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Using the Metaphor of Intelligence

A. Wild
Motorola, Phoenix, AZ 85018

ABSTRACT

Constructed system with autonomy can be considered as possessing
intelligence, if intelligence is understood as a metaphor. It is useful to
be aware of that, when defining desirable features for constructed
systems, in areas such as reflecting the world (ontology), definition
and pursuit of goals (teleology), or general human-like behavior
(anthropomorphism). Modeling and simulating integrated systems
exemplify the usage of multi-scale, multi-disciplinary representations,
as a basis for increasing the autonomy of some specific constructed
systems. Measuring the intelligence of constructed systems requires a
Vector of Metrics for Intelligence. Its components will be defined by
different means, such as conducting existence tests for essential
capabilities, measuring the power to eliminate unnecessary
exploration, competitions of hardware-compatible systems, or vote
by a jury.
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1. INTRODUCTION

The intelligence of the constructed systems with autonomy
has to be understood as a useful metaphor, not to be stretched
too far [1]. As beneficiaries of such systems, we are actually
interested in their performance. The underlying assumption,
however, is that building intelligence into the system, whatever
its definition would be, would result in a generic and
systematic way to improve their performance.

While it is relatively easy to imagine ways to measure
performance, it is far less obvious how to measure intelligence,
as we lack a crisp, generally accepted definition, be that for
human beings, for other beings, or for artifacts.

The casual observer perceive manifestations of
intelligence in multiple forms, and also will notice that
somebody performing very intelligently in one situation may
show what appears to be a lack of intelligence in another
situation. This may suggest that intelligence is a local skill. On
the other hand, some researchers intuitively feel that
intelligence is an intrinsic capability of an entity, and engage in
exploring the commonalties between different entities
considered intelligent.

Pragmatically, the latter seems the most promising
approach. If successful, it would provide the foundation for a
methodology to construct systems with continuously

improved capabilities. To drive the progress, it is essential to
establish metrics, ranking systems according to their
intelligence. Note that for this purpose it is actually irrelevant
whether one considers intelligence as a generic or a local
property. Depending on the viewpoint, the ranking would be
valid either within a specified sub-space or in general.
However, general methods, if possible, would have clearly a
wider impact.

2. LIMITS OF THE METAPHOR

A multitude of aspects can be considered as elements or
capabilities necessary to support intelligent behavior. In some
versions, the Vector of Intelligence has 25 dimensions. It is
supported by a set of computational tools, with a system
architecture counting 16 features, and is completed by a
control and data acquisition system with supervisory
authority, also featuring a number of capabilities. Many of
these elements do justice to the view adopted by the Italian
Renaissance and illustrated famously by Leonardo da Vinci:
the man is the measure of all things. While this approach is
quite effective, and may be often unavoidable, caution is in
order to avoid excesses in at least three respects: our view of
the world, our goal setting capabilities and our own being.

2.1 Ontology

The dimensions of the vector of intelligence and the
supporting tools, architectural features and auxiliary
subsystem should not be excessively isomorphic with our
contemporary perception of the world.

A few centuries ago, we might have asked an intelligent
system to recognize the four elements and their interactions,
we would have argued about the phlogiston, and hoped that
eventually an intelligent system will extract the quintessence of
anything and everything. It should have recognized the
planets and the major stars, and have had the ability to
synchronize actions with favorable skies. The Euclidean
geometry was a very pertinent model to simplify the
description of the world, by accepting that concepts like a
straight line do have a kind of existence. Likewise, all needed
knowledge about gravity was that there exists an attraction
force between two bodies, precisely equal to the Cavendish
constant multiplied by the two masses divided by the square
of the distance. This formula easily generated the laws derived



by Kepler from mountains of data and hundreds of years of
observations. The depth of our understanding was made
sensible (was measured ?) by this tremendous simplification.

Unfortunately, the space-time curvature of generalized
relativity eliminated the paradigm of the straight line, and
Newton’s simple formula was unable to lead to a solution for
three body interactions. Our present view is that the world
does not admit a simple description.

When facing complexity, we tend to rely upon hierarchy
to simplify interactions. Ideas about multi-resolution, multi-
scale views imply a hierarchy. We tend to require that an
intelligent system can do the same, being able to handle
several hierarchy levels. Their number and their adequate
utilization are candidates for intelligence metrics.
Computational tools of intelligence define rules and
procedures for crossing boundaries between hierarchy levels.

However common and widely accepted, the hierarchical
representation of complexity is probably no more than the
current model, and it seems reasonable to expect that it will be
eventually replaced by a different view. This would also induce
an evolution of the intelligence metrics derived from a model of
the world, as it evolves historically.

As a matter of fact, the next paradigm may already take
shape under our eyes: can one speak about the Internet as
about a constructed system with autonomy, exhibiting
intelligence ? And if yes, how would that intelligence be
measured ?

2.2 Teleology

We consider the ability to generate goals as a leadership
feature. Some philosophers consider this as the defining
feature of any living beings.

However, humans, and other living creatures, pursue
both explicit and implicit goals. They  either conceptualized
themselves the explicit goals, or receive the goals form higher
authorities. In anyone of these situations, they may or may not
exhibit intelligent behavior. A simple positive example is young
James Watt, being given the goal to keep the pressure of a
steam vessel constant. He did not conceive the goal himself,
actually, he was pursuing rather different interests. It was not a
goal with any recognizable intellectual challenges. But Watt
generated a response that resonates until today, and will keep
resonating, being, among other things, largely responsible for
this workshop.

2.3 Anthropomorphism

A system scoring high on all dimensions of the Vector of
Intelligence and its auxiliaries will probably pass easily the
Turing test. It may do even more, it would be basically human,
at least to the extent of our current understanding of the way
humans are looking like. Some of the properties listed by

Neville address the ability to communicate like humans,
including such things as understanding a sentence and
developing knowledge. These ideas seem to relay on the
perception that the more a system is similar to a human being,
the more would it be perceived as intelligent.

Even if our current understanding of humans would be
definitive, this is approach may be an anthropomorphic trap.
Actually, there is no necessity for the constructed structures
with autonomy to present any isomorphism with our ideas
about the human beings. Many of the most effective artifacts
created by humankind are radically non-anthropomorphic, or
non-biomorphic, for that matter. Starting with the wheel,
radically different from a leg, yet allowing better locomotion,
one can easily follow with any number of examples. A jet
airplane is not a bird. A computer is not a brain. And a
constructed automaton with autonomy is not a living being.
There is no recognizable necessity for these artifacts to be
indistinguishable from, or even similar to their closest living
relatives.

If one recalls the number of words in any language
describing non-intelligent behavior, one may conclude that
copying too closely humans may be less than desirable.

3. PROGRESSING TOWARDS THE
METAPHOR

Building systems reflecting our view of the world, our
purposes and our way of being, may prove productive. Multi-
scale representations are probably a useful way to handle the
complexity of the world in our minds, at this point in the
evolution of our understanding. We can legitimately expect
such representations to be useful in sciences and engineering.

The ultimate multi-discipline, multi-scale simulations are
attempted by cosmologists, who hope to deduce the
characteristics of the universe, 10 to 15 billion years after the
Big Bang, from its characteristics when it was younger than
one second.

Electronic engineers aiming to design integrated
microsystems, have simpler needs: to simulate, with some
quantitative accuracy, what happens on a silicon wafer within
a time span from a few nanoseconds to a few hours.
Microsystems are defined here as monolithic structures
functionally equivalent to multi-chip systems. Increasing
integration levels drive the semiconductor industry towards
building system on a chip. To address this demand, design and
manufacturing must integrate heterogeneous elements with
traditional data processing circuits, encompassing multiple
disciplines, multiple scales in space and multiple scales in time,
within a coherent framework of computer aided design.
Adequate modeling and simulation enables closed loop
optimization and microsystem design automation.

Microsystem design must handle multi-scale modeling in
time, to cope with the wide gap present in the temporal scales.



While atomistic calculations are useful for continuum
simulations, molecular dynamic simulations are limited to times
on the order of nanoseconds. The gap can be bridged by a
meso-scale calculation, for instance using the Lattice Monte-
Carlo (LMC) method to describe the hops between stable
states (nanoseconds) rather than the vibration frequencies of
the lattice (fractions of picoseconds).  In space, multi-
discipline, multi scale modeling is often required to link
macroscopic reactors to microsopic integrated elements. As an
example, a micromachined gear, 1 micrometer in diameter, can
be analyzed using three hierarchical levels: continuum models
(finite element) for the body of the wheel, molecular dynamics
for gear teeth, and tight-binding for the contact between teeth.
The connection is realized via a self-consistent overlap region,
while keeping the time discretization in both connected
domains in lock step, the whole system requiring massive
parallelization at Maui Supercomputer Center.
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4. MEASURING THE METAPHOR

As the Vector of Intelligence and its supporting structures are
multi-dimensional, multi-faceted and quite heterogeneous, a set
of metrics would probably be necessary, in the hope that if a
unitary definition of intelligence would emerge, a composed
metric may by put forward. The four approaches presented
below are the beginning of the Vector of Metrics for
Intelligence.

4.1 Counting features

Some features of the Vector of Intelligence and the supporting
structures can be tested by a go/no go test, they either exist
within a given system, or they do not. Furthermore, some of
them have clear numerical definitions and can be determined
by counting. The result of counting is final, as long as the
structure does not evolve, or represent just an assessment at
that point in time, if the system can evolve. The only open
problem is how to of aggregate the different dimensions of the
Vector of Intelligence, so that ranking can be done.

4.2 How far away from enumeration ?

Testing for functional correctness of a system poses serious
challenges even at the lowest levels. For example, testing the
hardware of a microprocessor, a finite state machine, is
conceptually easy, yet unsolvable practically. Theoretically, a
test can run through all possible transitions between states,
with all bit configurations at the external inputs, comparing at
each step the outputs with the specification. The number of
states and transitions is finite, yet so large, that the test of a 32
bit processor running at 1GHz would take a time longer that the
age of the Universe.

To reduce the number of tests, one can use additional
switching elements to reconfigure the structure to a finite state
machine of lower complexity. If the logic gates and storage
elements in the finite state machine have been defined
algorithmically, one can safely accept that the functionality
would be correct, if no physical defects are present. In this



case, the simplified structure may be used to proof that all the
desired logic gates and storage elements (a few 10 or 100
million of them on contemporary chips) are present, functional,
and properly connected. These methods, currently used, are
still unable to provide satisfactory test coverage. At a more
abstract level, formal analysis of the structures is researched as
the next opportunity to achieve it. If one adds to the testing
the requirement to proof that a system or a piece of software is
providing optimum responses in all cases, the complexity of
the task is inhibiting.

In general, a measure of intelligence could be how much
of the space to be investigated is not explored through
enumeration.

This is almost isomorphic with some areas of scientific
knowledge. For instance, the postulates of thermodynamics, to
be accepted rather than demonstrated, point out what is
impossible to achieve, saving us huge efforts, like trying to
build all possible cases of perpetuum mobile of the first and
second species, in addition to trying to reach absolute zero.
Obviously, the postulates are very effective in eliminating an
infinity of pointless attempts.

4.3 Contests

Intelligent systems are expected to perform well in uncertain
situations, and direct competition among systems might be an
appropriate way to generate uncertainty, providing means to
rank them.

Examples of competitions are robot wars, fire-fighting
robot contests, or robot-soccer tournaments. It is necessary to
define the contests such that they address either the body or
the mind of the systems in competition. Robot wars address
obviously both. Athletic capabilities, rather than intelligence,
also determined the outcome of the last World Cup for Robot
Soccer, at which one team had access to more powerful motors
than the other teams.

To dissociate the two components, an easy way would
be to organize games between robots mechanically identical,
but driven by different minds, a luxury seldom available with
human beings.

4.4 Vote

Capturing all elements necessary for intelligent behavior is a
complex and controversial endeavor. The Vector of Intelligence
and supporting features, even after unnecessary
anthropomorphic features have been eliminated, still has
dimensions judged by perception.

Contemplating the behavior of living beings, one would
readily identify some that would be spontaneously perceived
as non-intelligent (stupid), while a whole range would be rather
neutral, neither intelligent nor stupid. An alternative approach
to building intelligent systems, could be to address the topic of

building non-stupid systems, specifying what they should
NOT do.

For instance, they should not persist in error. A non-
stupid system would recognize a hopeless situation, and
change its behavior or method. This distinguishes intelligence
from blind instinct: ants keep building their houses even after
the eggs have been removed. Although methods have been
defined and implemented for quite some time to avoid stalling,
quite sophisticated autonomous systems on a remote Planet
still got stuck, as do soccer playing robots. When a player
manages to gets unstuck by spinning, the human observers
cheer. However, the opposite result is achieved, when players
start spinning without a recognizable reason.

Given the subjective component in characterizing
behavior as being intelligent, one could also envision scoring
by the vote of a human jury. This would be similar to the
methods used in some sports such as skating, in which a jury
gives two notes: one for the technical merit, one for the artistic
impression. After all, contests and games are entertainment,
and audiences are entitled to have some fun.
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ABSTRACT
A critical need for a high performance autonomous system is the
ability to generate appropriate responses when faced with
conditions that were not explicitly considered during off-line
design.  This paper emphasizes three technical concepts as
essential for meeting this need:  multimodels, anytime algorithms,
and dynamic resource allocation.  An example from ongoing
research in the autonomous uninhabited aerial vehicle domain is
used to illustrate the concepts.  Some competing concepts are
discussed, and connections with consciousness and metrics are
outlined.

Keywords:  Autonomous systems, multimodels, anytime
algorithms, resource allocation, uninhabited air vehicles,
consciousness.

1.  INTRODUCTION
Society, industry, and government are all exhibiting
increasing interest in autonomous and semi-autonomous
systems—complex engineered artifacts that require minimal
or no human involvement for their operation.  The
motivations for this interest range from cost-efficiency to
environmental safety to national defense.  Potential
applications are everywhere, especially where human
operation is infeasible or dangerous: warfare, deep space
missions, terrorism countermeasures, and toxic material
handling are examples that come readily to mind.

From one perspective, it could be argued that the history of
automation is the history of progress in engineering
autonomy.  We have been successful in automating ever-
higher levels of operation, from regulatory control to
supervisory control on upward.  The Wright Flyer required
the human pilot to perform the inner-loop control function.
Today’s commercial aircraft can fly from point A to point
B, automatically closing the loop on not just the inner loop
but also outer loop, handling qualities, and waypoint
following functions.

But autonomy is much more than automation.  Today’s
engineered systems may be highly automated, but they are
brittle and capable of “hands-off” operation only under
more-or-less nominal conditions.  As long as the system
only encounters situations that were explicitly considered
during the design of its operational logic, the human
element is dispensable.  As soon as any abnormal situation
arises, control reverts to the human.

An autonomous agent must be capable of responding
appropriately to unforeseen situations—that is, situations
unforeseen by its designers.  Some degree of
circumscription of a system’s operating space will always
exist, since survival under every environmental extreme is
inconceivable, but “precompiled” behaviors and strategies
are not sufficient for effective autonomy.

Below, I first discuss some features and characteristics that I
believe are necessary for engineering high-performing
autonomous systems.  Next, in Section 3, an example from
work in progress—which is focusing on the development of
autonomous capabilities for uninhabited aerial vehicles—is
presented.  Section 4 discusses some alternative
perspectives on engineering autonomy, followed by a
selective review of the consciousness controversy.  I
conclude with a measurement-related note.

Parts of this paper are adapted from (Samad and Weyrauch,
2000) wherein some further elaboration can be found.

2.  ASPECTS OF AUTONOMY
What does it mean to be able to react appropriately to
unforeseen situations?  To be capable of exhibiting
behaviors that are not precompiled?  I would like to
emphasize three technical concepts:  multimodels, anytime
algorithms, and dynamic resource allocation.  These are
discussed below, and a brief digression on the topic of
hierarchy is also included.

2.1 Multimodels:  Explicit representations of
heterogeneous knowledge

In the absence of a sufficiently rich built-in library of
canned responses to specific situations, an agent must be
able to rely on an explicit, algorithmically manipulable
knowledge base.  Instead of reflexive responses being built
in, the knowledge base required to generate responses
deliberatively must be incorporated.

The knowledge base must capture relevant details about the
capabilities of the autonomous agent, its environment, other
agents it expects to be interacting with, its tasks or
objectives, etc.  These “models” need not be perfect; they
represent what the agent believes, not objective truths.  But,
almost regardless of their fidelity, they allow the agent to
reason and to determine responses to a potentially hostile
world.  The effectiveness of the responses will be a function
of the fidelity of the models (in part), but, I would maintain,



autonomy and effectiveness are separable.  Stupid
intelligence is an oxymoron; stupid autonomy is not.  (In
most of this paper, however, I do not make a careful
distinction between intelligence and autonomy.)

I use the term multimodels to refer to multiple,
heterogeneous knowledge representations.  We later discuss
a domain-specific example, but here I would like to note
one property of multimodels that is likely to be useful
across domains.  The degree of precision and accuracy of
knowledge that an autonomous agent must consider will
vary with the situation it finds itself in.  In some cases,
disparate models may be used to capture different levels of
detail.  However, a greatly preferable option is a unified
modeling framework that is capable of providing estimates
or predictions at multiple levels of resolution, the level in
effect at any time being specifiable by a higher level
function.

2.2 Dynamic resource allocation and anytime
algorithms

An autonomous agent must be able to dynamically manage
its processing and other (sensing, actuation, communication,
power) resources.  In the face of multiple competing
demands and objectives, each of which requires individual
algorithmic attention, an agent cannot generally afford to
examine any exhaustively.  The world does not wait for
closure of contemplation.

Thus, tradeoffs must be made in real-time, to decide how
inevitably inadequate resources must be apportioned to the
multiple demands on them.  This is an issue that generally
gets little attention from the intelligent systems community,
yet it is no less critical than the issue of designing
algorithms for information processing for autonomous
systems.

Different processing tasks have different criticalities,
deadlines, and other properties. Some tasks may need to be
executed on a fixed periodic basis, others may be event-
driven, others yet may be continually ongoing.  This variety
is suggestive of the complexity of real-time resource
management for autonomous systems.

Of particular interest for autonomous operation are
“anytime” algorithms—algorithms that are able to flexibly
exploit available computational resources.  Beyond a certain
minimum execution time that it may require to generate an
initial candidate solution, an anytime algorithm can
iteratively improve on this solution over time.  Randomized
algorithms such as evolutionary computing are prototypical
examples.

Resource management in current control systems presents
an illuminating contrast with the needs for autonomous
operation noted above.  All control systems today have to
address resource constraints.  This is done by determining
ahead of time—during the design process—precisely which

tasks will need to be executed under what conditions.  Task
execution schedules can then be precomputed and defined.
This static scheduling approach is infeasible for autonomous
systems.

2.3 Hierarchies, but not strict ones
The sophisticated information processing systems we
currently engineer are almost always hierarchical.  Further,
the design methodology that is proposed in today’s techno-
culture emphasizes strict, hierarchically structured
processes.  Hierarchy as an engineering design heuristic has
much to recommend it, but I would assert that it is a mistake
to assume that all intelligent systems must be analyzable as
strictly hierarchical.  One need only look at the central
nervous system of any organism one thinks of as intelligent
(e.g., the human brain) as evidence.  There is certainly
structure to the brain, but a formal, strict hierarchy is a
counterfactual insistence.  Bypass connections, reflex
reactions, affective conditioning, many intriguing
pathologies—these are all indicative of an organization that
is better thought of as a web than a tree, or at least as only
loosely hierarchical.

