grid

rl(ox, oy) (2)

where rl(ox, oy) identifies the reliability factor for a land-
mark l whose origin is located in (ox, oy) representing a
generic place on the grid. The position (o∗x, o∗y) represents
the cells with the highest r. In order to assure that differ-
ent landmarks occupy different positions, previously cho-
sen coordinates are not considered. In figure 2, examples of
landmarks chosen have been reported. When different sizes
are considered, different sets of landmarks are extracted.
The landmarks which have been statically chosen are

used for navigation tasks. This is done by testing the land-
marks to verify that they represent good guides for navi-



Figure 2: Different choices of landmarks for different landmark sizes. Landmarks are box-shaped.



gation tasks.
TBL helps to verify landmarks by testing whether dur-

ing the motion the statically chosen landmarks are robustly
identifiable. Through a series of stereotyped movements
small perturbations (local lighting conditions, changes in
camera heading, different perspectives and so on) can in-
fluence the reliability of the statically chosen landmarks.
These perturbations to images naturally occur in typi-

cal robot journeys thus allowing us to state that the TBL
phase represents a testing framework for landmarks. In
other words, the robot tries to learn which landmarks are
suitable for use in real navigation tasks by simulating the
conditions the robot will encounter along the paths. At
the end of the TBL process only those landmarks whose
reliability rl is above a certain threshold ε are suitable to
be used in navigation tasks.
The reliability factor rl for landmark l is continuously

computed during the TBL phase through the following:

rl =

∑TBL

i=1
ri

l

TBL
(3)

where TBL is the total number of steps exploited till that
time, and ri

l is the reliability of landmark l calculated at
time i. In the tests, at the end of the phase, TBL usually
consists of 400 steps (it takes about 13 seconds to be per-
formed). The set of landmarks is tracked along the whole
TBL phase and rl is continuously monitored for each land-
mark (details in [13]).

5.1 The quality of learning

There are strong connections between the learning phase
and navigation actions. The conservativeness of the motion
field bridges these two aspects.
A vector field V is said to be conservative when the

integral computed on any closed path is zero. Conversely, if
the field is not conservative then diverse potential functions
can be associated with the field. This translates into non-
repeatability of robot navigation trails in [13].
If the vector field is defined on a connected set in the

environments, then the null circuitation property is equiv-
alent to [15]:

∂Vx(x, y)

∂y
=

∂Vy(x, y)

∂x
(4)

We can measure how this equation differs from the theo-
retical null value as follows:

∂Vx(x, y)

∂y
− ∂Vy(x, y)

∂x
(5)

The property expressed by Equation 5 is referred to as
degree of conservativeness. The degree of conservativeness
of the vector field computed with a threshold set to 0 and
landmarks sized 6 is shown in figure 3. Only small regions
of the whole area roughly satisfy the constraint.
A small change in the threshold for TBL can dramati-

cally change the situation. In figure 4 the degree of con-
servativeness for each point is plotted.
A key consideration is concerned with the scale along

Z: it is about one order of magnitude less than the one
reported in figure 3. A trend toward a conservative field is
thus becoming evident.
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Figure 3: Conservativeness of a vector field computed
with a TBL threshold of 0 and landmarks sized 6

The situation obtained with a threshold of TBL set to
0.2 has been reported in figure 5. A large area of the en-
vironment has a degree of conservativeness that roughly
equals 0.
Similar considerations can be expressed dealing with a

different landmark size [1]. The template of the graph is the
same as before. Therefore, with a good choice of threshold
the field becomes conservative regardless of the size of the
landmarks.

6 CONCLUSIONS

Landmarks learning for robots can take inspiration from
Biology but it needs to be well formalized for its efficient
implementation in artificial agents. First, a definition for
landmark reliability must be stated. Second, a measure
that can assess about the quality of the learning phase
needs to be introduced.
In this paper, we have shown how both these aspects