As an example, see Figure 1.  Elements of the figure
resemble the typical multilayer hierarchical architectures
that attempts at engineering autonomous systems often
adopt (i.e., the organization as shown of the spinal column,
the brainstem, the thalamus, and the cerebrum).  However,
additional pathways are also present, forming prominent
and crucial bypass structures and feedback loops.

Limbic System
(Motivation)

Cerebrum
(Cognitive Processes)

Basal Ganglia
(Coordination)

Thalamus
(Data Concentrator )

Cerebellum
(Proprioception )

Brainstem

Spinal Column

A:  Outer feedback loop
enabling and modifying
dynamic response (coordination
of intention and sequential
activity)

B.  Inner feedback loop for
sensorimotor system, tracking
and modifying muscle response
errors (coordination of response)

A

B

Figure 1.  Simplified architecture for primate central
nervous system (figure courtesy of Blaise Morton).

3.  EXAMPLE:  ROUTE OPTIMIZATION FOR AN
UNINHABITED AUTONOMOUS VEHICLE

We briefly discuss here some ongoing research at
Honeywell Technology Center, targeted toward the
development of algorithms and software mechanisms for
uninhabited air vehicles (UAVs), with specific emphasis on
demanding military applications.  Multimodels, anytime



algorithms, and dynamic resource allocation feature
prominently in our research.

An example of a multimodel knowledge base for route and
trajectory optimization in a UAV is shown in Figure 2.  The
figure shows a (wavelet-based) multiresolution
time/frequency model of a trajectory.  By selectively setting
specific parameters—each associated with one of the boxes
in the top graphic—to zero, the space of trajectories can
automatically be constrained so that different segments of
the trajectory are defined in more or less detail as
appropriate for a given situation.  Trajectory optimization is
then conducted over the enabled parameters, ensuring that
computational resources are used efficiently.  Under normal
conditions, we can expect that the resolution profile would
gradually decrease over the optimization horizon.  The
figure also shows multiresolution models of aircraft
dynamics and terrain; these and other models are necessary
to check various constraints on a hypothesized trajectory
and to calculate the cost function for optimization.  (See
Godbole, Samad, and Gopal [2000] for more details.)
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Figure 2.  Multimodels for trajectory optimization for an
autonomous aircraft.

This multimodel approach has been integrated with an
anytime algorithm for route optimization, and a simulation
result is shown in Figure 3. A UAV is skirting a threat area
when a target model (including the target’s coordinates) is
communicated to it.  The original route (not shown in the
figure) was not overflying the target area but instead
adopting a low elevation radar-evading route over a ravine.
Once the target is detected, the online trajectory
optimization algorithm is executed.  In this case, greater
resolution is desired over a medium horizon interval, and
minimizing the previous cost function for low flight is
considered less important than rapidly generating an
alternative route that overflies the target area.  As the UAV
continues its flight, incremental re-optimizations are
performed at regular intervals, with the computational
resources expended on these optimizations varying

continuously depending on the particular objectives and
models under consideration at that time.

We currently use an evolutionary computing algorithm—an
extension of the algorithm outlined in (Samad and Su,
1996)—for optimizing the trajectory.  The EC algorithm
searches over the space of nonzero coefficients in the
multiresolution wavelet-based representation noted earlier.

As I hope this example illustrates, the concepts of
multimodels, anytime algorithms, and dynamic resource
management are related in that effective autonomy requires
the integration of all of them.  Given a particular situation
that requires an autonomous agent to react, it must be able:

• to access the knowledge it has that is relevant to the
situation in the context of its goals and abilities;

• to flexibly reason about its decision and control
options, adapting the level of scale and resolution in its
processing to the situation and objectives;

• to tradeoff competing demands and requirements in the
face of resource limitations.

¹

Q
Target detected:
higher resolution,
medium horizon,
rapid optimization

Figure 3.  A frame from a simulation example of active
multimodel control for trajectory optimization.

4.  ALTERNATIVE PERSPECTIVES
There are, however, other reasonable solutions and
perspectives to engineering autonomy that are being
proposed, and a few are briefly noted in this section.

4.1 Model-free autonomy
It seems reasonable to correlate the autonomy of a system
with the fidelity or scope of the models accessible to it, a
connection I have made above.  The richer the explicit



representations of its environment, itself, its collaborators,
etc., that a system contains (regardless of whether these
representations are acquired through learning or are
hardwired by a designer) the more likely that an engineering
system can operate effectively without continuous human
supervision.  So a model that can be symbolically
manipulated may be seen as a necessary condition for
autonomy.

But consider (as much research in intelligent systems is
starting to do) an ant.  There are certainly properties of ant
behavior that we would be delighted to be able to
incorporate within constructed systems with autonomy.  An
artificial ant, if we were able to construct one, would be
considered to be a system with some non-trivial degree of
autonomy.

Or, if the capabilities of an ant do not warrant the
“autonomy” label, what about an ant colony?  A million
ants no more make an explicit, manipulable model of the
world than an ant by itself.

The most prominent exemplar of this line of research in
autonomous systems is the “subsumption architecture” of
Brooks (1991), a central tenet of which is that the world can
be its own model.  No representations are needed—in fact,
they are seen as harmful since in dynamic and ever-
changing environments they can rapidly become outdated.

4.2 Is biology the only model?
Today, all the truly autonomous systems that exist are
biological ones.  It therefore seems appropriate to mimic
salient features of biological systems in the design of
engineered autonomy.  However, an alternative viewpoint
may lead us to question such biomimicry.  Most human
engineering, an endeavor that has enjoyed considerable
successes, has not drawn design inspiration from biological
principles—airplanes are an obvious example.
Architectural sketches of brain organization (as in Figure 1)
may be dismissed as irrelevant by this argument.

Of course, until some non-biologically-inspired autonomous
artifact is produced, the study of existing autonomous
systems (i.e., biological ones) should be helpful.  But it can
legitimately be argued that biology need only be a weak
model.

4.3 Autonomy need not be physically grounded
Our discussion above has exemplified autonomous systems
with UAVs, and most research in autonomy focuses on
vehicular systems (terrestrial, undersea, or in air or space).
While autonomous vehicles are a particularly exciting
prospect for future engineering systems, autonomy, as a
property, should not be considered constrained to physically
mobile platforms.

In fact, it is important to consider autonomous systems that
are not vehicles, since a broader understanding of autonomy
is contingent on an understanding of the full spectrum of the

topic.  Different application areas will have specific
characteristics.  For example, in the process industries there
is a continuing drive to increase the level of automation in
plants, sometimes even quantified by a “number of loops
per operator” metric.  An autonomous decision and control
system for an oil refinery will have to deal with issues
related to high dimensionality (a refinery can have 20,000
sensors and actuators), significant delays due to material
transport (dead times can be on the order of hours), and the
lack of full state feedback.

At an even greater remove from physicality, we can
contemplate autonomous computer and communication
networks, which need operate only in the “virtual” realm.

5.  CONSCIOUSNESS—REQUIREMENT OR RED
HERRING?

The notion of developing engineered sensors or actuators, or
even low-level models of computation, that are based on
biologically gleaned principles is uncontroversial.
Embodying higher-level cognitive capabilities in
computational systems, however, is another matter.  Some
would argue that the sorts of phenomena found in the brains
of humans cannot even in principle be realized by the sorts
of machines we are contemplating.  The levels of autonomy,
intelligence, and adaptability exhibited by humans are
thereby excluded (the argument goes) from realization in
engineered systems.

The concept of consciousness lies at the center of this
controversy.  I take it as given that human-like performance
by a machine requires the machine to have something akin
to consciousness—an ability to reason about and reflect on
its own behavior, not just “blindly” follow preprogrammed
instructions.

There are two theoretical limitations of formal systems that
are driving much of the controversy—the issue under debate
is whether humans, and perhaps other animals, are not
subject to these limitations.  First, we know that all digital
computing machines are “Turing-equivalent”—they differ
in processing speeds, implementation technology,
input/output media, etc., but they are all (given unlimited
memory and computing time) capable of exactly the same
calculations.  More importantly, there are some problems
that no digital computer can solve.  The best known
example is the halting problem—we know that it is
impossible to realize a computer program that will take as
input another, arbitrary, computer program and determine
whether or not the program is guaranteed to always
terminate.

Second, by Gödel’s proof, we know that in any
mathematical system of at least a minimal power there are
truths that cannot be proven and falsehoods that cannot be
disproved.  The fact that we humans can demonstrate the



incompleteness of a mathematical system has led to claims
that Gödel’s proof does not apply to humans.

In analyzing the ongoing debate on this topic, it is clear that
a number of different critiques are being made of what we
can call the “computational consciousness” research
program.  In order of increasing “difficulty,” these include
the following:

§ Biological information processing is entirely analog,
and analog processing is qualitatively different from
digital.  Thus sufficiently powerful analog computers
might be able to realize autonomous systems, but
digitally based computation cannot.  Most researchers
do not believe that analog processing overcomes the
limitations of digital systems; the matter has not been
proven, but the Church-Turing hypothesis (roughly,
that anything computable is Turing-Machine [i.e.,
digitally/algorithmically] computable) is generally
taken as fact.  A variation of this argument, directed
principally at elements of the artificial intelligence and
cognitive science communities, asserts that primarily
symbolic, rule-based processing cannot explain human
intelligent behavior.

§ Analog computers can of course be made from non-
biological material, so the above argument does not
rule out the possibility of engineered consciousness.
Assertions that the biological substrate itself is special
have also been proposed.  Being constructed out of this
material, neural cells can undertake some form of
processing that, for example, silicon-based systems
cannot.  Beyond an ability to implement a level of self-
reflection that, per Gödel, is ruled out for Turing
machines, specifics of this “form of processing” are
seldom proposed, although Penrose’s hypothesis that
the brain exploits quantum gravitational effects is a
notable exception (Penrose, 1989).  (It is worth noting
that no accepted model of biological processing relies
on quantum-level phenomena.)

§ It has also been argued that intelligence, as exhibited by
animals, is essentially tied to embodiment.
Disembodied computer programs running on immobile
platforms and relying on keyboards, screens, and files
for their inputs and outputs, are inherently incapable of
robustly managing the real world.  According to this
view, a necessary (not necessarily sufficient)
requirement for an autonomous system is that it
undertakes a formative process where it is allowed to
interact with the real world.

§ Finally, the ultimate argument is a variation of the
vitalist one, that consciousness is something extra-
material.  For current purposes this can be considered a
refrain of the Descartesian mind/body dualist position.
Modern variations on this theme include Chalmers
(1995)—an article that also includes a rebuttal by
Christof Koch and Francis Crick.

The issue of consciousness in machines has captured the
imagination of many as a result of the famous (or notorious)
Chinese room thought experiment suggested by John Searle
(1980).  Searle imagines himself locked inside a room,
unable to communicate with anyone outside except through
slips of paper passed through a slot in the door.  These slips
of paper are written in Chinese, a language Searle has no
knowledge or understanding of.  However, Searle has been
given a voluminous “script” that details (in English) the
algorithmic manipulations that he should carry out upon
receipt of messages.  Some of the messages can have
questions written on them, others may describe a story.
Searle allows that the script is perfect in that the
manipulations result in responses that Searle can transcribe
(the symbols that he reads, manipulates, and writes are
meaningless squiggles to him) and pass back to his
interrogator.  These responses are in fact appropriate in
context; to the person outside, Searle must understand
Chinese.  The point of the Chinese room (thought)
experiment is that knowing how the responses were
generated we would not say that Searle “understands”
Chinese.  This is a critique of one school of thought that
maintains that rule-based algorithmic processing is
sufficient for understanding.  Variations of the experiment
and the argument have since been directed at other types of
automated mechanisms.

Consciousness is a multifaceted phenomenon.  I would
maintain that reflective, deliberative decision making is an
important element, although admittedly not the only one.
Thus the technical concepts discussed earlier—multimodels,
anytime algorithms, dynamic resource allocation—which, I
argued, are essential for high-performance autonomous
behavior, are by the same token necessary correlates of
consciousness.  (Our observations of) our own conscious
processing support(s) this contention—we dynamically
allocate cognitive resources as appropriate for an unforeseen
situation, scale the precision and resolution of our
processing accordingly, and rely on our knowledge of the
various systems and phenomena that constitute our
environment.

6.  TOWARD METRICS
Even for humans, testing and quantifying intelligence is a
controversial activity.  The difficulty of compressing the
multifaceted nature of intelligence into one scalar quotient
has led to proposals to consider “intelligence” not as one
unitary quantity but as a collection of properties that are
mutually incommensurable (e.g., Gardner, 1983).

But humans, as a species, have much in common.  We all
have the same sensory apparatus; the same physiology,
more or less; the same innate drives; the same
communication apparatus; etc.  If quantifying intelligence is
so problematic for humans, one can wonder whether it is
even sensible for artificial systems, which may have little or
nothing in common.  Comparing and contrasting the



intelligence of an intelligent search engine for the Web with
the intelligence of an autonomous vehicle is a challenge that
is not only huge but perhaps unaddressable.  We will need
to decompose the notion of intelligence in this case too,
except that instead of a handful of separate factors we might
end up with a much larger number.

The technical concepts I have focused on in this paper can
all be considered dimensions along which autonomy and/or
intelligence can be measured.  The extent to which an agent
has available explicit models of relevant phenomena and
systems, the scaling capabilities of the anytime algorithms
available to it, and the sophistication of its adaptive
computational resource allocation mechanisms, all bear on
how well the agent will perform in a complex, dynamic
world.  More research is needed before these connections
can be formalized or quantified—I have been concerned
here with just their identification.
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Abstract

This paper makes a distinction between
measurement at surface and deeper levels.  At
the deep levels, the items measured are
theoretical constructs or their attributes in
scientific theories.  The contention of the paper is
that measurement at deeper levels gives
predictions of behavior at the surface level of
artifacts, rather than just comparison between the
performance of artifacts, and that this predictive
power is needed to develop artificial intelligence.
Many theoretical constructs will overlap those in
cognitive science and others will overlap ones
used in different areas of computer science.
Examples of other “sciences of the artificial” are
given, along with several examples of where
measurable constructs for intelligent systems are
needed and proposals for some constructs.

Introduction

There are a number of apparent ways and
certainly many more not so apparent ways to
measure aspects of performance of an intelligent
system. There are a variety of things to measure
and metrics for doing so being proposed at this
workshop, and it is important to discuss them.
To develop a measure of machine intelligence
that is supposed to correlate with the system’s
future performance capability on a larger class of
tasks considered intelligent would be analogous
to human IQ.  That would require agreement on
one or more definitions of machine intelligence
and finding a set of performance tasks that can
predict the abilities required by the definition(s),
and still might not say much about the nature of
machine intelligence or how to improve it.

  One reason that metrics of performance
(and perhaps, of intelligence) are needed is that
they directly address the fact that it has been
difficult to compare intelligent systems with one
another, or to verify claims that are made for
their behaviors.   Another reason is that having
measurements of qualities of any sort of entity
provides a concrete, operational way to define
the entity, grounding it in more than words

alone.  All of these aspects - comparability,
verifiability, and operational grounding - were
undoubtedly at least part of what Lord Kelvin
meant about measurements providing a feeling
that one understood a concept in science. (See
the preamble to this workshop [Meystel et al 00]:
"When you can measure what you are speaking
about and express it in numbers, you know
something about it.")

The measurements that form the primary
topic of this paper are of a different type.  They
are ones that look ahead to the future, when the
intelligent systems or artificial intelligence* field
is more mature.  The notion of mature field is
defined here in terms of scientific theories that
predict the performance of the systems on the
basis of the underlying science.  It is suggested
that really valuable measurements require
reliable predictions of this scientific sort, rather
than just ways to compare the technological
artifacts based on the science.  To do this, it is
necessary to develop theories containing
measurable theoretical constructs, as will be
discussed below.

The discussion of metrics for attributes of
theoretical constructs herein does not conflict in
any way with the idea of overall system
measurements, comparisons, or benchmarks,
which are useful for the purposes mentioned
above. In fact, it is a philosophical problem to
decide where theoretical constructs stop and
empirical constructs begin.  Measurements of
artifacts will be referred to as surface
measurements, those of a more theoretical
nature as deep measurements, terms borrowed
from Noam Chomsky’s [65] terms for levels of
syntactic description. The question of “how
deep” can be left open at this time.  This paper
advocates looking for measurable theoretical
constructs at the deeper level that will predict
surface behaviors at the level of the system or
subsystem, or of an entire artifact.   

                                                          
* The latter term will be used herein because the
shortened form, “AI” is more common than “IS”.
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The remainder of the paper explains the
form that we will expect for AI theories in the
future if they are to qualify as scientific theories
and suggests theoretical constructs that may have
measurable properties.  It will discuss existing
constructs that are developing as candidates for
deep metrics and how they may relate to surface
measurement.  It will compare them to constructs
in existing scientific theories at deep and surface
levels.  It will suggest that they will naturally
relate to constructs from the artificial and natural
sciences, specifically from cognitive science and
computer science.

Computation Centered and Cognition
Centered Approaches to AI

At all levels, from surface to deep, the
constructs to be measured may depend on the
approach taken to AI. There are two
distinguishable approaches that have been taken
over the years, which we will call “computation
centered” and “cognition centered”*.  The
computation centered approach focuses on how
certain tasks can be accomplished by artificial
systems, without any reference to how humans
might do similar tasks. We do not usually think
of numerical calculation as AI, but if we did, we
would have to think of the way it is done as
computation centered.  There is no particular
reason to make it cognition centered.

In the cognition-centered approach to AI,
the tradition is to discover human ways of doing
cognitive tasks and see how these might be done
by intelligent systems.  Sometimes the
motivation for this approach has been to try to
find plausible models for human cognitive
processes (cognitive simulation), but for AI
purposes, it has often been a matter of using
human clues to try to accomplish the
computation centered approach.  Some
researchers feel that developing the artifacts
using cognitive ideas may lead to more robust AI
systems (using “robust” in the sense that the
system is not narrow or “brittle” in its intelligent
capabilities).  But it is a natural way to think
about the developing AI capabilities, since not
all areas related to intelligent activities have been

                                                          
* In the email exchange leading up to the
Workshop, a third approach, “Mimetic
Synthesis”, whose prime concern is the “Turing
test” one of representing a computer to a human
user as if it were another human, was
distinguished from the two mentioned by Robby
Garner. It is a good distinction, though like the
others, the boundaries are not always clear.

explored and reduced to mathematical methods
to the extent of numerical calculations, or even
of mathematical logic, which might directly
facilitate a computation centered approach.

Mathematical logic makes an interesting
case for pointing out that most AI researchers in
practice blend the computation centered and
cognition centered approaches, since it is
formalized, yet still can be approached in a
cognition centered way.  Computers actually
implement mathematical logic, which is essential
in control statements of programming languages.
However, actually proving theorems in logic
(beyond propositional logic, where truth-table
methods can be used), is a creative intelligent
activity. There, things become more complex, in
different ways.  The first complexity is that is a
creative activity and we do not really understand
even how people do it.  Secondly, it is
informationally complex: there are inherent
undecidability problems in logics of sufficient
richness for most interesting purposes.

In attempts to make it easier for humans to
prove theorems, natural deduction methods were
invented by Gentzen [34] and developed by a
number of people, notably Fitch [52].  In a sense,
natural deduction can be thought of as a
computation-oriented version of theorem
proving, taking away some of the mental work of
creativity.  But this does not change the inherent
informational complexity problems, which
provide inherent limits on computability.

Going beyond logic to general problem
solving one finds some empirical studies of
effective ways in which humans do it that
antedate the computer.  One of them, means-ends
analysis, was codified in the General Problem
Solver (GPS) program of Newell and Simon.
[63] (See also Ernst and Newell 65]. For
programs in the GPS era, it was in the spirit of
that work to attempt measurement of the extent
to which the program could mimic human
behavior.  This was done by also studying verbal
protocols of people solving the problem.  Any
way of comparing those to the performance of
the program was still pretty much a surface
measurement. Such surface measures of
cognitive performance, are also the heart of the
Turing test [Turing 50], but do not tell us much
about what is happening deeper in the system, as
Joseph Weizenbaum showed with Eliza [66]
(and emphasized in an ironic letter [74]).  In
more recent times, case-based methods have
been advocated [Kolodner 88] as relating to the
way some people solve problems and they do
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look very promising.  Some of the constructs
from these problem-solving methods will be
mentioned below.

Though computation centered and cognitive
centered approaches blend well, the
measurements that occur to the developers in the
two approaches will naturally differ, and this is
particularly true as one tries to go to a deeper
level by using constructs that are based either on
cognition or on computation.  In other words, AI
may have measurable constructs coming from at
least two different sources, the computation side
and the cognitive side.  This fact has some
interesting implications as one looks at the
measurement of deeper constructs, which may
have to be reconciled with both approaches to be
meaningful.

The Structure of Scientific Theories

Today’s views of scientific theory have
changed from those held in the 19th Century,
Lord Kelvin’s time.  The bare-bones version of a
scientific theory today is that it consists of a
model composed of abstract theoretical
constructs and a calculus that manipulates these
constructs in a way that can account for
observations and accurately predict the value of
experiments.  The model is as central today as
was the notion of measurement to Kelvin.  The
theoretical constructs have a relation with
observed entities, properties and processes that
may be quite abstract, not necessarily readily
available to human senses, but following directly
from calculations based on the theory.  There are
a number of principles applied to a model that
give us increased confidence in the theory, but
the one most relevant here is that we can
measure the observed entities to confirm the
predictions of the theories.   So Kelvin’s concern
has been preserved, but augmented, in today’s
view of theories.

It is relevant to observe that the “calculus”
mentioned above is used in the dictionary sense
“a method of computation or calculation in a
special notation (as of logic or symbolic logic)”.
That means that it may be numerical or non-
numerical.  In fact, as Herb Simon and Allen
Newell [65] pointed out, there is no reason that
the calculus cannot be expressed in the notation
of a computer program, the better to speed its
manipulation of the theoretical constructs.

  For scientific theories in AI to be
respectable, there will be certain requirements on
them, and these affect whether they are accepted

or not and whether the theories in which they
occur are accepted.  The late Henry Margenau
had a pragmatic treatment of these requirements
in his book The Nature of Physical Reality
[Margenau 50].  A working Physicist as well as a
philosopher, Margenau stressed that no amount
of empirical evidence was scientifically
convincing by itself, since it did not specify a
unique model; and he also stressed the need for
the binding of theoretical constructs to one
another in a "fabric".  This fabric was made up of
theory and of mappings to empirical data.  The
theory was convincing to the degree that certain
criteria were met - not a "black and white"
situation, but one of degree.  One of the criteria
was the extent to which the models and
constructs were extensible to larger and larger
areas of scientific endeavor.  As the fabric of the
theory became larger and stronger, it became
more difficult to rip it asunder.

Perhaps our emphasis on finding metrics can
solidify the theoretical constructs of the field, as
well as providing a means of measuring
progress.  The key to doing this is not to think of
evaluation only as measurement of some
benchmarks or physical parameters
(“behaviors”) that are manifested in the
operation of the systems being evaluated.  We
need to be thinking in terms of the inner
workings of the systems and how the parameters
within them relate to the measured externally
manifested behaviors.

One of Lord Kelvin's special interests was
temperature.  Temperature is of course
something that we experience, something not
wholly abstract.  Certain physical properties are
related to temperature, and the most easily
observed is freezing and boiling of water.  It took
some scientific discovery to realize that each of
these phenomena always take place at a
particular (with a few reservations, like altitude
and purity of the water), but still, those are
concrete embodiments.  Temperature has been a
subjective attribute during most of the history of
mankind, but the scientific notion of temperature
is a theoretical construct, even though it has a
close correspondence to subjective experience.
The particular metrics chosen related to water
boiling (in both Fahrenheit and Celsius), to
Freezing (in Celsius), and to the "coldest"
temperature that could be achieved with water,
ice and salt (in Fahrenheit).  Lord Kelvin also
took the amazing step of developing a notion of
temperature that is really abstract.  His zero point
of minus 273.15 degrees Celsius has never quite
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been reached, and is far below what any person
could experience.  Yet it is very real as a
scientific construct, one that is part of the fabric
of physical science and ties various aspects of
science together in that fabric.

  Many other common terms in physical
theory, like mass and gravity, are theoretical
constructs, though they are related to human
senses.  Only in relatively recent physics history
have mass and gravity been understood, and we
owe that understanding to bits of inspiration on
the part of Galileo and Newton.  Having only
half a century of AI history to look back on, we
cannot really expect to have such a firm fabric of
theoretical constructs stitched together.  But
some ideas are given below, after a comparison
of Sciences that study natural and the artificial
systems.

Sciences of the Artificial and their relation to
Natural Sciences

Herbert Simon came to the conclusion that
there was a place for what he called “Sciences of
the Artificial” in his important book [69].  He did
not invent the study of artifacts in a systematic
manner, but he realized accurately and acutely
that that artifacts could be subjects of “real
sciences”, with deep theories of the sort that exist
in natural sciences. We will now consider some
of the implications of this idea.

The boundaries between sciences of the
artificial and the natural sciences are not clear-
cut in practice because nature colors human
artifacts, determining their possibility and their
features. The “engineering sciences”, the
portions of engineering that has been formalized
in the sense of that they can predict the behavior
of artifacts, including aspects such as stability
and strength can be considered sciences of the
artificial. The reason that this is not remarked
upon more often is that they have called upon
physical sciences more and more over the
centuries to aid the “ingenuity” that gives the
profession its name.

Linguistics is a science of the artificial.
Human language is the artifact that it studies.
But of course, the properties of the artifact are
shaped by the natural properties of human
learning and cognition, human hearing and
speech in many ways.  In the domain of
phonetics, for example David Stampe’s “natural
phonology” [Stampe 73, Donegan and Stampe
79] characterizes some of the interactions
between language as an artifact and as a natural

phenomenon.  We do not understand even yet the
extent of the interaction between linguistics and
human cognition.  Is there an LAD (language
acquisition device) [Chomsky 75] innate in
humans that is specific to language, or is the
learning of language based on the same
principles as such other acquired systems as
visual perception?  Nobody knows for sure; but
whatever the case, the nature of the world and
the nature of learning processes must affect
language.

Computer Science is a science of the
artificial. Certainly, this is true insofar as it
studies computers, which are artifacts; but also to
the extent that it studies algorithms, which are
human creations, too.  The main subject studied
in much of Computer Science is not computers
but information, and the “state”, which is all the
relevant information about a system at a given
time, is therefore a fundamental theoretical
construct.   Information is a theoretical construct
that is also fundamental in the natural sciences,
but whose significance as a theoretical construct
has only become apparent in this century, as its
relationship to entropy and its role in quantum
theory have been realized.  So again, Computer
Science has both artificial and natural parts.

Economics, another science of the artificial,
studies a major artifact, the economy, and
looking at this science of the artificial can
provide some insight into the position of AI as a
science of the artificial, and of the role of
measurable theoretical constructs.

Predictive Measurement in a Science of the
Artificial – An Example from Economics

Economics has struggled for longer than AI or
computer science has existed to find theoretical
constructs that have predictive power.   It deals
with large amounts of aggregated data, so the
empirical data are statistical in nature.  As of this
date, economic theory is still not as crystal-clear
as physics in terms of the role of its theoretical
constructs, but its theoretical constructs,
measured by expensively-gathered data by
governments and multi-governmental agencies,
are used regularly.

Recently, the U.S. Federal Reserve has been
aggressive in raising interest rates because the
unemployment rate (a construct measured by job
creation and unemployment data) has been high
and economic growth (a construct measured by
GDP change and other data) has been rapid.  In
their models, these predict higher inflation (a
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construct measured by PPI, CPI, and other data).
Somewhere in the complex equations that
describe the relationship among these theoretical
constructs, and the construct inflation, it has
recently been noticed that there is a need for the
construct productivity.  Economic theory must
relate these constructs and others: average
interest rates, demand for money and goods,
money and commodity supply, savings rate, etc.

The definition of the constructs mentioned
above is still hazy, and the relations among them
are not mathematically precise.  Some economic
theories are incorporated in complex computer
models.  Their predictive value is not great, but
they are getting better, and provide an example
of the sort of prediction that is desirable for AI.

Surface Measures and Theoretical Constructs
in AI – Some Examples

The sort of predictive ability that economists
want, we would like to see in AI, too.  If we have
theoretical constructs at some deeper level, we
can also use the theories of which they are a part
to simulate or predict mathematically what
happens if we increase or decrease parameters
related to those constructs.  It is a thesis of this
paper that there are theoretical constructs that
can predict system performance measured in
terms of surface measures.  At this point in the
development of AI as science, it is hard to say
just exactly what they would be, but some ideas
can be drawn from today’s AI and related
subjects.

An Example Construct: Robustness

A surface measurement that could be very
valuable across a variety of systems is some
measure of robustness – the ability to exercise
intelligent behavior over a large number of tasks
and situations. From a computation-centered
standpoint, if systems become robust, AI
progress would be easier to see.  From a
cognition-centered standpoint, a system can
never really be intelligent if it is not robust. (One
way to think of a measure of intelligence in a
single system would be as a measure of
performance, robustness and autonomy.)  The
surface way to determine the robustness of a
system would be to try it on a number of tasks
and see how broad its methods are.  But what
makes intelligent systems robust?  Learning
ability, experience, and the ability to transfer that
experience to new situations are all things that
come to mind.  A rough sketch of how
measuring theoretical constructs in those areas

might give us a predictive figure for developing
robust systems is given below.  

Robustness: Learning?

If learning can make systems more robust, it
should be interesting to measure the strength of
the system’s learning component.  How easily
does it adapt the system to a new situation?
Unsupervised learning has wide applicability,
but it can basically only determine clusters of
similar items.  Supervised learning must be
presented with exemplars to learn relations,
which seems not to be enough for a machine to
extend its own capabilities. Reinforcement
learning (RL) is a blend of both cognitive and
computational centered AI. It started out as a
model of classical conditioning, but turned out to
be applied dynamic programming.  There are a
number of different techniques within RL, all of
which have many possible applications.  Neural
nets or other approaches may be used.  The
theoretical constructs include the state space
chosen, the reinforcement function, and the
policy.  The field is becoming quite
sophisticated, and there are known facts about
the relation of these to outcomes in particular
cases  [Mahadevan and Kaelbling 96].  Suppose
that a reinforcement learning system constitutes
a part of the intelligence of an intelligent system.
There should be some way of predicting how
that system would do upon encountering
problems of a certain nature.  By knowing how it
chooses the concepts in its system and how they
react on problems of that type, one can provide a
partial evaluation of how effective the learning
system would be.  By obtaining such figures for
all such subsystems, one could relate them to the
performance of the full intelligent system.  There
is much work to be done in that direction.

Under certain circumstances, one can
imagine learning extending robustness; but
having to learn each new variations of a problem,
even by reinforcement, is unlikely to lead to
robustness quickly.  It is expected that reinforced
behaviors learned in one situation might be
identical to those needed in another system, so
this may lead to more rapid or better learning in
the second situation.  One approach to this is to
condition behaviors that are not built into the
system initially, as explored by Touretzky and
Saksida [97].  But, still, one would like to have
more general ways of reusing “big pieces” of
learned knowledge.
Robustness: Transfer of Learning?
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Transfer of learning is a phenomenon that
we may be able abstract to theoretical constructs
that can help to predict robustness.  It is still not
a deep measure, so it will then be important to
predict transfer of learning from deeper
constructs which will be mentioned below. At
present, it is a research challenge to build
transfer of learning into systems.  But it is
possible to see how one could test for it.

As far as measurement, here is roughly how
transfer of learning might be measured:

1. Machine performance is measured on Task
1.  The score is P(t1, T1)) = performance at
time t1 on Task 1.  P is some suitably broad
performance measure.

2. Performance is measured on Task 2 without
learning (this being an artifact where we can
control learning) to obtain P(t1, T2)
(keeping the time variable the same because
the same machine abilities are assumed
without learning even if the measurements
are not simultaneous).

3. Note that if the measure is to have a
meaning, previous training that might affect
T1 or T2 must be controlled for, which
could be difficult.

4. The machine is now allowed to perform task
T1 in which it learns, achieving better
performance at some time t2, i.e. P (t2, T1)
> P (t1, T1).

5. It is then tested on T2, and the question is
whether P (t2, T2) > P (t1, T2) without
having done additional learning on Task 2.

If indeed P (t2, T2) > P(t1, T2) in some
quantifiable way, the system has achieved (at
least locally) one of the goals of AI, the transfer
of learning from T1 to T2.  The amount of
transfer can be measured by the amount of
improvement on task2 as a function of the
amount of training on task T1.  Let us assume
that we can describe this by some transfer
effectiveness function, E for the system being
tested.  Let us say E(T1, T2, t) gives “the
effectiveness of training on T1 for time t in terms
of transfer toT2”. We could describe this by a
graph of performance on T2 as a function of
time being spent on T1.

Developing such a measure of transfer of
learning and getting it accepted is not simple.  To
be useful, we would need a way of comparing T1
and T2, to be sure that the second task is not just
a subtask to the first.  Difficult or not, defined
measurements such as these are steps toward
understands the construct “transfer of learning”

and achieving it in artifacts.  The measurable
transfer construct would, in turn, help to provide
a measurement of robustness, since learning
transfer can make a system more robust.  It is a
step toward measurement of intelligence, at least
by some definitions of intelligence, and,
intuitively, at least, would have some predictive
power.

How might we go about defining the
similarity of T1 and T2, as suggested above? We
would have to decide what we mean by
similarity of task. An interesting essay in this
area is “Ontology of Tasks and Methods”
[Chandrasekaran, Josephson and Benjamins
[98]].

Various candidates for potentially
measurable constructs that could be used to
produce transfer but also to relate transfer to
other phenomena are mentioned in a book edited
by Thrun and Pratt  [98], who have both had a
research interest in learning-transfer processes.
From the computation side comes the possibility
of changing inductive bias.  From the cognition-
centered side, there is generalization from things
already learned; but overgeneralization can be a
major problem in learning, so it needs to be
constrained.   (Some simple constraints on
overgeneralization in language learning are
discussed in [Reeker 76].)

Robustness: Case-Based Reasoning?

Case-based reasoning is an intuitively
appealing technique that was mentioned earlier
in this paper.  The idea is that one learns an
expanding set of cases and stores the essentials
of them away according to their conventional
features.  They are then retrieved when a similar
case arises and mapped into the current case.
Potential theoretical constructs include indexing
and retrieval methods for the cases, case
evaluation and case adaptation to the new
situation.  The cases could also be abstracted and
generalized to various degrees, to a model.

 Case-based reasoning is important for
cognition centered AI.  It is intuitively the way
many people often figure out how to do things,
and is thus embodied in the teaching methods of
many professional fields – law, business,
medicine, etc.  It provides a launching pad for
creativity as well, as mappings take place from
one case to an entirely new one.  Perhaps the
new case is not really concrete, but a vague new
idea.  Then the mapping of an old case to it may
result in a creative act – what we usually call
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analogy.  Analogy, metaphor in language, is a
rich source – absolutely ubiquitous – of new
meanings for words, and thus of new ways to
describe concepts, objects, actions.  Perhaps one
key to robustness is the ability to use analogy.
Four interesting papers by researcher in the area
can be found in an issue of American
Psychologist [ Gentner  et al 97 ].

Existing Surface and Subsurface Performance
Measures

Researchers in text-based information
retrieval (IR) have traditionally considered
themselves not to be a part of the AI field, and
some have even considered that artificial
intelligence was a rival technology to theirs; but
there is an overlap of interest. It is worth noting
that IR has had a useful surface measure of
system performance that has guided research and
allowed comparison of technologies.  The
measure consists of two numbers, recall and
precision [Salton 71].  Recall measures the
completeness of the retrieval process (the
percentage of the relevant documents retrieved).
Precision measures the purity of the retrieval (the
percentage of retrieved documents judged
relevant by the people making the queries).  If
both numbers were 100%, all relevant documents
in a collection would be retrieved and none of
the irrelevant ones.  Generally, techniques that
increase one of the measures decrease the other.
Real progress in the general case is achieved if
one can be increased without decreasing the
other.   

For the IR community, better recall and
precision numbers have both shown the progress
of the field. They also show that it is still falling
short, keeping up the challenge, especially as the
need to use it for very large information corpora
rises.  In addition, they provide a standard within
the community for judging various alternative
schemes.  Given a particular text corpus, one can
consider various weighting schemes, use of a
thesaurus, use of grammatical parsing that seeks
to label the corpus as to parts of speech, etc., to
improve the retrieval process.  The interesting
thing is to relate these methods and the
characteristics of the corpus to precision and
recall, but so far that has not been sharp enough
to quantify generally.

Related to information retrieval is automated
natural language information extraction, which
tries to find specified types of information in
bodies of text (often to create formatted
databases where extracted information can be

retrieved or mined more readily).  A related but
different (cost-based) measure was defined
several years ago for a successful information
extraction project [Reeker, Zamora and Blower
83].  One measure was robustness (over the
texts, not different tasks as in the broader
intelligent systems usage discussed earlier).  This
was defined as the percentage of documents out
of a large collection that could be handled
automatically. The idea was that some
documents would be eliminated through
automated pre-screening (because those
documents were not described by the discourse
model the system used) and relegated to human
processing.  Another measure was accuracy (the
percentage of documents not eliminated that
were then correctly processed in their entirety,
by the system).  Yet another was error rate  (the
percentage of information items that were
erroneous – including omitted - in incorrectly
handled documents).  From this more detailed
breakdown, estimates of the basic cost of
processing the documents, based on human and
machine processing costs and costs assigned to
errors and omissions, was derived.  The measure
could be used to drive improvements in
information extraction systems or decide whether
to use them, compared to human extraction
(which also has errors) or to improve the
discourse model to handle a larger portion.

For information extraction projects, it was
further suggested that the cost of erroneous
inputs might drive a built-in “safety factor” that
could be varied for a given application  [Reeker
85]. This safety factor was based on linguistic
measures of the text (in addition to the discourse
model) that could cause problems for the system
being studied.  The adjustable safety factor could
be built into the prescreening mentioned above.
In other words, the system would process
autonomously to a greater or lesser degree and
could invite human interaction in applications
where the cost of errors was especially high.  It
was suggested that the system would place
“warning flags” to help it make a decision on
screening out the document, and these could also
aid the human involved.  Although this was a
tentative piece of work, the idea of tying a
surface measure (robustness) into the underlying
properties of the system is exactly like tying
measurable surface properties into underlying
theoretical constructs. The theoretical constructs
mentioned in this case were structural or
semantic ones from linguistics.
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From the area of software engineering
comes another tradeoff measure that is worth
mention.  The author did some work on ways of
providing metrics - surface metrics, initially - for
program readability (or understandability)
[Reeker, 79].  Briefly, studies of program
understanding had identified both go-to
statements and large numbers of identifiers
(including program labels) as problems.  At the
same time, the more localized loop statements
could result in deep embeddings that were also
difficult to understand for software repair or
modification.  The vague concept of readability
could be replaced by a measure of go-to
statements and maybe also one of the number of
different identifiers. This particular study
suggested depth of embedding as a problem and
also suggested a tradeoff between depth of
embedding a metric called identifier load.
Identifier load was a function of the number of
identifiers and the span of program statements
over which they were used.  Identifier load
tended to increase as depth of embedding was
reduced by the obvious methods.