can be efficiently addressed. Particularly, we have shown
how the learning phase affects the navigation motion field.
Further improvements to this study can be achieved by the
use of omni directional visual sensors.
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Abstract
In this paper, some resent advances in
neuroscience, psychology, robotics and machine
intelligence are briefly reviewed.   They prompt
us to pay attention to the fundamental difference
between the way human intelligence is developed
and the traditional engineering paradigm for
developing a machine.  They make us rethink the
issue of intelligence.  This position paper
proposes that a fundamental criterion for a true
intelligent system is not really what it can do in a
special setting, but rather, its capability for
autonomously and incrementally developing its
cognitive and behavioral capability through
online real-time interactions with its
environment, directly using its sensors and
effects, a process called mental development in
neuroscience and psychology.  The term
``mental’’ here includes cognitive, behavioral,
sensorimotor and other mental skills that  are
exhibited by animals and humans.  The new
direction of autonomous mental development for
machines will create a new kind of machines,
called developmental robots.  With new
perspectives from developmental robots, the
performance metrics for machine intelligence
will undergo a revolution.   They will
fundamentally change the current fragmented
landscape of the AI field by shifting the emphasis
of measuring ad hoc capability of performing a
task-specific application to a systematic
measurement of mental developmental
capabilities.  Such performance metrics can be
adapted from those for humans   a series of
tests well developed by a well-established field
called psychometrics.

1 Background

Human understanding of the ways our own
minds work, the power and limitation of existing
machines, as well as the relationship between
humans and machines have greatly improved
over the last 50 years.   It is now clear that a
developed human mind, that of a normal human

adult, is extremely complex.  It is also clear that
the early optimism in the 60’s and the 70’s about
a quick progress in artificial intelligence such as
vision, speech, and language, was not well
founded, at least not so with the traditional
approaches that have been extensively
experimented with so far.   However, the past
work with the traditional approaches is by no
means unimportant.  In fact, they are the womb
and incubator for the birth and growth of  a
drastically different approach  autonomous
mental development.  This new direction is
expected to become a revolution in the course of
machine intelligence1.  As Thomas S. Kuhn
wrote in his book titled The Structure of
Scientific Revolution [1]: “Because it demands
large-scale paradigm destruction and major shifts
in the problems and techniques of normal
science, the emergence of new theories is
generally preceded by a period of pronounced
professional insecurity.  As one might expect,
that insecurity is generated by the persistent
failure of the puzzles of normal science to come
out as they should.  Failure of existing rules is
the prelude to a search for new ones.”

The puzzle pieces from recent advances in
related fields start to reveal a picture of mental
development, which is no longer a total myth that
is beyond human comprehension, but can be
explained in terms of computation.    In the
following we briefly summarize these new
thought-provoking advances.
                                                                
1 A more detailed discussion on this issue is available
in the proceedings of  Workshop on Development and
Learning, funded by NSF and DARPA, held at
Michigan State University, East Lansing, MI, April 5
– 7, 2000 (http://www.cse.msu.edu/dl/).  This
workshop was attended by about 30 distinguished
researchers in neuroscience, developmental
psychology, machine intelligence and robotics who
are working on related subjects in their fields. The
goal of this workshop was to discuss the state-of-the-
art in research on mental development and to discuss,
initiate and plan future research on this subject.
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1.1  Neuroscience and psychology

A traditional view is that human brain is very
much pre-determined by human genes.   With
this view, the brain unfolds its pre-determined
structure during the development, which starts
from the time of conception.   This structure
serves as a placeholder of information that is
acquired from the environment.   However,
recent advances in brain plasticity have begun to
reveal a very different picture of brain
development.   For example, researchers at MIT
[2] have discovered that if the optical nerves
from the eyes is rewired into the auditory cortex
of the primate (ferret) early in life, the primate’s
auditory cortex gradually takes on representation
that is observed in normal visual cortex.
Further, the primates have successfully learned
to perform vision tasks using the auditory cortex.
In other words, the rewired ferrets can see in the
sound zone.  This discovery seems to suggest
that the cortex is governed by self-organizing
mechanisms, which derive representation and
architecture according to the input signals, either
visual or auditory.  As another example, studies
by researchers at the University of California at
San Francisco [3] showed that the finger skin
areas from which a neuron in somatic cortex
receives sensory signals (called receptive field of
the neuron) can change according to sensory
experience.   If multiple fingers of the adult
monkeys receive consistent synchronized pulse
stimuli from a cross-finger bar for several days,
the receptive field changes drastically, from
covering only a single finger in normal cases to
covering multiple fingers.   This result appears to
indicate that the self-organizing program of our
brain autonomously selects the source of sensory
input within a candidate area according to the
statistical properties of the actual sensory signal
that is received.   These and other related studies
on the brain plasticity prompt us to rethink the
traditional rigid view about the brain.   It appears
that the developmental program of the brain does
not rigidly determine the brain’s architecture and
representation.  For example, it might determine
what statistical properties of the sensory signals
should be used and how these properties are used
to derive the representation and architecture of
the brain.