There were a number of similar software
metrics studies in the 1970s, and they continue.
This approach, however, was part of an attempt
to look at natural language for constructs that
might be of relevance in programming languages
and programming practice [Reeker 80].  The
depth measure was based on an idea of Victor
Yngve [60], which came out of his work in
linguistics - an idea that retains a germ of
intuitive truth.  Yngve had in turn related his
natural language measure of embedding depth to
measures of short-term memory from cognitive
psychology.  Whether these relationships turn
out to be true or lead to related ideas that are true
or not, they illustrate how theoretical constructs
can stitch AI, computer science, and other
artificial and natural sciences together.  They
also illustrate the quest for metrics that can firm
up the foundations of the sciences.

More Constructs To Be Explored

There are many more existing theoretical
constructs that have arisen within AI or been
imported from computer science or cognitive
science that beg to be better defined, quantified,
and related to other constructs, both deep and
surface.

Means-ends analysis and case based
reasoning have both been mentioned as forms of
problem solving.  How do these cognitive
characterizations of problem solving relate to
one another?    At a deeper level is the construct

of short term memory mentioned in the previous
section in relationship to Yngve’s depth.  How
does short-term or working memory relate to
long term memory and how are the two used in
problem solving?  The details are not known.
The size of a short-term memory may not be as
relevant in a machine, where memory is cheap
and fast.  But we cannot be sure that it is not
relevant to various aspects of machine
performance because it is reflected at least in the
human artifacts that the machine may encounter.
For instance, in resolving anaphora in natural
language the problem may be complicated if
possible referents are retrieved from arbitrarily
long distances.

A similar problem arises from long-term
memory if everything ever learned about a
concept is retrieved each time the concept is
searched for.  This can lower retrieval precision
(to use the term discussed earlier for machine
retrieval) and cause processing difficulties on a
given problem.  It may be that Simon’s notion of
bounded rationality is a virtue in employing
intelligence.  Are we losing an important
parameter in intelligence if we try always to
optimize rationality?  For AI system, anytime
algorithms and similar constructs for
approximate, uncertain, and resource bounded
reasoning have been developed in recent years,
and hold a good deal of promise [Zilberstein 96].

  An interesting theoretical construct arising
out of AI knowledge representation and the
attempts to use it in expert systems and agents
and for other purposes is that of an ontology.
“Ontology” is an old word in philosophy
designating an area of study.  In AI it has come
to designate a type of artifact in an intelligent
system: The way that that system characterizes
knowledge.  In humans, ontologies are shared to
a large degree, but certainly differ from every
person to every other, despite the fact that we
can understand each other. Are some ontologies
indicative of more intelligence than others in
ways that we can measure?  One suggested
criterion for high intelligence is the ability to
understand and use very fine distinctions (or to
actually create new ones, as described in Godel’s
memorandum cited by Chandrasekaran and
Reeker [74]).  Is an ontology’s size important, or
its organization, or both?  Can one quantify a
system’s ability to add new distinctions?

A related issue is vocabulary.  Many people
think that an extensive vocabulary, used
appropriately, is a sign of intelligence, or at least
scholastic aptitude.  In computer programs that
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do human language processing, the vocabulary
consists of a lexicon that generally also has
structural (syntactic) information for parsing or
generating utterances containing the lexical item
and meaning representations for the lexical item.
The lexicon can be much larger than any
human’s vocabulary; but for the vocabulary to be
used appropriately for language production or
understanding, it still falls far short of the human
vocabulary. For that to be improved better
techniques of semantic mapping are required,
including links to ontologies and methods of
inferring the ontological connections and of
idiosyncratic aspects of speakers with which a
conversation is taking place. Is the vocabulary an
indication of the size of the ontology and the
distinctions it makes, or vice-versa?  Nobody
knows; but better theories of how they link up
are needed for both understanding and fully
effective use of human language by intelligent
systems.

Another cognitive concept that is still a
mystery is creativity, certainly a part of
intelligence, or at least of high intelligence.
Does the ability to add entirely new concepts,
not taught, constitute creativity?  How does one
harness serendipity to develop creativity?  Is
creativity linked with sensory cognition, the
cognitive phenomena related to senses, such as
vision, including perception, visual reasoning,
etc. There is a need for deep theoretical
constructs underlying notions like creativity, and
for measures of these constructs and their
attributes [Simon 95, Buchanan 00].

Turning to computational constructs, we
notice that much of the AI described above takes
place through various forms of search. Already
there exists a pretty good catalogue of variations
on search and how to manage it, in which a good
deal of theory is latent.  Some of the search is of
a state space, involving the ubiquitous state
concept basic to theoretical computer science.
Search is also coupled with pattern matching,
which underlies many of the methods mentioned
earlier in this paper.

The potential constructs mentioned here are
just a sample of the ones already available in
Artificial Intelligence, and to them should be
added others found in some of the major works
of Newell and Simon on Problem Solving and
Cognition [Newell and Simon [65], Newell
[87]].

Summary and Author’s Note

The development of a true science of
artificial intelligence is something that has
concerned the author for a long time. It has been
encouraging to see the development within the
field of interesting and non-obvious theoretical
constructs.  This paper has suggested that
theoretical constructs with attributes that we can
measure are especially valuable and it has
suggested a number of such candidates.  The
paper suggests that we enlist Lord Kelvin’s
emphasis on measurement in choosing such
constructs. These same measurable theoretical
constructs will in many cases relate (at least at
deeper levels) to those of cognitive science,
computer science, and other sciences.  They will
help predict measures at the surface that can be
used to provide metrics for the performance (and
through that, the intelligence) of intelligent
artifacts. We should have in mind the quest for
such measurable constructs as we move forward
in creating intelligent artifacts.
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ABSTRACT

An essential feature of intelligence is the ability to make autonomous
choices. A new paradigm of satisficing decision making incorporates
two utilities for decision making, rather than the usual single utility
that is characteristic of optimal decision making. These two utilities
may be used to define figures of merit for the intellectual power or
fitness of the decision maker as it functions in its environment. These
utilities may also be applied in group settings. In particular, societies
of negotiatory decision makers may undergo considerable tension as
they attempt to reach a compromise that is acceptable to the group as
a whole and to all members of the group.
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1. INTRODUCTION

There are three issues that must be addressed in the design of
an intelligent decision system: (a) defining the alternatives, (b)
defining the preferences, and (c) choosing between the alterna-
tives as a function of the preferences. The first two issues are
highly dynamic. Alternatives may appear and disappear and
preferences may change. Much of the study of intelligent sys-
tems is properly focused on these dynamics. At the moment of
truth when a decision must be made, however, we must assume
that the alternatives and preferences have been defined, and all
that remains is to make the choice. This paper focuses on this
last, consummate step.

The ability to make decisions is essential to intelligent be-
havior. Indeed, the word intelligent comes from the Latin roots
inter (between) + legere (to choose). We thus assume that there
is only one essential characteristic of intelligence in man or
machine—an ability to choose between alternatives.

Choices between alternatives, or decisions, are usually jus-
tified by the maximization of expected utility, an approach Si-
mon calls substantive rationality [8]. We argue that for mul-
tiple agents, especially those in dynamic environments, the re-
quirement for substantive rationality is too demanding. First,
although a solution may exist, the information or computing
power necessary to find it may be unavailable. We will often be

forced to fall back on what Simon terms procedural rationality,
or the reliance on heuristic or ad hoc procedures defined by an
authority. Second, and more serious, is that the existence of an
optimal solution may be in doubt. Von Neumann-Morgenstern
game theory shows that for many games a solution that is si-
multaneously best for the group and for each individual in the
group simply does not exist. This seems to imply that a theory
of group decisions satisfactory for the synthesis of coordinating
agents cannot be obtained by a straightforward maximization of
utility.

We are thus motivated to consider definitions of rational-
ity upon which we can build a more robust theory of intelligent
multi-agent decision making. We hold that the fundamental
obligation of a rational decision maker is to make decisions that
are, in some well-defined sense, good enough. Historically, the
study of good enough decisions was first formalized by Simon,
when he introduced the term satisficing to characterize deci-
sions that achieve the decision maker’s aspiration level [6, 7].
This notion of satisficing defines quality according to the crite-
ria used for substantive rationality, but evaluates quality against
a standard that is chosen more or less arbitrarily. It essentially
blends substantive and procedural rationality, and is a species
of what is often termed bounded rationality.

Rather than blend the two extremes of substantive and pro-
cedural rationality a la Simon, our work explores an alternative
which leads naturally to a set of satisficing solutions that is con-
sistent with Simon’s intent. It also guarantees the existence of
jointly rational decisions, and seems to be a natural vehicle for
the design and synthesis of intelligent decision systems.

We start by assuming that the most primitive way to make
decisions is to make intra-option comparisons in the form of
dichotomies. We define two distinct (and perhaps conflicting)
sets of attributes for each option and to either select or reject
the option on the basis of comparing these attributes. Such di-
chotomous comparisons are intrinsic, since the evaluation of
an option’s merits is not referenced to anything not directly re-
lated to the option, including other options. They are also local
comparisons; it is not possible to form a global ordering the
options on the basis of such comparisons. An intrinsically ra-
tional choice is one for which the decision maker’s benefits are
at least as great as its costs. We define a satisficing decision



as one that is intrinsically rational,1 because these options are
good enough, in the sense that their attributes have been favor-
ably compared with a standard. We differ from Simon only
in the standard used for comparison: the positive and negative
attributes of each option, versus externally supplied aspiration
levels.

Intrinsic rationality appears to be a weaker notion than sub-
stantive rationality. Although it identifies all options that are,
in the sense we have defined, good enough, it does not insist
on a unique solution. At the moment of truth, the decision
maker may choose any of the satisficing options with the as-
surance that it will at least get its “money’s worth.” In practice,
however, the advantage of a theory founded on substantive ra-
tionality may be more illusory than real. Objective functions
themselves are often created by an ad hoc combination of pref-
erences into a single performance index, and this combination
can be, and usually is, manipulated until satisfactory behavior
is achieved. Thus, even optimization approaches rely in their
application on satisficing notions, however informally.

As mentioned earlier, our approach to intrinsic rational-
ity requires the definition of two preference functions, one to
characterize the desirable attributes, and one the undesirable
attributes, of each option. An option is desirable to the degree
that it achieves the goal. It is undesirable to the degree to which
its adoption consumes the decision maker’s resources, such as
energy, safety, or other costs. Separate preference functions
permit the development of metrics to evaluate how suited the
decision maker is to function in its environment. Intuitively,
if a decision maker has options available to it that achieve its
goal with low cost, it is well-suited for its environment. On
the other hand, if it must incur great cost or undergo great risk
to achieve its goal, it is clearly not as well suited. Although
the goal may be achieved equally well in either case, there is
a fundamental difference in the ability of the agent under the
two scenarios. This difference may not be easily discernible
under the substantive or procedural rationality paradigms, but
it is clearly discernible under the intrinsic rationality paradigm.

In the following we first summarize the mathematical de-
velopment of satisficing decision theory. We next introduce a
concept of attitude, or disposition, for the agents, and develop
figures of merit for evaluating the equivocation experienced by
the decision maker or decision making system. We then present
a basic negotiation theorem and describe a simple negotiatory
process to converge to a rational compromise. We then finish
with an example and draw conclusions.

2. SATISFICING

Von Neumann-Morgenstern game theory is based on a very so-
phisticated paradigm—global optimization. There are a num-
ber of basic problems, however, with optimization-based ap-

1Other researchers have appropriated this term to describe various notions
of constrained optimization. In this paper, we restrict our usage to be consistent
with Simon’s original concept.

proaches. First, since it is well known that humans are not good
optimizers [1, 2, 5], a decision-making system that seeks to ap-
proximate human behavior may be unnecessarily constrained
by insisting on, and only on, optimal performance. Second, op-
timization is a fixed, or absolute concept, in the sense that if an
option is not the best, then it is unacceptable. There cannot be
degrees of optimization. Third, optimization is, fundamentally,
a notion of exclusive self interest, and does not easily general-
ize to settings where it is important to accommodate both group
and individual interests [4]. It is usually impossible to arrive at
a joint solution that is simultaneously best for the group as a
whole and for each member of the group.

Our notion of satisficing, on the other hand, does not insist
upon optimal performance, and in return for this concession it
logically permits degrees of satisficing and the accommodation
of both group and individual interests. By adjusting the tradeoff
standards between cost and benefit, it may be possible to find a
joint solution that is simultaneously good enough for the group
and good enough for each member of the group. This is the
fundamental goal of negotiation.

Our approach is to employ the mathematics, but not the
usual semantics, of probability theory. As discussed in [9, 10]
we may encode the preference relationships via mass functions,
which we term the selectability and rejectability functions. By
so doing, we are able to account for conditional preferences
(analogous to conditional probabilities) and to express both
joint (group) and marginal (individual) preferences.

We formalize this procedure as follows. Let Ui denote the
option set for the ith agent (we will assume Ui is of finite cardi-
nality), i = 1; : : : ; N , letU = U1�� � ��UN denote the prod-
uct space of joint options, and let u = fu1; : : : ; uNg, where
ui 2 Ui, denote an option vector. Let pS(u) indicate the de-
gree to which the joint option u is successful in achieving a
group goal. We require that

P
u2U pS(u) = 1 and pS(u) � 0,

so pS is a mass function, which we term the joint selectability
mass function. Also, let pR(u) indicate the degree to which the
joint option u consumes resources, and require this to also be a
mass function, which we will term the joint rejectability mass
function. Next, let pSi : Ui ! [0; 1] and pRi : Ui ! [0; 1] be
marginal selectability and rejectability mass functions, respec-
tively, derived from pS and pR by appropriate summation. For
a discussion of how these joint and marginal mass functions
may be practically constructed, see [9, 10].

These mass functions define a dichotomy for each option,
that is, they partition the attributes of the option into two cat-
egories and provide a measure of support for each class of at-
tributes. We evaluate each dichotomy by comparing the se-
lectability (benefit) to the rejectability (cost) of each option. By
so doing, we define the jointly satisficing set

�b = fu 2 U: pS(u) � bpR(u)g;

and define the individually satisficing sets

�i
b = fu 2 Ui: pSi(u) � bpRi(u)g;



i = 1; : : : ; N . The boldness parameter, b, is a constant in
the interval [0; 1], which is nominally set to unity, but may be
decreased under special circumstances to be discussed below.
�b is the set of all joint options that are good enough for the
group, and each �i

b is the set of all individual options that are
good enough for the ith agent.

These sets provide the agent or group of agents with the
ability to make individual or group decisions. If the ith individ-
ual agent is empowered to make its own decision, it may choose
any member of �i

b. If the group as a whole is to make a collec-
tive decision, it may choose any member of �b. These choices
may be random, or they may be made according to some tie-
breaking procedure.

3. EQUIVOCATION

Human decision makers often make qualitative assessments of
the difficulty, in terms of stress or tension, encountered in mak-
ing decisions. Even if such knowledge does not have a direct
bearing on their immediate decisions, an appreciation of the
difficulty involved in forming the decision is an important as-
pect of the decision-making experience. A decision maker need
not possess anthropomorphic qualities, however, to assess the
difficulty of making decisions, and we do not propose to endow
an artificial decision maker with some sort of ersatz anthropo-
morphic capability. Under our satisficing approach, however,
it is possible to evaluate attributes of the decision problem that
correspond more to its functionality and fitness than to its suc-
cess.

Are decisions easily made and implemented, or do they
tax the capabilities of the decision maker? Such assessments
are not a typical undertaking of classical decision theory. Max-
imizing expectations has no need to concern itself with issues
such as “difficulty.” Nevertheless, choices are not all of equal
difficulty.

By employing two utilities, rather than only one, we may
analyze them to ascertain the compatibility of the attributes of
the preferences. If they are compatible, in that options that con-
serve resources also achieve the goal, then the decision maker
is in a fortunate situation of being content. If the preferences
are incompatible, in that options that achieve the goal also are
highly consuming of resources, then the decision maker is fun-
damentally conflicted. These attributes constitute attitudes, or
dispositions, of the decision maker.

The optimization literature is devoid of discussions con-
cerning the attitude or disposition of the decision maker who,
like the paradigm it employs, is assumed to be dispassionate. It
is simply doing what should be done under the auspices of indi-
vidual rationality, and attitudes or feelings, should they even ex-
ist (and they need not), are completely irrelevant. Furthermore,
to attribute anthropomorphic characteristics to a decision maker
would be seen by many as nothing more than a concocted story
line that is of marginal value if not completely misleading.

3.1. Attitude

It is fortunate if an option that conserves resources (low re-
jectability) also achieves the goal (high selectability)—in this
environment, a decision maker is content. Many interesting de-
cision problems, however, are such that actions taken in the
interest of achieving the goal are expensive, hazardous, or have
other undesirable side effects. A decision maker in this sit-
uation is conflicted. Contentment and conflict are basic dis-
positional states that serve as guides to the decision maker’s
functionality. A situation requiring frequent high-conflict deci-
sions indicates that the tasks are difficult for the decision maker.
Making high-conflict decisions, however, is not a measure of
how well the decision maker is performing—it may, in fact, be
making good, but costly, decisions. It is also true, however, that
a high-conflict environment may result in poor performance be-
cause the decision maker is simply not powerful enough to deal
adequately with its environment. Such a situation might serve
as a trigger to prompt changes, such as activating additional
sensors, or otherwise seeking more information about the envi-
ronment. It may also trigger a learning mechanism to prompt
the decision maker to adapt itself better to the environment.

Since selectability and rejectability are probabilities, it
may be useful to appropriate some of the mathematical machin-
ery of probability theory to aid in interpreting these quantities.
One way to gain some insight is to examine the entropy of se-
lectability and rejectability.

Definition 1 The entropy of a mass function p is

H(p) = �

X
u2U

p(u) log2 p(u):

2

Entropy is usually employed in Shannon information the-
ory as a measure of how much uncertainty (randomness or dis-
order) is reduced, on average, as a result of conducting an ex-
periment governed by the mass function [3]. In our context,
however, we wish to provide entropic interpretations for se-
lectability and rejectability that are distinct from the usual prob-
abilistic interpretation.

In assessing selectability, we consider expediency as anal-
ogous to uncertainty. To motivate this interpretation, suppose
u0 is implemented. If pS(u0) � 1, then log2 pS(u

0) � 0 which
is consistent with the notion that little reduction in expediency
occurs if an option with high selectability is implemented. Con-
versely, suppose pS(u0) � 0, but is nevertheless implemented.
Then � log2 pS(u

0) is large, indicating a great loss in expedi-
ency. The entropy of selectability is the average reduction in
expediency that obtains as result of making choices according
to pS .

To interpret the entropy of pR, we consider expense as
analogous to uncertainty. Suppose u 0 is implemented. If
pR(u

0) � 1, then log2 pR(u
0) � 0 which is consistent with

the notion that little reduction in expense occurs if a highly re-
jectable option is nevertheless implemented. On the other hand,



if pR(u0) � 0 and u0 is implemented, then � log2 pR(u
0) is

large, indicating a great reduction in expense. The entropy of
rejectability is the average reduction in expense that obtains as
a result of making choices according to pR.

Entropy is maximized by the uniform distribution; that is,
if p�(u) = 1

n
for all u 2 U , then H(p�) � H(p) for all mass

functions p over U , and has entropy H(p�) = log2 n. A uni-
form pS generates the highest possible average expediency, and
a uniform pR would generate the highest possible average ex-
pense. Consequently, it is useful to take the uniform distribu-
tion as a baseline against which to assess the properties of ar-
bitrary mass functions. Let n be the cardinality of the action
space, U (assumed to be finite for this discussion).

Definition 2 If pS(u) = 1
n

(that is, selectability under pS is
equal to selectability under the uniform distribution), then the
option is success neutral. If the selectability mass function
is uniform, then the decision maker’s attitude will be success
neutral. 2

Definition 3 If pR(u) = 1
n

(that is, rejectability under pR is
equal to rejectability under the uniform distribution), then the
option is conservation neutral. If the rejectability mass func-
tion is uniform, then the decision maker’s attitude will be con-
servation neutral. 2

Definition 4 If pS(u) > 1
n

(that is, selectability under pS is
greater than selectability under the uniform distribution), then
the option is attractive with respect to performance relative to
other options—u is expedient. 2

Definition 5 If pR(u) > 1
n

(that is, rejectability under pR is
greater than rejectability under the uniform distribution), then
u is unattractive with respect to cost or other penalty–u is ex-
pensive. 2

The relationship between selectability and rejectability
permits the definition of four dispositional modes of the de-
cision maker with respect to each of its options. Let U be the
set of all possible options.

Definition 6 If u 2 U is both expedient and expensive, then
the decision maker will desire to reject, on the basis of cost,
an option that is suitable in terms of performance—it will be
ambivalent with respect to u. 2

Definition 7 If u 2 U is both inexpedient (pS(u) < 1
n

) and
inexpensive (pR(u) < 1

n
), then the decision maker will be de-

sirous of accepting the option on the basis of cost, but will be
reluctant to do so because of poor performance. The decision
maker will be dubious with respect to u. 2

Definition 8 If u 2 U is expedient and inexpensive, then
the decision maker is in the position of desiring to implement

an option that would yield good performance—a dispositional
mode of gratification with respect to u. 2

Definition 9 If u 2 U is inexpedient and expensive, then the
decision maker will desire to reject, on the basis of cost, an
option that also provides poor performance, and will thus be in
a dispositional mode of relief with respect to u. 2

These four modes provide a qualitative measure of the way
the decision maker is matched to its task. Gratification and re-
lief are modes of contentment, while dubiety and ambivalence
are modes of conflict. Figure 1 illustrates these regions.
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Figure 1: Dispositional regions: G = gratification, A = ambiva-
lence, D = dubiety, R = relief.

Figure 2 illustrates various cases for n = 2, a two-dimen-
sional decision problem. In these plots, the diagonal line repre-
sents the unit simplex, and the pS and pR values are plotted as
vectors that lie on the simplex.
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Figure 2: Attitude: (a) The decision maker is dubious with re-
spect to u1 and ambivalent with respect to u2. (b) The decision
maker is gratified with respect to u1 and relieved with respect
to u2.

3.2. Figures of Merit

It would be useful to obtain formal expressions to capture some
of the features of the qualitative analysis described in Section



3.1., where it is qualitatively indicated that as these distribu-
tions become more closely aligned, the decision maker be-
comes more ambivalent and dubious. We propose two mea-
sures that are similar, but not identical.

Diversity One important feature of the selectability and re-
jectability functions, therefore, is their dissimilarity. To obtain
such a measure, we again appeal to the notion of entropy, and
apply the Kulback-Leibler distance measure.

Definition 10 The Kulback-Leibler (KL) distance measure
of two mass functions, say p1 and p2, is given by

D(p1 k p2) =
X
u2U

p1(u) log2
p1(u)

p2(u)
:

2

The KL distance measure is an indication of the relative
entropy of two mass functions. D(� k �) is not a true metric; it
is not symmetric and does not obey the triangle inequality. It is,
however, non-negative, and it is easily seen that D(p1 k p2) =

0 if and only if p1(u) = p2(u) for all u 2 U .
We may apply the KL distance measure to the problem of

ascertaining dissimilarity of the selectability and rejectability
functions by computing the KL distance between selectability
and rejectability.

Definition 11 The diversity functional is:

D(pSkpR) =
X
u2U

pS(u) log2
pS(u)

pR(u)
;

or, equivalently,

D(pSkpR) = �

X
u2U

pS(u) log2 pR(u)�H(pS):

2

Small values occur when the selectability and rejectability
functions are similar, indicating a condition of potential con-
flict. If they are identical, then the decision maker is in a posi-
tion of wishing to reject precisely the options that are in its best
interest—an unfortunate condition of total paralysis.

Diversity is infinite if there exist options with nonzero se-
lectability and zero rejectability. Such options are free options,
since no cost independent of achieving the goal is incurred by
adopting them (analogy: coasting saves fuel, but may or may
not get you to your destination). Diversity is not a measure of
performance; that is, if one decision maker has a more diverse
selectability/rejectability pair than another, that is not an indica-
tion that it will perform better than the other. It does, however,
provide an assessment of the environment in which the decision
maker operates.

Tension Although the diversity functional provides insight
into the relationship between selectability and rejectability, it
does not afford a convenient comparison in the case where the
decision maker is neutral with respect to either selectability or
rejectability. To develop such a measure, it is convenient to
re-normalize the selectability and rejectability functions. Con-
sider first the case where pS and pR are mass functions and U
is finite. Let

pS = [pS(u1); : : : ; pS(un)]

pR = [pR(u1); : : : ; pR(un)]

be selectability and rejectability vectors, and let � =

[ 1
n
; : : : ; 1

n
] denote the uniform mass function vector, where n is

the cardinality of U . Although these vectors are unit-length un-
der the L1 norm, they are not of unit length under the L 2 norm.
It will be convenient to normalize these vectors with respect to

L2. Let jpS j =
q
pSp

T
S , with similar definitions for jpRj and

j�j. The L2 normalized mass function vectors will be denoted
by ~pS = pS

jpSj
, and similarly for ~pR and �.

We express the similarity between pS and pR through the
inner product of the corresponding unit vectors, yielding the
expression ~pS ~p

T
R. This quantity will be unity when pS � pR,

and will decrease as the two mass functions tend toward be-
coming orthogonal, and thus captures some of the properties
we desire to model. If we normalize by the product of the pro-
jections of pS and pR onto the uniform distribution, we tend to
scale up the inner product as the mass function vectors become
distanced from the uniform distribution.

Definition 12 The tension functional is

T (pSkpR) =
~pS ~p

T
R

~pS ~�T ~pR~�T
;

which simplifies into the convenient form:

T (pSkpR) = npSp
T
R = n

nX
i=1

pS(ui)pR(ui):

2

Clearly, T (pSkpR) is positive and bounded by the di-
mension, n. If either the selectability or rejectability is uni-
form, then the tension function equals unity. If the rejectability
function is uniform, then the decision maker is rejectability-
neutral. If the selectability is uniform, then the decision maker
is selectability-neutral. If T (pSkpR) > 1, then the projection
of selectability onto rejectability is significant, and options that
are desirable are also costly. We may interpret this as a state of
conflict. On the other hand, f T (pSkpR) < 1, then the projec-
tion of selectability onto rejectability is small, and the decision
maker is in a state of contentment.

A decision maker operating in a contented environment is
well-tuned to its task—decisions that possess high rejectability
also possess low selectability. Such a decision maker should be



expected to achieve its goals with ease, and be adequate in most
situations. A conservation-neutral decision maker will function
much as would a conventional Bayesian decision-maker. If it is
success-neutral, it will function much like a minimax decision-
maker. If the decision maker is both conservation-neutral and
success-neutral, it is completely indifferent to the outcome, and
there is little point in even attempting to make a decision other
than a purely random guess.

4. NEGOTIATION

Negotiation under the individual rationality paradigm forbids
any individual participant, as well as any potential coalition,
from settling for a decision that is below its security, or mini-
max, level. This is a very strong restriction, which can lead to
an empty core and the lack of a rational basis for negotiation.
There are many ways to modify this solution concept to jus-
tify solutions not in the core, such as accounting for bargaining
power based on what a participant calculates it contributes to
a coalition by joining it (e.g., the Shapley value), or forming
coalitions on the basis of no player having a justified objection
against any other member of the coalition (e.g., the bargaining
set). Also, it is certainly possible to invoke various voting or
auctioning protocols to address this problem. We do not criti-
cize the rationale behind these refinements to the basic theory,
or the various extra-game-theoretical considerations that may
govern the formation of coalitions, such as friendship, habits,
fairness, etc. We simply point out that to achieve a reasonable
solution it may be necessary to go beyond the strict notion of
maximizing individual expectations and employ ancillary as-
sumptions that temper the attitude and behavior of the decision
makers

Satisficing negotiation, however, permits controlled de-
grees of altruism. If agents are willing to lower their standards,
as defined by the boldness, b, they may obtain a satisficing com-
promise, where a joint decision is obtained that is good enough
for the group as a whole and good enough for each member of
the group. This potential result is guaranteed by the following
theorem.

Theorem 1 (The negotiation theorem.) If ui is individually
satisficing for the ith agent, that is, ui 2 �i

b, then it must be the
ith element of some jointly satisficing vector u 2 �b.

Proof We will establish the contrapositive, namely, that if u i
is not the ith element of any u 2 �b, then ui 62 �i

b. With-
out loss of generality, let i = 1. By hypothesis, pS(u1;v) <
bpR(u1;v) for all v 2 U2 � � � � � UN , so pS1(u1) =P
v pS(u1;v) < b

P
v pR(u1;v) = bpR1

(u1), hence u1 62

�1
b . 2

The content of the negotiation theorem is that, under intrin-
sic satisficing, no one is ever completely frozen out of a deal—
every decision maker has, from its own perspective, a seat at the

negotiating table. This is perhaps the weakest condition under
which negotiations are possible.

A decision maker possessing a modest degree of altruism
would be willing to undergo some degree of self-sacrifice in the
interest of others. Such a decision maker may be viewed as an
enlightened liberal; that is, one who is intent upon pursuing
its own self interest but gives some deference to the interests of
the group in general. Such a decision maker would be willing to
lower its standards, at least somewhat and in a controlled way,
if doing so would be of great benefit to others or to the group in
general.

The natural way for a decision maker to express a lower-
ing of its standards is to decrease its boldness. Nominally, we
may set bi, the boldness of the ith agent, to unity, which reflects
equal weighting of the desire for success and the desire to con-
serve resources. By decreasing bi, the agent lowers its standard
for success relative to resource consumption, and thereby in-
creases the size of its satisficing set. As bi ! 0 the standard is
lowered to nothing, and eventually every option is satisficing.
Consequently, if all decision makers are willing to reduce their
standards sufficiently, a compromise can be achieved.

Figure 3 illustrates this negotiatory process. The amount
by which bi must be reduced below unity is a measure of the
degree of compromising needed to reach a mutually acceptable
solution. As with tension and diversity, however, this degree
of compromising is not a measure of performance, but it is a
useful figure of merit for assessing the degree of difficulty that
is associated with the negotiatory process.

Step 1: Agent i forms�i
bL

and �i
bi

, i = 1; : : : ; N ; initial-
ize with bi = 1, bL = minfb1; : : : ; bNg.

Step 2: Agent i forms its compromise set by eliminating
all option vectors for which its component is not
individually satisficing, resulting in C i = fu 2
�
i
bL

: ui 2 �i
bi
g.

Step 3: BroadcastCi and bi to all other participants, re-
ceiving similar information from them.

Step 4: Form the satisficing imputation set, N =

\Nj=1Cj . If N = ;, then decrement bj , j =

1; : : : ; N , and repeat previous steps untilN 6= ;.

Step 5: Agent i implements the ith component of the ra-
tional compromise

u
�

= argmax
u2N

pS1���SN (u)

pR1���RN (u)
:

Figure 3: The Enlightened Liberals negotiation algorithm.

This leads to a theory of social behavior than is very differ-
ent from standard N -person von Neumann-Morgenstern game
theory. Whereas, under conventional theory, additional crite-
ria may be required to foster successful negotiations, the sat-



isficing concept builds controlled degrees of compromise into
the decision-making procedure. If an agent reaches its limit
of compromise before negotiations are successful, it may be
forced to declare an impasse, rather than to sacrifice its stan-
dards any further.

5. RESOURCE SHARING

The following simple example illustrates the fundamental dif-
ferences between substantive and intrinsic rationality. Suppose
a factory operates N processing stations that function indepen-
dently of each other, except that, if their power requirements
exceed a fixed threshold, they must draw auxiliary power from
a common source. Unfortunately, there are only N � 1 taps to
this auxiliary source, so one of the stations must operate with-
out that extra benefit. Although each station is interested in its
individual welfare, it is also interested in the overall welfare of
the factory and is not opposed to making a reasonable compro-
mise in the interest of overall corporate success.

Let U denote the set of auxiliary power levels that are fea-
sible for each Xi to tap, and let fi: U ! [0;1) be an objective
function for Xi; that is, the larger fi, the more effectively Xi

achieves its goal. Xi’s choice is tempered, however, by the
total cost of power, as governed by an anti-objective function,
gi:U ! [0;1), such that the smaller gi, the less the cost. Work
cannot begin until all players agree on a way to apportion the
auxiliary power. Table 1 displays these quantities for a situation
involving three decision makers.

U f1 g1 f2 g2 f3 g3
0.0 0.50 1.0 0.10 1.0 0.25 1.0
1.0 2.00 2.0 2.00 3.0 0.50 5.0
2.0 3.00 4.0 3.00 6.0 1.00 5.0
3.0 4.00 5.0 4.00 9.0 2.00 5.0

Table 1: The objective functions for the Resource Sharing
game.

A standard approach under substantive rationality is to
view this as a cooperative game. The payoffs may be obtained
by combining the two objective functions, yielding individual
payoff functions of, say, the form

�i(u1; u2; u3) =

�
�1 if uj > 0 8j

�ifi(ui)� �igi(ui) otherwise
;

i = 1; 2; 3, where �i, �i, and � are chosen to ensure compatible
units. To achieve this compatibility, we normalize f i and gi to
unity by setting �i = 1P

u2U
fi(u)

and �i = 1P
u2U

gi(u)
.

The Pareto solution is uP = f0; 1; 3g, but, with an attitude
governed by expected utility maximization,X1 has no incentive
to agree to this apportionment. Thus, to solve this problem, a
negotiation protocol must be invoked. Of the various protocols
that are possible, the only one that does not require assumptions

additional to that of self-interested expectations maximization
is the core. Unfortunately, the core is empty for this game. Es-
sentially, this is because only two decision makers can share
in the auxiliary power source, effectively disenfranchising the
third decision maker. This situation potentially leads to an un-
ending round of recontracting, where participants continually
make offers and counter offers in a fruitless attempt for all to
maximize their expectations.

Let us now view the decision makers in their true charac-
ter as enlightened liberals who are willing to accept solutions
that are serviceably good enough for both the group and the in-
dividuals. From the point of view of the group, an option is
satisficing the joint selectability exceeds the joint rejectability
scaled by boldness. We define joint rejectability as the normal-
ized product of the individual costs functions, namely,

pR1R2R3
(u1; u2; u3) / g1(u1)g2(u2)g3(u3);

where “/” means the function has been normalized to sum to
unity. To compute the joint selectability, we note that, under
the constraints of the problem, only two of the agents may use
the auxiliary power source. We may express this constraint by
defining the joint selectability function as

pS1S2S3(u1; u2; u3) /

�
pS1(u1)pS2(u2)pS3(u3) if u 2 �

0 otherwise

where � is the set of all triples u = fu1; u2; u3g such that
exactly one of the entries is zero. The individual rejectability
and selectability marginal mass functions are obtained by sum-
ming over these joint mass functions according to the rules of
probability theory.

The enlightened liberals algorithm yields, for b >

0:8, an empty satisficing imputation set. But, when b is
decremented to 0:8, the satisficing imputation set is N =

ff0; 1; 3g; f0; 2; 3g; f0; 3; 3gg and the rational compromise is
u� = f0; 1; 3g which, coincidentally, is the Pareto optimal so-
lution. It is not surprising that, at unity boldness, there are no
options that are simultaneously jointly and individually satisfic-
ing for all participants, since there is a conflict of interest (recall
that the core is empty). But, if each individual adopts the point
of view offered by intrinsic rationality, it gradually lowers its
personal standards to a point where it is willing to be content
with reduced benefit, provided its costs are reduced commen-
surately, in the interest of the group achieving a collective goal.
The amount b must be reduced to reach a jointly satisficing so-
lution is an indication of the difficulty experienced by the par-
ticipants as they attempt to resolve their conflicts. Reducing
boldness is a gradual mechanism for decision makers to subor-
dinate individual interest to group interest. This mechanism is
very natural in the regime of making acceptable tradeoffs, but is
quite foreign to the concept of maximizing expectations (“you
get what you pay for” versus “nothing but the best”).

The diversity and tension values for this decision problem
are given in Table 2. We interpret these values as follows.



Agent Diversity Tension
X1 0.55 0.93
X2 0.03 1.30
X3 1.21 0.73

Group 2.85 0.51

Table 2: Diversity and Tension for Resource Sharing Game.

Group diversity is high and group tension is low, indicating
that, as a group, the system is fairly well suited for its envi-
ronment, and that the system is powerful enough to make good
decisions. Individually, X2 has the lowest diversity and the
highest tension. This situation is reflected in the structure ofN,
where we see that X2 has several choices that are good enough,
but is either dubious or ambivalent about all of them. Thus, X 2

experiences the most conflict in making decisions. X3 is quite
content with its decision and so is X1. The fact that X1 is not
conflicted as measured by diversity and tenseness may appear
somewhat contradictory, since it is X1 who ends up sacrificing
for the benefit of the group. But these figures of merit are not
intended to be metrics of performance, only of the intellectual
power of the decision maker, in terms of its conflict between
selectability and rejectability.

6. CONCLUSION

An intelligent agent is, first and foremost, a decision maker,
regardless of the problem context, the way knowledge is rep-
resented, or the criteria used to define performance. One way
to assess the functionality of the agent is to provide it with a
means to evaluate introspectively its own fitness, or suitability,
to function in its environment. Satisficing decision theory pro-
vides this capability. Although the figures of merit associated
with these fitness evaluations are not measures of performance,
they are useful measures of the innate intellectual (decision-
making) power of the agent.
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Abstract
Probably the most widespread and significant existing

“performance metric for intelligent systems” is the dollar pre-
miums that employers are willing to pay to recruit and retain
more intelligent human employees compared to less intelli-
gent ones. This paper examines some of the aspects driving
this economic metric in the search for analogies that may be
useful in establishing performance metrics for constructed
intelligent systems.  Aspects considered include Language
Understanding & Capacity to Act, Goal-Directedness, Auton-
omy and Unpredictability, Information, Uncertainty, World
Models, and Self-Models and Self Awareness.  The paper
concludes with a discussion of performance metrics for
human intelligence and a brief prospectus for the role of eco-
nomic considerations in assessing the Vector of Intelligence

Keywords: economic value, intelligence

1. Introduction
Much of the discussion leading up to the conference on

“Performance Metrics for Intelligent Systems” focuses on an
“inner” view of intelligent performance, or rather of intelli-
gence itself.  This inner view takes two very different forms:
components like memory or MIPS that must be present inside
an intelligent system, and metaphysical questions about the
“inner life” of an intelligent system, such as questions of
consciousness.

Rather than try directly to add to this interesting and
valuable train of thought, this paper approaches the subject of
performance metrics for intelligent systems from an external
perspective.  The question under consideration hers is “What
is the economic value of intelligence?”  Most of the discus-
sion will concern the market value of human intelligence, in
order to look for useful analogies for understanding and
measuring the economic value of intelligence in constructed
systems.