In recent years, computational modeling of
neural development has become a very active
subject of study in neural science and
psychology.  For example, there have been
several computational models for the

development of response patterns in the retina,
the lateral geniculate nucleus, and simple cells in
the visual cortex.  A subject that is now very
actively studied is the mechanisms for
developing orientational selectivity in the simple
cells of the visual cortex.  Although most
computational models of developmental
mechanisms have been concentrating on early
processing (early in the order of processing steps
in the brain), such a trend will certainly extend to
later processing when global developmental
models are increasingly studied for robots.
Psychology has begun to move from qualitative
descriptive models to more rigorous quantitative
models for studying cognitive and behavioral
processes.  Some recent works in psychology has
started to explain the global process of mental
development using the computational element of
networks [4].  Another new trend in psychology
is to use explicit dynamics models to explain
some well-known developmental facts about
infant behaviors (e.g., the work at Indiana
University [5]).  These quantitative studies have
begun to produce results that are more clearly
understandable and verifiable than vague verbal
theories and arguments.

1.2  Robotics and Machine Intelligence

Although autonomous mental development in
humans is a well-known fact, the counterpart for
machines did not receive serious attention until
middle 90’s.   It has long been believed that the
approach to machine intelligence does not have
to follow what human minds do, just like modern
airplanes which do not fly like birds.   Gradually,
many AI researchers started to realize that
machine intelligence requires much more
cognitive and behavioral capabilities than most
had realized.   Flying is a very simple problem in
comparison with machine intelligence.   Further,
many AI researchers have already realized that
machine intelligence requires “grounding” 
concepts must be grounded on real sensory
experience about the physical world, which in
turn requires the machine to have a sensor-rich
body (i.e., embodiment) that can directly sense
stimuli from the physical world and act upon
what it senses.   However, grounded sensing and
action, including learning, has been extensively
studied and experimented with in robotics for
many years.   Why then does the reality of
intelligent machines seem so remote?   Since
1996, I argued [6] that what has been sorely
missing from machines is autonomous mental
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development, or simply called mental
development.

Autonomous mental development requires a true
revolution in the way engineering has been done
(i.e., paradigm) for thousands of years.   The
current manual developmental paradigm is as
follows:
1. Start with a task: Given a task to be

executed by a machine, it is the human
engineer who understands the task (not the
machine).

2. Design task-specific representation: The
human engineer translates his understanding
into a representation (e.g., giving some
symbols or rules that represent particular
concepts for the tasks and the
correspondence between the symbols and
physical concepts).   The representation
reflects how the human engineer
understands the task.

3. Task-specific programming: The human
engineer then writes a program (or designs a
mechanism) that controls the machine to
perform the task using the representation.

4. Run the program on the machine.   Sensory
data may be used to modify the parameters
of the task-specific representation.
However, since the program is of special
purpose for the task, the machine does not
even know what it is doing at all.  All it does
is running the program.

The new paradigm, autonomous developmental
paradigm, for constructing developmental
machines or robots, is as follows:
1. Design body: According to the general

ecological condition in which the robot will
work  (e.g., on-land or underwater), human
designers determine the sensors, the
effectors and the computational resources
that the robot needs and the human designs a
sensor-rich robot body.

2. Design developmental program: Human
designer designs the developmental program
for the robot and starts to run this program.

3. Birth: The human operator loads the
developmental program onto the computer
in the robot body.

4. Develop mind: Humans mentally “raise” the
developmental robot by interacting with it.
The robot develops its mental skills through
real-time, online interactions with the
environment, including humans (e.g., let
them attend special lessons).   Human
operators teach robots through verbal,

gestural or written commands very much
like the way parents teach their children.
New skills and concepts are learned by the
robots daily.  The software (brain) can be
downloaded from the robots of different
mental ages to be run by millions of other
computers, e.g., desktop computers.

Mental development has long been mistakenly
thought of as being simulated by traditional
machine learning techniques (e.g., neural
network techniques).   In fact, all the traditional
machine learning uses the manual developmental
mode but mental development requires the
autonomous developmental mode.   What is the
basic difference?  With autonomous mental
development, machines will be able to learn
subjects that their programmers do not know, or
have not even thought about, just like human
children who can learn subjects that their
parents do not know. The essence of autonomous
mental development by machines is the
capability of learning directly, interactively, and
incrementally from the environment using the
learner’s own sensors and effectors.   Therefore,
a computer that has only impoverished sensors
and effectors cannot do mental development
well.   A neural network that can only accept
human edited offline sensory data does not
develop its mind either, even if it can learn
incrementally.   A developmental robot is a robot
that runs a developmental program and is
allowed to learn and practice autonomously in
the real physical world.

Although the concept of developmental program
for machines is very new, a very rich set of
techniques useful for developmental programs
have already been developed in the past several
decades in the fields of pattern recognition,
robotics and machine intelligence, especially
techniques applicable to high-dimensional data.
These new techniques are being used in very
innovative ways for developmental programs.
Several developmental programs have been
designed and tested on robots.    Running a
developmental program, the robots interact with
the environment in real time using their sensors
and effectors.   Internal representation,
perceptual capabilities and behavioral
capabilities are developed autonomously as a
result of interaction of the developmental
program with the environment. Humans interact
with such robots only through the robot’s
sensors, as a part of the environment.  Just like
the nature-nurture interaction for human mental
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development, the cognitive and behavioral skills
of such a robot result from extensive interaction
between what is programmed (“innate”
developmental program) and what is sensed
through real-time online experience.   The mind
and intelligence emerges gradually from such
interactions.

Early examples of such developmental robots
include Darwin V at The Neurosciences Institute,
San Diego and the SAIL at Michigan State
University, developed independently around the
same time with very different goals.   The goal of
Darwin V [7] was to provide a concrete example
for how the properties of more complex and
realistic neural circuits are determined by the
behavioral and environmental interactions of an
autonomous device.  Darwin V has been tested
for the development of generalization behaviors
in response to visual stimuli at different positions
and orientations (visual invariance learning).  It
has also been tested for the association of
aversive and appetitive stimuli with visual
stimuli (value learning).   SAIL was designed as
an engineering testbed for developmental
programs that are meant for scaling up for
complex cognitive and behavioral capabilities
[8].  SAIL-2 developmental program has been
tested for automatic derivation of representation
and architecture through development of
association between visual stimuli of objects and
eye aiming for the objects (object evoked visual
attention), between visual stimuli of objects and
arm pre-reaching for the object (vision evoked
object reaching), between voice stimuli and arm
actions (verbal command learning and execution)
and between visual stimuli and locomotion
effectors (vision-guided navigation).   Other
studies for online learning directly from sensors
are in the direction towards fully autonomous
developmental systems.   The work at MIT
associates video images of objects with
synchronized voices (pronounced verbal name of
the object) [9].  The work at the University of
Massachusetts at Amherst investigated the use of
coupling of robot leg joints that have been
observed in infants to reduce the search space for
a desirable turning gait [10].   Although the
history of developmental robots is very short,
some experiments by the above studies have
demonstrated capabilities that have never been
achieved by the traditional methods, such as in
visual recognition, verbal communication, hand-
eye coordination, autonomous navigation, value
acquisition (learning the value of actions), and
multimodal association in real time.   We are

aware that more groups in the US and other
countries have already started to investigate this
new direction.

2.  Some Major Characteristics of
Research on Mental Development

2.1 More tractable

It is known that a developed adult human brain is
extremely complex, as an epigenetic product of
long-term and extensive interactions with the
complex human world.   The developmental
principles for the brain in the complex human
world, however, should not be as complex as the
human world itself.   For example, the visual
world is very complex, but the developmental
principles that are used by the brain to derive
various filters for processing visual signals
should not be as complex as the visual world
itself.  Therefore, computational study of
cognitive development could be more tractable
than traditional approaches to understanding
intelligence and constructing intelligence
machines.

2.2  Unified framework

Studies of cognitive development will establish a
unified framework for our understanding of a
wide variety of cognitive and behavioral
capabilities.   Discovery of mechanisms
responsible for developing cognitive and
behavioral capabilities in humans requires more
systematic work than an account of a particular
individual capability, such as visual recognition
in a simplified setting alone or stereotyped
walking alone.   Sharing of common
developmental principles by visual and auditory
sensing modalities, as revealed by recent
neuroscience studies, will encourage scientists to
discover further underlying developmental
principles that are shared not only by different
sensing and effector modalities, but also by
different higher brain functions.