Individuals treasure intelligence in themselves and their
friends and family for a variety of reasons, most of which lead
rapidly into the spiritual or metaphysical realm, or, if you
prefer, into the most complex challenges of sociobiology.
Either way, creating a “performance metric” for intelligence
in this context seems neither feasible nor especially desirable.

On the other hand, consider the owners of a medium-
sized business, who need to hire a number of employees to
perform various tasks in the firm.  Why should the owners
pay a higher salary and go through a more difficult and
expensive recruitment process to hire a more intelligent
employee when they can get a less intelligent employee with
the same training and experience more cheaply?  To the
extent we can give a quantitative answer to this question, the
dollar premium a business is willing to pay for intelligence is
a financial “performance metric for intelligent employees”
within the context of the job at hand.  Understanding how
these dollar premiums arise in a variety of employment situa-
tions can give important clues on how to put a value or “met-
ric” on the performance of intelligent machines.

There are three distinguishable ways in which a smarter
employee can be worth more money to a business than a stu-
pid one with equivalent training and experience.   These are:
doing what I say, doing what I want, and doing what I need. 

2. Language Understanding & Capacity to
Act
At the most fundamental level, “do what I say,” an intel-

ligent laborer can follow instructions better than a stupid
laborer.  Smart employees can follow instructions that are
more complex, less detailed, and require less time and effort
(in other words, less money) to prepare.  Since they are less
apt to misunderstand instructions, they require less money to
be spent on supervising them than is the case for less intelli-
gent employees with equal motivation.  For constructed sys-
tems, the equivalent is an expressive command language; one
that is the “natural language” for describing the task at hand,
whether it resembles a spoken human language, a specialized
technical language, or a graphical interface.  Allied with this,
of course, is the capacity to actually carry out the instructions,
which some have referred to as the “body” as opposed to the
“mind” of the intelligent constructed system.

3. Goal-Directedness
It is possible to view the next level, "do what I want," as

simply an elaboration of the ability of smarter employees to
follow instructions that are less detailed.  However, busi-
nesses look hard for intelligent skilled craftsmen who can be
told what goals to accomplish without needing to be told how
to do so, and reward them with higher wages and better
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treatment.  A major topic of discussion has been the role of
goal - directedness in intelligent systems.  In the world of
human employment, a laborer (first level) is given instruc-
tions about how to do a job; the goal may be implicit in the
instructions but is not an integral part of them from the
laborer's point of view.  A craftsman (second level), on the
other hand, takes the goals provided by the employer and car-
ries them out without further instruction.  To do this, the
craftsman needs experience and training, but also puts more
intelligence into the work than the laborer does. 1

Over time, a job may become more routinized, so that
what originally required highly intelligent goal-seeking
behavior later requires only the following of rote instructions.
This can occur at either the structural level as the instructions
are written down for others, or within an individual as long
experience with a job eventually allows it to be done “without
thinking.”  The equivalent to this process in the area of con-
structed systems would be the replacement of complex, “intel-
ligent” processes of sophisticated search and behavior
generation with stereotyped program modules or hardware
gadgets, reducing the “intelligence” used by a  constructed
system while maintaining or even enhancing its performance.

4. Autonomy and Unpredictability
At both of the first two levels, management wants behav-

ior of the employee to be predictable.  Intelligence means
autonomy in the sense that, given equivalent training and
motivation, the intelligent employee does what is expected of
him or her without close supervision while the stupider
employee in the same job needs to be watched all the time.
However, autonomy in this context is almost the opposite of
creativity, spontaneity, or unpredictability; it is the stupid
employee, not the smart one, who comes up with the most
surprises.

It is only at the highest level, “do what I need,” that
businesses value unpredictability in their employees and con-
sultants.  Even here, there are two degrees of unpredictability.
Most of the time a person or company seeks advice on matters
of law, engineering, medicine, or other fields, the advice has
no “information” value if the one requesting it already knew
the answer; nevertheless, routine advice needs to be in line
with professional standards.  For example, though I do not
want to be able to predict what my personal physician is
going to tell me, I want it to be essentially the same as what
any competent physician would say given the same knowl-
edge about me; in other words, I want my physician's behav-
ior to be essentially predictable by other physicians.  It is only

if I am suffering from an extremely serious disease, or if I am
knowingly participating in a clinical experiment, that I want
my physician to do something that will surprise the medical
profession!

5. Information
Some of the discussion about performance metrics for

intelligent systems has debated the applicability of entropy or
other aspects of information theory to measuring intelligence.
Fundamentally, “Information” implies informing somebody
about something they didn’t already know.  From this point
of view, an employer wants a laborer’s work to provide no
new information output at all, but a more intelligent laborer
requires less information input that an unintelligent one.  A
craftsman working at the second level of “doing what I want”
takes compact information about goals rather than lengthy
information about procedures; the craftsman’s work in  sense
generates “information” to the employer about the methods
used, but this is information that normally is of no great
interest to the employer.  It is only at the highest level, that of
the professional employee, that the employer is concerned
about receiving information output from the employee.

EssentialVariousDo what I needProfes-
sional

UninterestingLow,
goal-oriented

Do what I wantCrafts-
man

Ideally noneHigh, proceduralDo what I sayLaborer

Information
Output

Information
Input

6. Uncertainty
The more uncertain the job environment is, the more

valuable an intelligent employee becomes.  Procedural
instructions about an uncertain job environment must become
a complex collection of “ifs” and branches, compared to a
more linear set of instructions for a job in a less uncertain
environment.  Businesses have to pay more for employees
intelligent enough to follow such complex instructions than
they do for employees whose jobs do not contain much
uncertainty.

For sufficiently high levels of uncertainty in the job envi-
ronment, management finds it unprofitable to prepare proce-
dural instructions in a form that even the smartest laborer can
follow.  Instead, it is more economical to hire craftsmen who
only need to be told the employer’s goals and essentially left
to implement those goals according to their own skills and

1 Note that my focus here is on the degree of intelligence demanded by the job, not on the intelligence possessed by the human
being doing it.  Job demands place only a lower bound on the worker's intelligence.  Nevertheless, the more intelligence the job
demands, the more the performance of an intelligent employee will overshadow that of a less intelligent one.



intelligence.  The fundamental problem with the “Chinese
Room” thought experiment is that, while it might in principle
be possible to prepare and index a set of stimulus-response
instructions so extensive as to allow the occupant of the room
to carry on a conversation in Chinese without any knowledge
of the language, it is in fact such an immense task that it
would be far cheaper and easier to build a machine that actu-
ally understood Chinese (and easier still to hire a human who
understands Chinese to sit in the room!).

At the highest levels of uncertainty (or extreme complex-
ity, which as Zadeh points out has many of the same effects)
management can no longer be sure what goals are feasible or
profitable, and so seeks expensive and potentially surprising
guidance from professionals, and perhaps some day from con-
structed systems that produce “useful surprises” at a profes-
sional level.

7. World Models
It is very rare for an employer to ask about an employee’s

internal model of the world or to pay a higher salary on
account of it.  Laborers are paid to follow instructions intelli-
gently in the real world, and craftsmen are paid to ply their
trades intelligently in the real world.  Whether or not they use
an internal model of the world to do so is of no economic
importance except as it is reflected, at one or more removes,
in their performance.

Professionals are paid to give “useful surprises” to their
employers or clients.  This information (and actions informed
by it) generally have to do with the real world, though at
times professionals may be asked for opinions about hypo-
thetical situations.  Even then, usually it is irrelevant whether
the answer comes from stored knowledge, experimentation,
or the exercise of a simulation-like model in the professional
expert’s head.  The exception is when the professional is
explicitly asked to provide a model, but in that case the model
is no longer an internal one, but an external analogy, flow-
chart, or computer simulation.

8. Self-Models and Self Awareness
Certainly, all of a firm’s (human) employees have a self-

model, a self-awareness, a consciousness.  But only in a few
“helping professions” such as psychiatry or the clergy is an
abov-average endowment in this area considered an advan-
tage to job performance.  Employers value some limited facets
related to self-awareness such as taking pride in one’s work
and being safety-conscious, but outstanding self-
consciousness and self-absorption are not considered signs of
outstandingly valuable intelligence by employers.  Thus, with
regard to constructed systems, it might be an economically
important goal to build machines that “care” about doing a
good job and know how to take care of themselves and those
around them.  But we should not insist on a robotic Mother

Teresa; it would be a magnificent achievement to create a
working system that was as caring and careful as a seeing-eye
dog.

9. Performance Metrics
Unlike constructed systems, human employees cannot be

opened up to inspect their components.  Thus, employers in
search of intelligent employees rely on a variety of bench-
mark tasks.  Occasionally, they may use a benchmark task
that tries to screen out the effects of knowledge to focus on
pure intelligence -- examples include IQ tests and program-
mer aptitude tests.  However, since job performance is more
important than what mix of knowledge, intelligence, and
other endowments it arises from, most benchmark tasks
measure performance without much concern about the mix.
The most common benchmark task is performance on similar
jobs in the past.  

Another interesting benchmark is formal education.
Completing any program of study implies an ensemble of
intelligence, knowledge, and skills for learning, writing, and
simply sticking to a task.  The education most valued by
employers adds to this a body of knowledge relevant to the
job.  However, for complex and unpredictable environments,
it may not be possible to specify in advance what body of
knowledge will be required. In such a case, a broad “general
education” demonstrates that a person has an advanced abil-
ity, refined by varied practice, to learn whatever is required in
a new situation.  With respect to constructed systems, a
design team that hones and demonstrates their product’s abil-
ity to learn and excel in a wide variety of problem environ-
ments, including artificial ones as well as real ones, can
command a higher price for their machines than a design
team that only trains their system on what is “relevant” to its
expected tasks, at least from customers whose jobs are at the
high end of uncertainty or complexity.

Performance metrics for intelligent systems based on
board games like chess and backgammon or parlour games
like the Turing test can be very useful in addressing philo-
sophical questions about what it means to be intelligent, and
technological questions about how to implement it, but they
are of little direct economic interest.  In particular, to pass the
Turing test in a job application context, an intelligent system
would have to refrain from showing any levels of ability not
common among humans, and also to demand the same levels
of salary and benefits as a human.  What is needed, instead, is
a set of benchmark tasks, probably job-specific, with one or
more of the following characteristics:

� Instructions are so complicated that it is
more profitable to seek an intelligent
laborer system that understands them, than
to seek an unintelligent “Chinese room”



type system to follow the instructions with-
out understanding.

� The environment is so complicated and
uncertain that it is more profitable to seek
an intelligent craftsman system that accepts
exogenous goals and carries them out
according to its own skills and intelligence,
rather than to seek an unintelligent system
that simply follows instructions.

� The situation is so fuzzy that it is more
profitable to seek an intelligent professional
system to determine what goals are appro-
priate (presumably given exogenous meta-
goals) and do surprising things for the
benefit of the organization, rather than to
seek an unintelligent system that simply
and predictably carries out exogenous goals

To be useful, an intelligent constructed system must pro-
vide a better cost/benefit ratio than any combination of
human being(s) and unintelligent constructed system(s).  If
more than one intelligent constructed system meets this test,

then the one with the best cost/benefit ratio, not necessarily
the smartest one, will be chosen.

10.Economics and the Vector of
Intelligence
The “white paper” for the 2000 Conference on Perform-

ance Metrics for Intelligent Systems lists 25 potential coordi-
nates for a possible Vector of Intelligence.  A major challenge
is to find ways to systematically quantify or otherwise specify
the values of these “coordinates.”  Without detracting from
the usefulness of methods oriented toward philosophy of
mind, toward control engineering, or toward academic com-
puter science, let me propose an economic approach to meas-
uring each of the 25 coordinates summarized in the following
table.  In this economic approach, the challenge would be to
estimate the derivatives of system cost/benefit ratio in a
benchmark problem to “memory temporal depth,” “number of
objects that can be stored,” ... et cetera.   The second deriva-
tive is as important as the first since most or all of these coor-
dinates are subject to diminishing or even negative returns. 

 

Twenty-Five Potential Coordinates for the Vector of Intelligence (from the White Paper)
(a) memory temporal depth
(b) number of objects that can be stored 
(c) number of levels of granularity in the system of representation
(d) the vicinity of associative links taken in account during reasoning of a situation, or
(e) the density of associative links
(f) the vicinity of the object in which the linkages are assigned and stored (associative depth)
(g) the diameter of associations ball (circle)
(h) the ability to assign the optimum depth of associations
(i) the horizon of planning at each level of resolution
(j) the horizon of extrapolation at a level of resolution
(k) the response time
(l) the size of the spatial scope of attention
(m) the depth of details taken in account during the processes of recognition at a single level of resolution
(n) the number of levels of resolution that should be taken into account during the processes of recognition
(o) the ratio between the scales of adjacent and consecutive levels of resolution
(p) the size of the scope in the most rough scale 

and the minimum distinguishable unit in the most accurate (high resolution) scale
(q) an ability of problem solving intelligence to adjust its multi-scale organization to the hereditary 

hierarchy of the system,
(r) dimensionality of the problem (the number of variables to be taken in account)
(s) accuracy of the variables
(t) coherence of the representation constructed upon these variables
(u) limit on the quantity of texts available for the problem solver for extracting description of the system 20
(v) frequency of sampling and the dimensionality of the vector of sampling
(w) cost-functions (cost-functionals)
(x) constraints upon all parameters
(y) cost-function of solving the problem
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ri Nroprjrury Frpsoh{lw|1 Wkh prvw dssursuldwh zd| wr zhljkw vsdfh dqg wlph h{hfxwlrq ri d

surjudp/ wkh irupxod OW�+s{, @ o+s{, . orj ��+s{,/ zkhuh � lv wkh qxpehu ri vwhsv wkh pdfklqh �

kdv wdnhq xqwlo { lv sulqwhg e| s|/ zdv lqwurgxfhg e| Ohylq lq wkh vhyhqwlhv +vhh h1j1 ^48`,1 Lqwxlwlyho|/

hyhu| dojrulwkp pxvw lqyhvw vrph h�ruw hlwkhu lq wlph ru ghpdqglqj2hvvd|lqj qhz lqirupdwlrq/

lq d uhodwlrq zklfk dssur{lpdwhv wkh ixqfwlrq OW 1 Wkh fruuhvsrqglqj frpsoh{lw|/ ghqrwhg e| Nw

+vhh h1j1 ^49`, lv d yhu| sudfwlfdo dowhuqdwlyh wr N1

� ������ ���	����� �� ��� ��	������� ���	�����

Frqvlghu d sureohp lqvwdqfh � dv d wxsoh kV>F> L> D> !l zkhuh V lv wkh frqwh{w ru zrunlqj v|vwhp

zkhuh wkh sureohp fdq eh hvwdeolvkhg/ F lv d Errohdq ixqfwlrq zklfk uhsuhvhqwv d +v|qwdfwlfdo,

ydolglw| fulwhulrq/ L lv wkh suhvhqwdwlrq ri wkh lqvwdqfh/ Dl lv wkh dqvzhu dqg ! lv d +vhpdqwlfdo,

yhul�hu4 1 Wkh jhqhudo sureohp lv ghqrwhg e| �+�, dv wkh wxsoh kV>F> !l1
Zh vd| wkdwH lv dq h{sodqdwlrq iru wkh sureohp lqvwdqfh � l� H lv ydolg/ l1h1 F+kV> L> Hl, @ wuxh/

dqg H lv d phdqv wr rewdlq wkh vroxwlrq/ l1h1/ !+kV> L> Hl, @ Dl1

Iurp khuh/ lw lv hdv| wr dgdsw wkh gh�qlwlrq ri Nw wr phdvxuh wkh kdugqhvv ri d sureohp1

Qdpho|/ wkh kdugqhvv ri d sureohp lqvwdqfh �kV>F> L> D> !l lv wkhq gh�qhg dv=

K+�, @ plqiOW +HmkV>F> Ll, = H lv dq h{sodqdwlrq iru �j +4,

4
Erwk � dqg � frxog eh mrlqhg lq rqh ixqfwlrq1 Zh kdyh suhihuuhg wr vhsdudwh wkhp/ ehfdxvh odwhu lw zloo

eh xvhixo wr glvwlqjxlvk ehwzhhq erwk sduwv ri d fruuhfw vroxwlrq/ lq rughu wr hvwdeolvk sxuhu idfwruv1
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Iru lqvwdqfh/ wkh kdugqhvv ri d vhdufk sureohp lv xvxdoo| hvwlpdwhg e| wkh vl}h ri wkh vhdufk

vsdfh1 Li wkh vhdufk sureohp lv frpsoh{/ lw lv qhfhvvdu| wr vd| zklfk eudqfkhv kdyh ehhq vhohfwhg lq

rughu wr duulyh wr wkh vroxwlrq/ ru hlwkhu d orqj wlph lv qhfhvvdu| wr h{soruh +dqg pdnh edfnwudfnlqj,

wr wkh plvohdglqj rqhv1 Lw lv wkh ixqfwlrq OW zklfk �qgv d frpsurplvh ehwzhhq wkh lqirupdwlrq

zklfk lv qhhghg wr jxlgh wkh vhdufk dqg wkh orjdulwkp ri wkh wlph wkdw lv dovr qhhghg wr hvvd| doo

wkh eudqfkhv1 Rq wkh rwkhu kdqg/ li wkh vhdufk sureohp lv olqhdu +rqh srvvleoh eudqfk,/ lw lv yhu|

hdvlhu wr ghvfuleh wkh sureohp +mxvw iroorz wkh uxohv lq wkh rqo| srvvleoh zd|,1 Krzhyhu/ iru yhu|

orqj ghulydwlrqv/ wkh lqfoxvlrq ri wlph fdq pdnh kdugqhvv kljk wrr1

Iru wkh hydoxdwlrq ri d vxemhfw*v delolw| ri vroylqj d nlqg ri sureohp �+�, lw lv qhfhvvdu| wr

jhqhudwh d vhw ri lqvwdqfhv ri wkdw sureohp ri gl�huhqw kdugqhvv1 Lq rughu wr vfdoh wkh lqvwdqfhv

pruh surshuo|/ zh lqwurgxfh wkh frqfhsw ri n0vroydelolw|1 Dq lqvwdqfh ri d sureohp � @ kV>F> L> D> !l

lv n0vroydeoh l� n lv wkh ohdvw srvlwlyh lqwhjhu qxpehu vxfk wkdw=

K+�, � n � orj o+L, +5,

Wkh xvh ri orj o+L, lv mxvwl�hg e| wkh idfw wkdw/ rqfh wkh jhqhudo sureohp lv nqrzq/ hdfk lqvwdqfh

pxvw eh cuhdg* dq wklv wdnhv dw ohdvw o+L, vwhsv1
Rqfh jlyhq d jhqhudo vfdoh ri d frpsoh{lw| ri wkh sureohp/ lw lv wkhq hdv| wr pdnh d whvw

iurp wkh suhylrxv gh�qlwlrq/ surylghg wkdw wkh xqtxhvwlrqdelolw| ri wkh vroxwlrq wr wkh sureohp

lv fohdu1 Xqtxhvwlrqdelolw| fdq rqo| eh dgguhvvhg ghshqglqj rq wkh nlqg ri sureohp +zh zloo vhh

wklv iru ghgxfwlyh delolwlhv dqg hvshfldoo| iru lqgxfwlyh delolwlhv lq wkh iroorzlqj vhfwlrqv,1 Ilqdoo|/

wkhuh lv qr zd| wr nqrz zkhwkhu wkh vxemhfw kdv duulyhg wr wkh vroxwlrq li wkh h{sodqdwlrq lv qrw

jlyhq +dqg xvxdoo| wkh h{sodqdwlrq lv gl!fxow wr fkhfn ru wkh vxemhfw pd| qrw eh deoh wr h{suhvv

wkh h{sodqdwlrq lq d frpsuhkhqvleoh irup,1 Iru lqvwdqfh/ wkh vxemhfw pd| kdyh jlyhq wkh uljkw

vroxwlrq exw pd|eh gxh wr zurqj ghulydwlrqv1 Iruwxqdwho|/ lq wkh fdvh ri pxowlsoh vroxwlrqv/ wklv

vlwxdwlrq zloo eh glvfdugdeoh lq wkh joredo uhfnrqlqj ri wkh whvw1 Lq wkh fdvh ri ihz vroxwlrqv/ vxfk dv

c|hv*2cqr*/ lw lv wkhq qhfhvvdu| wr shqdolvh wkh huuruv e| xvlqj vrph irupxod wkdw wdnhv lqwr dffrxqw

wkh srvvlelolw| ri jxhvvlqj wkh uljkw dqvzhu ce| huuru*1

Dqrwkhu txhvwlrq lv wkh wlph olplw iru pdnlqj wkh whvw1 Wklv zrxog kljko| ghshqg rq wkh idfwru

wr eh phdvxuhg/ dqg zkhwkhu wkhuh lv d vshfldo lqwhuhvw rq hydoxdwlqj wkh delolw| wr vroyh d jlyhq

sureohp ru wkh delolw| wr vroyh lw txlfno|1 Wkh vhohfwlrq ri wkh wlph olplw dqg wkh hydoxdwlrq ri wkh

vfruh dffruglqj wr lw frxog eh yhu| lqwhuhvwlqj iru hydoxdwlqj uhvrxufh0erxqghg udwlrqdo v|vwhpv1