Traditionally, vision and speech have been
considered very different, both for humans and
for machines.   For the same reason, traditional
methods for different AI problems are typically
very different, resulting in what is well known
now as the fragmentation of the AI field.
Potentially, AI can be applied to all possible
areas of human life and each application area
potentially can lead to a fragment of AI if it is
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treated in an ad hoc way.  The unified
framework of cognitive development will
fundamentally change the current fragmented
landscape of AI in the years to come, since
different applications correspond to different
lessons that can be taught to the same
developmental robot at different mental ages.
We will also see much more interactions and
collaborations among scientists and engineers in
neuroscience, psychology, robotics, artificial
intelligence and other related fields, due to the
very similar research issues these fields face
under the theme of autonomous cognitive
development.

2.3  Task-nonspecific

In contrast to the task-specific nature of the
traditional engineering paradigm in AI,
developmental programs for machines will be
task-nonspecific.   The power of a developmental
program is its general applicability to many
different tasks.  A developmental program may
contain certain pre-processing stages that are
specific to some type of sensors or effectors,
such as camera or touch sensors.  In this sense, it
is body-specific (or species-specific).  However,
it is not task-specific.   A developmental
program can be run to develop skills for many
different tasks, with simpler skills being learned
to prepare skills for learning more complex
skills.  Recently, the scientific community has
gained a more complete understanding of human
intelligence.  As Howard Gardner put it in his
book Multiple Intelligences [11], human
intelligence is multiple, including linguistic,
logical-mathematical, musical, bodily-
kinesthetic, spatial, interpersonal, and
intrapersonal intelligences.   This is a rough
classification of a very rich ensemble of inter-
related cognitive and behavioral capabilities that
give rise to human intelligence.   The same is
true for machine intelligence.   Any particular
capability that we regard as intelligence in a
general setting, such as the visual capability of
recognizing various persons on a busy street or
the language capability of talking about
technology, is not an isolated single thing.  It
requires the support of many skills developed
through extensive real-world experience via
sensors and effectors.

2.4  Computational

Further, developmental mechanisms seem to be
very much quantitative in nature and thus require

clear computational  models.   We will see more
complete computational models for mental
development that can be simulated on computers
and robots for many different environmental
conditions and the results can be verified against
studies about humans.    We will see more efforts
on computational modeling of mental
development, for humans and machines, that are
clearly understandable, implementable on
machines and can be subject to rigorous
verification and comparison.   This will indicate
the maturation of the related fields.

2.5  Recursive and active

Development discourages any static or rigid
view of the mind.  A developed human mind is a
snapshot of many years of recursive and active
mental construction by the developmental
program in the human genes, utilizing the
sensory and action experience through life time.
The term recursive means that later mental
development relies on the cognitive and
behavioral capabilities that have been developed
earlier.  The term active means that each
individual plays an active role in the
development of his or her mind ---  different
actions lead to different experience.   The same
is true for developmental robots.   The recursive
and active nature of development discourages the
approach of collecting offline data and spoon-
feeding them into a machine, which is a
prevailing approach in current machine learning
studies.   Sensory data cannot be pre-specified
since what sensory data is sensed depends on
online action executed in real time.

2.6   Developmental capabilities as unified
metrics for machine intelligence

The criteria for measuring machine intelligence
will fundamentally change.  The metrics that can
be used to measure the power of such a new kind
of machine is primarily their autonomous
interactive learning capabilities in complex
human environments.  In other words, it is the
capability of mental development instead of what
the machine can do under a pre-specified setting.
Such performance metrics can be adapted from
those used by clinical psychologists for testing
the cognitive development of human infants
(e.g., The Bayley Scales of Infant Development)
and children (e.g., The Leither International
Performance Scale).   The mental age that is used
for measuring human intelligence in these tests
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will be adapted to a scale for measuring machine
intelligence.  This is a fundamental change from
the current metrics that measure what a machine
can do under a specific setting.   What a machine
can do under a specific setting is the intelligence
of the machine programmer, not the machine
itself.   For example, an interactive dictionary
stores a lot of human knowledge and it can do
remarkable things for humans, but it is not
intelligent.   Test criteria for machine
intelligence may also provide quantitative
feedback for improving the intelligence tests for
humans.

3 Predicted Impacts

The history of science and technology has shown
that impressive technical improvement and
persistent cost reduction will follow an important
scientific revolution.  The amount of technical
improvement and cost reduction can be so great
that it was difficult to foresee at the time of
revolution.   Two well known examples are the
internal combustion engine technology to
today’s automobiles and Von Neumann machine
idea and the semiconductor technology to
today’s popular computers.   The following
predictions may seem to be overly optimistic
today, but the history could prove them to be
true.

3.1  Human life

This revolution will greatly improve the quality
of human life.  The introduction of engines
greatly relieved humans from hard manual
labors.  The introduction of computers greatly
relieved humans from mechanical computation
labors, especially those that humans cannot do as
fast, such as doing calculations, controlling a
complex machine or generating synthetic
graphics images in real time.   The introduction
of developmental robots could relieve humans
from tedious thinking labors.  Those are low-
level thinking tasks, mainly to execute human
high-level commands.  The quality of human life
could be greatly improved with the arrival of the
age of developmental robots.   Developmental
robots will be used as human assistants, from
factories to households.  Their developed
“brains” are downloaded as software to be run on
desk-top computers to do various tasks, from
reading emails to helping children to learn. In the
past, thinking robots have been only discussed in
science fiction because machine thinking has not

been sufficiently understood. Thinking seems a
collection of internal behaviors of a
developmental being (animal or machine) and it
must be developed through autonomous mental
development just like humans and higher
animals.   Infants think using their simple
internal behaviors and adults think using their
more developed internal behaviors.  A robot that
runs a developmental program is like a machine
that writes mental program autonomously, when
the developmental program interacts with the
sensory information from the real world.    Its
developed internal behaviors represent the true
thinking by a machine.

Why did all these advances not occur in the past?
This is mainly because the AI field did not pay
sufficient attention to, or at least was not serious
about, autonomous mental development for
machines until just a few years ago.  Currently,
all the efforts for building AI systems follow the
traditional manual development paradigm, with a
few recent exceptions mentioned above.   With
the new paradigm, human programmers are not
required to write a particular program for each of
the tasks that we want the machines to perform,
which has been proved extremely difficult if the
task requires what we consider as intelligence.
Instead, what the human programmers need to do
is to write a developmental program, which is of
general purpose.   Although developmental
programs are by no means easy to design, they
are easier to understand and to improve than
many special systems designed for specific AI
tasks.   The practical aspect of developmental
robots also rests in the ease of training.  The user
of a developmental robot does not need to write a
program or manually feed data if he wants to
teach the robot.  He just trains the robot very
much like the way he trains a human child,
showing it how to do something while talking to
it, encouraging or discouraging what the robot
does from time to time.   Thus, everybody can
train a highly improved developmental robot, a
child, an elderly, a teacher, a worker  
anybody.  This is the basic reason why the
developmental robots could become popular.
Computers would not have been that popular
today if they are not as easy to use as today’s
computers with very intuitive graphical user
interfaces.

3.2 Economy and jobs
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The economic impact of developmental robots
will be enormous.  The country that takes the
lead in developmental robots will first create a
new industry for this new kind of machine.  This
new industry will take advantage of the advanced
automobile industry to develop sensor-rich
humanoid robots (Honda in Japan has already
started it).    It will also take advantage of the fast
progress of the computer industry to build
computers and memories best suited for the
computational need of developmental robots.
The cost for large storage will drop consistently
when the market grows.  For example, the cost
of hard-disk storage that is of human brain size
in terms of number of bytes has already dropped
from about $5M in 1998 to around $250,000
today (June 2000). Real-time speed with large
memory is reached through coarse-to-fine
memory search schemes.   There will be a new
industry for humanoid robots, fueled by the need
for building bodies for developmental robots.
Many different types of bodies, designed for
different working conditions and environments
will be made to satisfy increased application
scope of developmental robots.   It is expected
that in the next 10 to 20 years, the developmental
robot industry will primarily aim at professional
applications, such as research institutions,
amusement parks, public service areas, and the
defense industry.   During this period, consumers
can benefit from the software that is developed
on professional robots.  Eventually,
developmental humanoid robot may cost the
same as a car plus a high-end personal computer.
The country that takes the lead in this new
endeavor will create an abundance of economical
activities and well-paid jobs related to this new
industry.

3.3 Understanding of human mind

The impact on the scientific understanding of our
mind will be far reaching.  This revolution will
drastically improve our understanding about one
of the most complex subjects that faces mankind
today  our own minds.   For example, what are
the basic mechanisms that govern the ways in
which our minds develop?    To what degree can
the environment change the formation of the
mind?   What can the environment do to
effectively and positively influence the human
mind and improve the life of mankind?   The
answers to these questions require the knowledge
about the developmental root of the mind.

Without studying the computational models of
mental development, these questions cannot be
sufficiently and clearly answered.