Ilqdoo|/ zh kdyh qrw frqvlghuhg wkh srvvlelolw| ri pxowlsoh fruuhfw h{sodqdwlrqv iru wkh vdph

vroxwlrq/ zklfk zrxog vxjjhvw d prgl�fdwlrq ri +4,1 Frqvlghu wkh vlwxdwlrq ri wkh ehvw h{sodqdwlrq

zlwk OW @ q/ exw vhyhudo rwkhu h{sodqdwlrqv ri OW @ q.41 Lqwxlwlyho|/ wkh h{lvwhqfh ri wkhvh rwkhu
h{sodqdwlrqv dovr d�hfwv wkh hdvlqhvv ri wkh vroxwlrq1 Krzhyhu/ wklv lv yhu| gl!fxow wr hydoxdwh

lq sudfwlfh ehfdxvh wkhuh duh dozd|v lq�qlwh voljkw yduldwlrqv ri wkh ehvw h{sodqdwlrq +yrlg vwhsv/

uhgxqgdqflhv/ hwf1,/ vr wkh suhylrxv vlwxdwlrq lv h{wuhpho| iuhtxhqw +li qrw lqhylwdeoh,1 Lw lv wkhq

dvvxphg wkdw iru hyhu| n=

fdugi H = OW +H, @ n dqgF+kV> L>Hl, @ wuxh dqg !+kV> L> Hl, @ Dl j ??

fdugi H = OW +H, @ n dqgF+kV> L> Hl, @ wuxh j +6,

Lq rwkhu zrugv/ zh dvvxph wkdw wkh sursruwlrq ri ydolg dqg fruuhfw h{sodqdwlrqv zuw1 ydolg

h{sodqdwlrqv lv yhu| vpdoo1

Rqfh d jhqhudo iudphzrun lv hvwdeolvkhg/ ohw xv vwxg| zklfk ghgxfwlyh dqg lqgxfwlyh delolwlhv

duh ihdvleoh dqg lqwhuhvwlqj wr eh phdvxuhg zlwklq lw1

�  ��
���!� "�������

Dssduhqwo|/ ghgxfwlyh delolwlhv duh pxfk hdvlhu wr phdvxuh/ ehfdxvh wkhuh lv qr srvvleoh vxemhfwlylw|

lq wkh fruuhfw dqvzhu> jlyhq wkh suhplvhv dqg wkh zd| wr rshudwh zlwk wkhp/ rqo| rqh dqvzhu lv

srvvleoh1
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Dq lqvwdqfh ri d ghgxfwlyh sureohp � @ kV>F> L> D> !l fdq eh gh�qhg lq whupv ri wkh suhylrxv
iudphzrun lq wkh iroorzlqj zd|= V fruuhvsrqgv wr wkh vhw ri d{lrpv ru d{lrpdwlf v|vwhp/ F lv d
Errohdq ixqfwlrq zklfk vd|v zkdw lv d ydolg dssolfdwlrq ri wkh d{lrpv/ L lv wkh lqvwdqfh ri wkh
ghgxfwlyh sureohp/ Dl wkh dqvzhu dqg ! lv d yhul�hu/ l1h1/ !+kV> L> Hl, @ Dl/ lq wklv fdvh/ d yhul�hu
wkdw fkhfnv zkhwkhu Dl lv d uhvxow ri dsso|lqj d vroxwlrq wr L lq V1

Lq wklv fdvh wkh h{sodqdwlrq H lv uhsuhvhqwhg e| d surri lq V vwdwlqj wkdw Dl lv d wkh uhvxow ri
L ru/ lq rwkhu zrugv/ d ghulydwlrq iurp L wr Dl1

H{dpsoh= Frqvlghu iru lqvwdqfh dq dffhswhu wkdw whoov zkhwkhu d sursrvlwlrq lv d wkhruhp ru qrw1 Ohw

7 eh wkh d{lrpv ri dulwkphwlf1 Ohw � d ixqfwlrq wkdw whoov wkdw d ghulydwlrq lv ydolg dffruglqj wr wkh uxohv

ri dssolfdwlrq ri wkh d{lrpv/ dqg ohw U eh wkh lqvwdqfh �Lv Ihupdw*v idprxv frqmhfwxuh wuxhB� +uhfhqwo| d

wkhruhp,1 Zklfk lv wkh kdugqhvv ri wkh vroxwlrq � @ c|hv*B Wkh ghvfulswlrqdo frpsoh{lw| ri � +zklfk lv

mxvw |hv, zrxog vd| wkdw wkh lqvwdqfh lv yhu| hdv|/ krzhyhu lwv kdugqhvv jlyhq e| M wxuqv rxw wr eh wkh uA

ri wkh surri zlwk ohvv uA 1 Frqvlghu lqvwhdg wkh lqvwdqfh �vroyh 5.6� zklfk/ dovr zlwk d orz frpsoh{lw| ri

� ' D/ wxuqv rxw wr eh vlpsoh/ ehfdxvh wkh ghulydwlrq lv ghvfuledeoh hdvlo| dqg vkruwo| iurp '7c �c U�1 Lq

jhqhudo/ dq| fdofxodwlrq lv vkruwo| ghvfuledeoh/ vr lwv kdugqhvv zloo ghshqg vroho| rq lwv whpsrudo frvw1

Dffruglqj wr wklv h{dpsoh/ zh fdq glvwlqjxlvk vrph fodvvlfdo ghgxfwlyh sureohpv wkdw fdq eh
phdvxuhg1 Lq sduwlfxodu/ wkh iroorzlqj idfwruv duh glvwlqjxlvkhg=

� Fdofxoxv Delolw|= lq wklv vshfldo fdvh/ F rqo| doorzv d vshfl�f dqg ghwhuplqlvwlf dssolfdwlrq ri
wkh uxohv ru d{lrpv ri V1 Lq wklv fdvh wkh vhdufk vsdfh lv olqhdu1 Dv lw kdv ehhq vdlg ehiruh/ lwv
frpsoh{lw| lv h{foxvlyho| jlyhq e| wkh orjdulwkp ri wkh wlph zklfk lv qhhghg iurp wkh lqsxw
L wr wkh rxwsxw Dl1 Wklv delolw| lv qrw ri pxfk lqwhuhvw wr eh phdvxuhg qrzdgd|v/ vlqfh lw lv
ehwwhu grqh e| frpsxwhuv wkdq kxpdqv/ dqg lw zrxog �qdoo| phdvxuh wkh frpsxwdwlrqdo srzhu
ri wkh vxemhfw 2 pdfklqh1

� Ghulydwlrqdo Delolw|= lq wklv fdvh/ F rqo| doorzv d ydulhg dssolfdwlrq ri wkh uxohv ru d{lrpv
ri V1 Frqvhtxhqwo|/ wkh vhdufk vsdfh lv rshq1 Wkh frpsoh{lw| lv wkhq jlyhq e| d frpsurplvh
ehwzhhq wkh orjdulwkp ri wkh wlph zklfk lv qhhghg wr nqrz wkdw d eudqfk ohdgv wr qr vroxwlrq/
dqg vrph lqirupdwlrq wkdw pd| vd| zklfk eudqfkhv wr wdnh +dqg zklfk rqhv qrw wr wdnh,1

� Dffhswhu Delolw| +surylqj delolw|,= Lw lv d vshfldo fdvh ri wkh suhylrxv delolw|/ zlwk wkh vshfldo
ihdwxuh wkdw L fdq rqo| eh c|hv* ru cqr*1 Wkhruhwlfdoo|/ wkhuh lv qr uhdvrq iru h{shfwlqj wkdw d

vxemhfw kdv d gl�huhqw uhvxow lq wklv sureohp wkdw lq wkh suhylrxv rqh1

Wkh zd| wr lpsohphqw d frqfuhwh whvw iru wkh suhylrxv delolw| lv qrw frpsolfdwhg1 Iru fdofxoxv

delolw|/ lw lv mxvw qhfhvvdu| wr jhqhudwh vrph ghulydwlrqv1 Wkhlu ohqjwk zloo ghwhuplqh wkh wlph

zklfk lv qhhghg wr iroorz wkhp1 Rq wkh frqwudu|/ iru wkh rwkhu wzr delolwlhv/ lw lv qhfhvvdu| wr

jhqhudwh d srvvleoh ghulydwlrq/ dqg orrn wkdw wkhuh duh qr vkruwhu htxlydohqw ghulydwlrqv1 Wklv/

lq jhqhudo/ zloo eh h{wuhpho| frvwo|/ jurzlqj h{srqhqwldoo| dffruglqj wr wkh ydoxh ri n0vroydelolw|1

Iruwxqdwho|/ wkhuh lv qr qhhg iru h!flhqf| khuh1 D kdug whvw fdq eh jhqhudwhg gxulqj gd|v/ hyhq

zhhnv/ dqg wkhq sdvvhg wr vhyhudo vxemhfwv1

# ���
���!� "�������

D vhtxhqwldo lqgxfwlyh sureohp � @ kV>F> L>D> !l fdq dovr eh gh�qhg lq whupv ri wkh suhylrxv

iudphzrun lq wkh iroorzlqj zd|= V fruuhvsrqgv wr wkh edfnjurxqg nqrzohgjh/ L lv d vhtxhqwldo

hylghqfh +zlwk o+L, @ q,/ F lv d Errohdq ixqfwlrq zklfk uhsuhvhqwv wkh k|srwkhvlv vhohfwlrq fulwhulrq

+h1j1 vlpsolflw|,/ Dl lv wkh suhglfwlrq ri wkh +q . 4,wk hohphqw ri wkh vhtxhqfh dqg ! lv d yhul�hu/

l1h1/ !+kV> L> Hl, @ Dl/ lq wklv fdvh/ d yhul�hu wkdw fkhfnv zkhwkhu Dl lv wkh +q.4,wk hohphqw jlyhq

e| wkh k|srwkhvlv zlwk wkh edfnjurxqg nqrzohgjh V dqg dovr fkhfnv zkhwkhu erwk fryhu L1

Lq wklv fdvh wkh h{sodqdwlrq H lv uhsuhvhqwhg e| d ck|srwkhvlv* zuw1 V wkdw d!upv wkdw Dl lv

czkdw iroorzv* L ru/ lq rwkhu zrugv/ d suhglfwlrq iurp L1

H{dpsoh= Frqvlghu iru lqvwdqfh d suhglfwlrq sureohp1 Ohw 7 eh d edfnjurxqg nqrzohgjh/ frqwdlqlqj/

dprqj rwkhu wklqjv/ wkh rughu ri wkh Odwlq doskdehw1 Ohw � d ixqfwlrq wkdw whoov wkdw d k|srwkhvlv lv
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jrrg dffruglqj wr d vhohfwlrq fulwhulrq/ dqg ohw U wkh lqvwdqfh �dddeeefffggghhhiiijjjk�1 Zklfk lv wkh

kdugqhvv ri wkh vroxwlrq �� @ ck*B Wkh ghvfulswlrqdo frpsoh{lw| +lq uA whupv, ri wkh k|srwkhvlv lv djdlq

zkdw lv wdnhq lqwr dffrxqw1

Wkh pdlq txhvwlrq ri hydoxdwlrq ri lqgxfwlrq lv wkdw ri lqtxhvwlrqdelolw|1 Hyhq li wkh vhohfwlrq

fulwhulrq lv jlyhq/ wzr sodxvleoh h{sodqdwlrqv pd| gl�hu voljkwo|/ dqg wkh vhohfwlrq fulwhulrq zrxog

jlyh wkdw rqh lv voljkwo| ehwwhu wkdq wkh rwkhu/ exw wklv zrxog ghshqg kljko| rq wkh ghvfulswlrqdo

phfkdqlvp xvhg1 Lq ^45` dqg ^44` wklv gl!fxow sureohp lv dgguhvvhg/ dffruglqj wr d frpsuhkhqvlyh

fulwhulrq/ d yduldqw ri wkh vlpsolflw| fulwhulrq edvhg rq Nroprjrury Frpsoh{lw| lq wkh vw|oh ri

Vrorprqr� ^4<`/ exw hqvxulqj wkdw wkh gdwd lv fryhuhg frpsuhkhqvlyho|/ l1h1 zlwkrxw h{fhswlrqv1

Dffruglqjo|/ wkh vlpsohvw h{sodqdwru| ghvfulswlrq/ ghqrwhg e| VHG+{m|,/ lv gh�qhg lq ^44` dv wkh

vlpsohvw +lq OW whupv, ghvfulswlrq zklfk lv frpsuhkhqvlyh zuw1 wkh gdwd { jlyhq wkh edfnjurxqg

nqrzohgjh |1 Wr hqvxuh xqtxhvwlrqdelolw|/ wkh h{dpsohv duh vhohfwhg vxfk wkdw wkhuh duh qr do0

whuqdwlyh ghvfulswlrqv ri vlplodu frpsoh{lw| wkdw jlyh d gl�huhqw ghvfulswlrq1 Ilqdoo|/ wkhuh lv d

vpdoo srvvlelolw| wkdw d jrrg suhglfwlrq lv jlyhq e| d czurqj* h{sodqdwlrq1 Wklv suredelolw| pd| eh

qhjohfwhg lq wkh whvwv ru fruuhfwhg e| d shqdolvlqj idfwru lq wkh vfruh ri zurqj uhvxowv1

Iurp khuh/ sduwldoo| lqghshqghqw idfwruv fdq eh phdvxuhg e| xvlqj h{whqvlrqv ri wkh suhylrxv

iudphzrun1 Iru lqvwdqfh/ lqgxfwlyh delolwlhv/ vxfk dv vhtxhqwldo suhglfwlrq delolw|/ nqrzohgjh ds0

solfdelolw|/ frqwh{wxdolvdwlrq dqg nqrzohgjh frqvwuxfwlrq delolw| fdq eh phdvxuhg lq wkh iroorzlqj

zd|=

� Vhtxhqwldo Suhglfwlrq Delolw|= vhyhudo xqtxhvwlrqdeoh vhtxhqfhv ri gl�huhqw n0vroydelolw| duh

jhqhudwhg1 D whvw iru wklv delolw| kdv ehhq jhqhudwhg lq ^45` dqg sdvvhg wr kxpdqv/ mrlqwo| zlwk

d w|slfdo sv|fkrphwulfdo whvw ri lqwhooljhqfh1 Wkh fruuhodwlrq vkrzhg wkdw wklv lv rqh ri wkh

ixqgdphqwdo idfwruv ri lqwhooljhqfh/ dowkrxjk pruh h{shulphqwdwlrq lv wr eh grqh1
� Lqgxfwlyh Nqrzohgjh Dssolfdelolw| +ru cfu|vwdool}hg lqwhooljhqfh*,= d edfnjurxqg nqrzohgjh E

dqg d vhw ri xqtxhvwlrqdeoh +zlwk ru zlwkrxw E/ ghqrwhg e| K+{lmE, dqg K+{l, uhvshfwlyho|,
vhtxhqfhv {l duh surylghg vxfk wkdw K+{lmE, @ K+{l, � x exw vwloo VHG+{lmE, @ VHG+{l,1
Wkh gl�huhqfh ri shuirupdqfh ehwzhhq fdvhv zlwkE dqg zlwkrxw E lv uhfrughg1 Wklv whvw zrxog

dfwxdoo| phdvxuh wkh dssolfdwlrq ri wkh edfnjurxqg nqrzohgjh ghshqglqj rq wzr sdudphwhuv=

wkh frpsoh{lw| ri E dqg wkh xvhixoqhvv ri E/ phdvxuhg e| x1

� Lqgxfwlyh Frqwh{wxdolvdwlrq= lw lv phdvxuhg vlploduo| dv nqrzohgjh dssolfdelolw| exw vxsso|lqj

gl�huhqw frqwh{wvE4> E5> ===> EW zlwk gl�huhqw vhtxhqfhv {l>w vxfk wkdwK+{l>wmEw, @K+{l>w,�x1
Wklv pxowlsolflw| ri edfnjurxqg nqrzohgjh +d qhz sdudphwhu W , glvwlqjxlvkhv wklv idfwru iurp

wkh suhylrxv rqh1

� Lqgxfwlyh Nqrzohgjh Frqvwuxfwlrq +ru ohduqlqj iurp suhfhghqwv,= d vhw ri vhtxhqfhv {l lv sur0

ylghg vxfk wkdw wkhuh h{lvwv d frpprq nqrzohgjh ru frqwh{w E dqg d frqvwdqw x vxfk wkdw iru