3.4 Medicine

The knowledge created by this revolution will
also improve medical care.   It will provide basic
knowledge useful for treating learning
disabilities, mental disorders, and mental
problems associated with aging.   For example,
what developmental mechanisms are responsible
for attention deficiency?    What developmental
mechanisms are responsible for enabling an
individual to establish the value of an event, a
behavior, or the social norm?    What techniques
are effective for teachers to improve the
development of certain cognitive and behavioral
capabilities? Computationally, which areas of the
brain are responsible for certain mental
disorders?  During aging, which mechanism of
the brain is likely to deteriorate first and what
remedies are possible?

4.  Why now?

As we discussed above, the recent new
discoveries about human brain tell us loud and
clear that our human brain utilizes the
developmental principles that are shared by
different sensing and effector modalities.   Since
higher brain functions appear to be even more
plastic than early sensory processing, it is
expected that the higher brain functions also use
developmental principles that are generally
applicable to different subject matters that
humans learn.   The time is right to study what
these developmental principles really are.

Technically, it is now possible to study
massively parallel, distributed brain activities
and relate them to mental development.  The
advances in neural imaging techniques, such as
EEG, EMG and fMRI, now allow high
resolution, concurrent, and real-time
measurement of brain activities.

In the machine intelligence and robotics fields,
the fundamental difference between the way
human mind is developed and the traditional
engineering paradigm for machine development
was recently identified as the fundamental reason
for the difficulties in AI.  The studies about the
fundamental limitations of the current
engineering paradigm have recently started.



8

Some preliminary computational models for
developing the mind by machines were recently
proposed the tested.   These early efforts have
achieved some results that have not been
possible using the traditional engineering
paradigm.  Therefore, computational models of
mental development for machines are not beyond
human comprehension and they are within the
manageable scope for humans to model
computationally.

The performance-to-cost ratio of computers has
reached a critical level that now it is practical to
simulate brain development in real time on a
robot, with a storage whose size is equivalent to
a considerable fraction of human brain.   Further,
this can now be done at a very moderate cost.
For example, the development of the most
computational challenging modality, vision, can
now be simulated on real robot in real time by
software running on a PC workstation.

Technology for building robots has also been
improved significantly.   In recent years, research
laboratories and related industries in US and
Japan gained remarkable experience in actually
building robots that resemble human and animal
bodies with similar articulate structures, from
human-size humanoid robots (e.g., the series of
Honda humanoid robots) to advanced consumer
toy robots (e.g., Sony AIBO dog robots).    The
robotic technology is ready for building various
humanoid or animal robots as bodies for
developmental machines.

5  Research issues

In some sense, the task-nonspecific nature of
mental development makes the studies of mental
development easier than the traditional task-
specific approaches.   This is true for both human
subject (neuroscience and psychology) and
machine subject (AI and robotics).    From the
computational view of mental development, the
research issues are around sensory signals and
effector signals with internal autonomously
generated numerical states.  A developmental
program will associate signals that are from
different sensors, stored in internal status and
sent to effectors, but its programmer does not
need to know what those signals actually mean!
To put it intuitively, it is easier to model how an
interactive program looks up words from its
word memory than to model how the meanings
of words in The Merriam-Webster’s Dictionary
relate to one another.  The former is like what a

developmental program does for many tasks that
a developmental being will come across and the
later is like what all the traditional programs do
for a particular task.

To understand this fact better, we take a complex
behavior as an example.  Modeling attention
selection in a traditional task-specific way
requires the researcher to understand the nature
of the task (e.g., driving) and then to study the
rules of attention selection based on the steps of
the task.  Such rules are extremely complex (e.g.,
due to the complex road situation during driving)
and the results are ad hoc in the sense that they
are not directly applicable to other tasks or even
to the same task under different scenarios.  In
contrast, attention selection by a developmental
being is just a part of behaviors that are being
developed continuously and constantly.   As long
as the effectors for attention selection are defined
for the body (external effector) and the brain
(internal effector), the attention selection
principles are developed autonomously by the
same developmental program in a way very
similar to the behaviors for other effectors, such
as arms and legs.

Consequently, a series very interesting and yet
manageable new research problems are opened
up for study, for fields that have either human or
machine as study subjects. Some of the tractable
research problems that can be immediately
studied are suggested below.

1. Schemes for autonomous derivation of
representation from sensory signals (from
the environment and the body).

2. Schemes for autonomous derivation of
representation from effector signals (from
the practice experience)

3. Autonomous derivation of receptive fields,
in both the classic and nonclassic sense.
That is, how later processing elements in the
brain group outputs from earlier processing
elements or sensory elements.

4. Long term memory growth, self-
organization and retrieval, for high-
dimensional neural signal vectors.

5. Working memory formation and self-
organization, for high-dimensional neural
signal vectors.  The working memory may
include short term sensory memory and the
system states.

6. Developmental mechanisms for mediation
of conscious and unconscious behaviors.
That is, those for mediation among higher
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and lower level behaviors, such as learned
behaviors, learned emotional behaviors,
innate emotional behaviors and reflexes.

7. Mechanisms for developing internal
behaviors  those that operate on internal
nervous components, including attention
selection.   This subject includes both
developmental mechanisms and training
strategies for humans and robots.

8. Attention-directed time warping from
continuous states.   This subject deals with
time inconsistency between different
instances of experience, with the goal of
both generalization and discrimination.

9. Autonomous action imitation and self-
improving.   The developmental
mechanisms for a developmental being to
derive an improved behavior pattern from
individual online instances of related
experience.

10. Mechanisms for communicative learning
and thinking.   The developmental
mechanisms that allow later learning
directly through languages (auditory, visual,
tactile, written etc) as children do when they
attend classes.    These mechanisms enable
development of thinking behavior, which is
responsible for planning, decision making
and problem solving.

6  Performance metrics

The current fragmentation landscape of AI is a
reflection on how different AI problems can be
measured by very different metrics, if
intelligence is measured as the capability of
performing a specific task.   However, what a
machine can do under a specific setting
represents the intelligence of the machine
programmer, not necessarily the machine’s own
intelligence.  Further, a special purpose machine
that can only work for a particular problem
cannot deal with complex problems that require
true intelligence, such as vision, speech and
language capabilities.

The criteria for measuring machine intelligence
will fundamentally change.  The metrics that can
be used to measure the power of developmental
robots should emphasize the autonomous
interactive learning capabilities in complex
human environment.  In other words, it is the
capability of mental development instead of what
the machine can do under a pre-specified setting.

This is indeed the case with well-accepted test
scales used by clinical psychologists for
measuring mental and motor scales of human
children.   Two such well known scales are The
Bayley Scales of Infant Development (for 1 to 42
months old) and The Leither International
Performance Scale (for 2 years to 12 years old).
These scales have a very systematic
methodology for the administration of tests and
scoring.  The reliability and calibration of these
scales have been supported by a series validity
studies, including constuct validity, predictive
validity, and discriminant validity that cover
very large number of test subjects and different
age groups across very wide geographic, social,
and ethnic populations.

Here let us take a look at an example of tests in
the Leither International Performance Scale for a
two years old.   The name of the test is Matching
Color.   The test setup is a row of 5 stalls.
Above each stall pasted a color card, black, red,
yellow, blue, and green, respectively.  During the
test, color blocks are presented, one at a time in
the order: black, red, green, blue, and yellow.
The examiner places the black block in the first
stall and tries to get the subject to put the red
block in place by placing it on the table before
him, then in the appropriate stall, then on the
table again, nodding to him to do it and at the
same time pointing to the second or red stall.  As
soon as the subject begins to take hold of the
test, the final trial can be attempted.  In this test,
the examiner tries to get the subject to imitate his
procedure.  The test is scored as passed if the
subject is able to place the four colors (the first
one is placed by the examiner) in their respective
stalls entirely  by himself during any one trial,
regardless of the number of demonstrations or
the amount of help previously given by the
examiner.   As we can see, the test does not
really concern about whether the child has
learned the abstract concept of color, but rather
the capability of imitating the action of the
examiner using visual color information as a cue
in coordination of his motor effectors (hand and
arm).

The mental age that is used for measuring human
intelligence in these tests can be used as a scale
for measuring machine intelligence.  Currently
metrics that have been used for various AI
studies mainly measure what a machine can do
under a specific setting, instead of the capability
of mental development.    Such a capability
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requires online, interactive learning capability as
the above test demonstrates.   For example, an
interactive dictionary stores a lot of human
knowledge and it can do remarkable things for
humans, but it is not intelligent.  If a machine
that can pass the systematic tests like the one
shown above, it must have already learned many
others skills that no traditional machine has.
Therefore, although autonomous mental
development is a new direction, its impact on the
future of machine intelligence and our
understanding of human intelligence will be far
reaching.   The performance metrics for
measuring intelligent machines can be adapted
from those used by clinical psychologists for
testing the mental development of human
infants.  The Bayley Scales of Infant
Development and The Leither International
Performance Scale are two such examples.
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