K+{lmE, � K+{l,� x1 D vljql�fdqw lqfuhdvh ri shuirupdqfh pxvw wdnh sodfh ehwzhhq wkh �uvw

vhtxhqfh dqg wkh odwhu vhtxhqfhv1 Wkh sdudphwhuv duh wkh vdph dv wkh �uvw fdvh/ wkh frpsoh{lw|

ri E dqg wkh frqvwdqw x1

Lw lv reylrxv wkdw wkhvh irxu idfwruv vkrxog fruuhodwh/ hvshfldoo| zlwk wkh �uvw rqh/ zklfk frqvwlwxwhv

d qhfhvvdu| frqglwlrq iru kdylqj d plqlpdo vfruh lq wkh rwkhu idfwruv1

$  �	��������� ��� ����� �������

Dowkrxjk wkhuh lv d frpprq +exw dujxhdeoh, ylhz ri lqgxfwlrq dqg ghgxfwlrq dv lqyhuvh surfhvvhv/

wkh| duh qrw lqyhuvh lq wkh zd| wkh| xvh frpsxwdwlrqdo uhvrxufhv1 Lq idfw/ dq| lqgxfwlyh surfhvv

uhtxluhv ghgxfwlrq wr fkhfn wkh k|srwkhvhv/ wkxv/ reylrxvo|/ lqgxfwlyh delolw| lv lq xhqfhg e|

ghgxfwlyh delolw|1 Wklv kdv ehhq xvxdoo| uhfrjqlvhg e| LT whvwv/ zkhuh ghgxfwlyh dqg lqgxfwlyh

delolwlhv xvxdoo| fruuhodwh1 Gxh wr wklv idfw/ lqgxfwlyh idfwruv xvxdoo| duh wkh pdlq sduw ri lqwhooljhqfh

whvwv/ ehfdxvh ghgxfwlyh delolwlhv duh lpsolflwo| hydoxdwhg1

Krzhyhu/ li zh duh orrnlqj iru csxuh* idfwruv wkh txhvwlrq lv zkhwkhu wkhuh lv d zd| wr vhsdudwh

wklv ghgxfwlyh cfrqwdplqdwlrq* lq lqgxfwlyh idfwruv1
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Wkh lghd lv wr surylgh ch{whuqdo* ghgxfwlyh delolwlhv zkhq phdvxulqj lqgxfwlyh idfwruv/ lq rughu

wr cglvfrxqw* wkh ghgxfwlyh h�ruw wkdq rwkhuzlvh vkrxog eh grqh1 Iru wklv/ jlyhq d sureohp � @

kV>F> !l lw lv rqo| qhfhvvdu| wr surylgh dq crudfoh* zklfk frpsxwhv ! lq frqvwdqw wlph1 Wkh vxemhfw

pxvw rqo| jxhvv prghov +k|srwkhvhv, dqg fkhfn wkhp lq wkh rudfoh/ e| surylglqj wkh k|srwkhvlv

wr lw dqg frpsdulqj wkh uhvxowv zlwk wkh hylghqfh L1 Wklv zrxog phdvxuh wkh cfuhdwlyh* sduw ri

lqgxfwlrq1 Lq wkh iroorzlqj/ ohw xv ghqrwh e| csxuho|* lqgxfwlyh wkh fruuhvsrqglqj idfwruv wr wkrvh

kljkoljkwhg lq wkh suhylrxv vhfwlrq zklfk uhvxow iurp surylglqj wkh rudfoh1

Wklv uhvhpeohv d cwuldo dqg huuru* sureohp frqvlghulqj uhdolw| dfwlqj dv wkh rudfoh1 Wkh lvvxh lv

krz wr lpsohphqw wklv lq d ihdvleoh zd|/ hvshfldoo| iru hydoxdwlqj frpsoh{ djhqwv ru hyhq kxpdq

ehlqjv1 Wkh ehvw zd|/ lq rxu rslqlrq/ lv wkh frqvwuxfwlrq ri d cyluwxdo* zruog zkhuh wkh vxemhfw wr

eh hydoxdwhg fdq lqwhudfw dqg hvvd| lwv k|srwkhvhv zlwk qr h�ruw1

Lq d vlplodu zd| dv wkh rudfoh iru !/ vrph gl�huhqfh frxog eh hvwlpdwhg li wkh v|qwdfwlfdo pdfklqh

F lv +dovr, jlyhq1 Dowkrxjk wklv zrxog qrw eh pxfk uhsuhvhqwdwlyh iru ghgxfwlrq/ iru lqgxfwlrq lw

zrxog glvfrxqw wkh delolw| ri zrunlqj zlwk wkh vhohfwlrq fulwhulrq/ zklfk lv dq lpsruwdqw wudlw ri

lqgxfwlrq1

Qrqhwkhohvv/ ghgxfwlyh delolw| lv dovr lq xhqfhg e| lqgxfwlyh delolw| dv orqj dv wkh sureohpv

ehfrph kdughu1 Vrph ohppdwd ru uxohv fdq eh jhqhudwhg e| dq lqwhooljhqw vxemhfw lq rughu wr

khos wr vkruwhq wkh surri iurp wkh suhplvhv wr wkh frqfoxvlrq1 Wklv pd| h{sodlq zk| duwl�fldo

sureohp vroyhuv zlwkrxw lqgxfwlyh delolwlhv kdyh qrw ehhq deoh wr vroyh frpsoh{ sureohpv/ dqg

wklv lv hvshfldoo| fohdu lq Dxwrpdwlf Wkhruhp Surylqj1 Frqvhtxhqwo|/ uhfhqw v|vwhpv duh ehjlqqlqj

wr xvh PO whfkqltxhv iru lpsurylqj shuirupdqfh1 Edfnjurxqg nqrzohgjh frxog dovr eh h{dplqhg

lq ghgxfwlrq/ surylghg V lqfoxghv wkh d{lrpv exw dovr vrph xvhixo surshuwlhv1 Wklv �qdoo| jlyhv

vlplodu idfwruv dv wkrvh jlyhq iru lqgxfwlrq=

� Ghgxfwlyh Nqrzohgjh Dssolfdelolw|= krz ohppdwd ru surshuwlhv duh xvhg iru d ghgxfwlyh sure0

ohp1

� Ghgxfwlyh Frqwh{wxdolvdwlrq= wkh delolw| ri xvlqj gl�huhqw frqwh{wv iru gl�huhqw sureohpv1

� Ghgxfwlyh Nqrzohgjh Frqvwuxfwlrq= wklv zloo phdvxuh wkh lqfuhdvh ri shuirupdqfh ehwzhhq �uvw

lqvwdqfhv dqg odvw rqhv1

Ilqdoo|/ zh kdyh jlyhq d phdvxuhphqw iru vhtxhqwldo lqgxfwlrq/ dqg lw vhhpv lqwhuhvwlqj wr hydoxdwh

qrq0vhtxhqwldo lqgxfwlrq dv zhoo/ zkhuh dq xqrughuhg vhw ri hohphqwv lv jlyhq dv hylghqfh iurp

dq xqnqrzq ixqfwlrq wkdw pdsv zkhwkhu dq hohphqw ehorqjv wr d vhw1 Lq wklv fdvh/ wkh whvw frxog

jlyh vrph srvvleoh ydoxhv zklfk pljkw eh phpehuv ri wkh vhw/ dowkrxjk rqo| rqh ri wkhp lv uhdoo|

lq lw1 Vrorprqr� irupdolvhg ghwhuplqlvwlf +vhtxhqwldo, suhglfwlrq ^4<` dqg uhfhqwo|/ kdv irupdolvhg

qrq0vhtxhqwldo suhglfwlrq ^54`1 Wklv sureohp lv vlplodu wr wkh lqgxfwlyh sureohp ri ohduqlqj d

Errohdq fodvvl�hu dqg fdq eh h{whqghg wr wkh fdvh ri d jhqhudo fodvvl�hu1 Wr holplqdwh wkh ghgxfwlyh

frqwdplqdwlrq ri wkh phdvxuhphqw ri qrq0vhtxhqwldo lqgxfwlrq/ wkh crudfoh* ! vkrxog eh d fodvvl�hu/

whoolqj/ jlyhq d k|srwkhvlv/ wr zklfk fodvv wkh hohphqw ehorqjv1 Wkh hvvd| ri dq crudfoh* wkdw dffhswv

vhyhudo hohphqwv dw d wlph vkrxog eh frqvlghuhg dv zhoo1

Rqfh wkh edvlf ghgxfwlyh dqg lqgxfwlyh idfwruv kdyh ehhq uhfrjqlvhg/ wkh txhvwlrq lv zkhwkhu

wkhuh duh pdq| rwkhu idfwruv zklfk duh uhohydqw wr eh phdvxuhg1 Iru lqvwdqfh/ phpru| ru cphpr0

lvdwlrq delolw|* lv d idfwru wkdw lv nqrzohgjh0lqghshqghqw dqg lw fdq eh hdvlo| phdvxuhg1 Krzhyhu/

wklv idfwru lv qrw yhu| lqwhuhvwlqj iru DL qrzdgd|v1

Rwkhu idfwruv/ vxfk dv dqdorjlfdo dqg degxfwlyh delolwlhv fdq eh vkrzq wr eh forvho| frqqhfwhg

wr lqgxfwlyh dqg ghgxfwlyh delolwlhv erwk wkhruhwlfdoo| dqg h{shulphqwdoo|1 D �uvw dssurdfk iru

phdvxulqj wkhp kdv ehhq dwwhpswhg lq ^45`/ dqg wkh whvw dssolhg wr kxpdq ehlqjv kdv vkrzq wkh

fruuhodwlrq zlwk lqgxfwlyh delolwlhv1

Krzhyhu/ qrw hyhu| idfwru lv phdqlqjixo1 Idfwruv olnh �sod|lqj fkhvv zhoo� duh pxfk wrr vshfl�f

wr eh urexvw wr wkh vxemhfw*v edfnjurxqg nqrzohgjh1 Krzhyhu/ lw fdqqrw eh glvfdughg wkdw vrph

jdph0sod|lqj idfwru zrxog phdvxuh frpshwlwlylw| dqg lqwhudfwlylw| delolwlhv dvlgh iurp ghgxfwlyh

dqg lqgxfwlyh delolwlhv1
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Ilqdoo|/ zh kdyh frqvlghuhg lqglylgxdo whvwv zklfk phdvxuh rqh idfwru1 Iru phdvxulqj vhyhudo

idfwruv dw d wlph/ wkh h{huflvhv vkrxog eh jlyhq rqh e| rqh dqg/ diwhu hdfk jxhvv/ wkh vxemhfw vkrxog

eh jlyhq wkh fruuhfw dqvzhu +uhzdugv dqg shqdowlhv fdq eh xvhg lqvwhdg,1 Wklv kdv wzr dgydqwdjhv=

wkhuh lv qr qhhg iru wkh vxemhfw wr xqghuvwdqg qdwxudo odqjxdjh +ru dq| odqjxdjh, wr rughu wr eh

h{sodlqhg wkh sxusrvh ri wkh whvw/ dqg wkhuh lv qr qhhg wr whoo zklfk idfwru ru sxusrvh lv wr eh

phdvxuhg lq hdfk sduw ri wkh whvw1 Wkhuh lv dovr rqh glvdgydqwdjh/ ghgxfwlyh sureohpv vkrxog eh

srvhg lq whupv ri cohduq wr vroyh*/ dqg wklv pd| ghyluwxdolvh wkhp1

% "		��������

Prghuq DL v|vwhpv duh pxfk pruh ixqfwlrqdo wkdq v|vwhpv iurp wkh vl{wlhv ru wkh vhyhqwlhv1 Wkh|

vroyh sureohpv lq dq dxwrpdwhg zd| wkdw ehiruh uhtxluhg kxpdq lqwhuyhqwlrq1 Krzhyhu/ wkhvh

frpsoh{ sureohpv duh vroyhg ehfdxvh d phwkrglfdo vroxwlrq lv irxqg e| wkh v|vwhp*v ghvljqhuv/

qrw ehfdxvh prvw fxuuhqw v|vwhpv duh pruh lqwhooljhqw wkdq suhfhglqj rqhv1 Iruwxqdwho|/ wkh lqlwldo

dlp ri ehlqj pruh jhqhudo lv vwloo uhsuhvhqwhg e| vrph vxe�hogv ri DL= dxwrpdwhg uhdvrqlqj dqg

pdfklqh ohduqlqj1

Dxwrpdwhg uhdvrqlqj +pruh surshuo| fdoohg Dxwrpdwlf Wkhruhp Surylqj, lv dgguhvvlqj pruh

frpsoh{ sureohpv e| wkh xvh ri lqgxfwlyh whfkqltxhv/ zkloh pdlqwdlqj wkhlu jhqhudo ghgxfwlyh whfk0

qltxhv1 Wkhvh v|vwhpv/ lq idfw/ kdyh ehhq xvhg dv wkh cudwlrqdo fruh* ri pdq| v|vwhpv= nqrzohgjh0

edvhg v|vwhpv/ h{shuw v|vwhpv/ ghgxfwlyh gdwdedvhv/ 111 Exw/ uhpdundeo|/ wkh hydoxdwlrq ri wkh

jurzwk ri dxwrpdwhg uhdvrqlqj kdv qrw ehhq hvwdeolvkhg iurp wkh vxffhvv ri wkhvh dssolfdwlrqv

exw iurp wkh lqfuhdvlqjo| ehwwhu uhvxowv rq oleudulhv ri sureohpv/ vxfk dv wkh WSWS oleudu| ^55`1

Krzhyhu/ wkhuh lv qr wkhruhwlfdo phdvxuhphqw derxw wkh frpsoh{lw| ri wkh sureohpv zklfk frpsrvh

wkhvh oleudulhv1 Lqvwhdg/ vrph dssur{lpdwlrqv/ vxfk dv wkh qxpehu ri fodxvhv/ xvh ri vrph ohppdwdv/

hwf1/ kdyh ehhq xvhg1 Iroorzlqj wkh dssurdfk suhvhqwhg lq wklv sdshu lw zrxog eh lqwhuhvwlqj wr jlyh

d ydoxh ri n � vroydelolw| ri hdfk ri wkh lqvwdqfhv ri wkhvh oleudulhv1

Lq d vlplodu zd|/ pdfklqh ohduqlqj kdv uhfhqwo| wdnhq d pruh h{shulphqwdo fkdudfwhu dqg v|vwhpv

duh hydoxdwhg zuw1 vhwv ri sureohpv1 H{fhsw iurp jhqhudo sureohpv +fodvvhv,/ zkhuh wkhlu frpsoh{lw|

+ru ohduqdelolw|, kdv ehhq hvwdeolvkhg/ wkhuh lv qr irupdo iudphzrun iru jlylqj d vfdoh iru frqfuhwh

lqvwdqfhv1

Lq wklv qhz dqg ehqh�fldo lqwhuhvw lq phdvxuhphqw/ Elhq hw do1 ^4` kdyh gh�qhg d cPdfklqh Lq0

whooljhqfh Txrwlhqw* +PLT,/ ru/ pruh suhflvho|/ wzr PLTv/ iurp rqwrorjlfdo dqg skhqrphqrorjlfdo

+frpsdudwlyh, ylhzv1 Dq| frpsdulvrq qhhgv d uhihuhqfh/ dqg wkh rqo| uhihuhqfh ri lqwhooljhqfh lv/

iru wkh prphqw/ wkh kxpdq ehlqj1 Wklv pdnhv wkh dssurdfk yhu| dqwkursrfhqwulf/ olnh wkh Wxu0

lqj Whvw1 Wkh rqwrorjlfdo dssurdfk/ krzhyhu/ lv qrw edvhg rq frpsxwdwlrqdo sulqflsohv exw rq d

vhulhv ri fkdudfwhulvwlfv ri lqwhooljhqfh wkdw duh gh�qhg rq olqjxlvwlfdo whupv udwkhu wkdq frpsxwd0

wlrqdo2pdwkhpdwlfdo rqhv/ vxfk dv orqj0whup ohduqlqj/ dgdswdwlrq/ uhfrjqlwlrq/ rswlpl}dwlrq/ hwf1

Pruhryhu/ wkh hydoxdwlrq lv jhqhudoo| phdvxuhg rq shuirupdqfh rq vrph vshfl�f sureohp/ frqwudu|

wr wkh fodlp wkdw �lw lv wlph wr ehjlq wr glvwlqjxlvk ehwzhhq jhqhudo/ lqwhooljhqw surjudpv dqg

wkh vshfldo shuirupdqfh v|vwhpv� ^4;`1 Dowkrxjk wklv fdq eh yhu| dssursuldwh iru vshfl�f v|vwhpv

zkhuh ixqfwlrqdolw| lv fohdu/ lq jhqhudo wklv zrxog qrw doorz iru wkh frpsdulvrq ri lqwhooljhqfh vnloov

ri gl�huhqw v|vwhpv ghylvhg iru txlwh gl�huhqw jrdov1 Krz wr gh�qh jhqhudo dqg devroxwh fkdudfwhu0

lvwlfv ri lqwhooljhqfh frpsxwdwlrqdoo| lv pruh gl!fxow dqg qhz sureohpv suhvhqw wkhpvhoyhv/ exw

wkh surjuhvv lq wkh clqwhooljhqfh* ri DL v|vwhpv fdq rqo| eh phdvxuhg lq wklv zd|1

& ����
����� ��� �
�
�� '��(

Dprqj wkh sureohpv iru pdnlqj wkhvh phdvxuhphqw uholdeoh wkhuh lv wkh vhohfwlrq ri d uhihuhqfh

pdfklqh1 Wkh hydoxdwlrq ri delolwlhv zlwk lqvwdqfhv lv gdqjhurxv ehfdxvh lw ghshqgv rq frqvwdqwv1

Vlqfh wkhuh lv qr dssduhqw suhihuhqfh iru dq| ghvfulswlrqdo phfkdqlvp/ zh sodq wr dgdsw wkhvh

qrwlrqv iru orjlf surjudpplqj/ ehfdxvh lw lv d sdudgljp wkdw kdv ehhq xvhg erwk iru dxwrpdwhg

:



ghgxfwlrq dqg pdfklqh ohduqlqj +LOS, dv zhoo dv rwkhu xvhv +degxfwlrq/ wkhru| uhylvlrq/ 111,/ dqg/

lq rxu rslqlrq/ lv qrw eldvhg1

Iru wkh prphqw/ wkh iudphzrun zklfk kdv ehhq suhvhqwhg doorz iru wkh phdvxuhphqw ri gli0

ihuhqw idfwruv dqg fodul�hv wkh glvwlqfwlrq ehwzhhq hyroxwlrqdu|0dftxluhg nqrzohgjh/ olih0dftxluhg0

nqrzohgjh dqg coltxlg lqwhooljhqfh* +ru lqglylgxdo dgdswdelolw|,1 Vhyhudo whvwv iru gl�huhqw vxe�hogv

ri DL frxog eh ghylvhg iroorzlqj wklv sdudgljp/ dqg wkh lqfuhdvlqj vfruhv iru vroylqj pruh dqg

pruh frpsoh{ +n0vroydeoh, sureohpv pd| eh d zd| wr nqrz krz pxfk lqwhooljhqw DL v|vwhpv duh

zuw1 suhylrxv jhqhudwlrqv v|vwhpv1

)���������

41 Elhq/ ]1/ Nlp \1 W1 dqg \dqj/ V1 K1/ 4<<;/ �Krz wr Phdvxuh wkh Pdfklqh Lqwhooljhqfh Txrwlhqw +PLT,=
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ABSTRACT

With development of system complexity and performan-
ces, it is important to evaluate its ability to perform
tasks, especially in the case of opposing outer e�ects.
This amounts to a�ect "intelligence" coe�cient to the
system, which basically requires to transfer usual geo-
metric space calculations to more global and qualitative
task space, the only one where this coe�cient can have
a meaning irrespective of system structure. The pro-
blem is discussed here by de�ning the useful information
by its analytical expression explicit in terms of system
elements. By application to the class of deformable La-

grangian systems, adapted controlled structure is con-
structed. Intelligence measured by minimization of a di-
stance between demand and result mainly appears as
a compromise between information ball and robustness
ball reduction for �xed system complexity.

Keywords : System complexity, Functional Asym-

ptotic Control, Useful Information and Entropy, Intel-

ligence, Task Space Control.

1-INTRODUCTION

As technical systems required for real life task accom-
plishment are becoming very complex both in their (hard
ware) physical realization and in the related (software)
organization of their command-control structure, an em-
erging question is in the possible existence of a limit in
improving these systems. Supposing everything can be
continuously extended on hardware side, a direct conse-
quence on soft side is the research of a quantitative way
to scale system capability, ie in short to measure their
"intelligence"[1]. One should �rst make sure that the

question has a well de�ned meaning as for human the de-
�nition of intelligence is multiform and depends on the
emphasized "qualities" in the tests. Also, a di�culty
is the domain on which this "intelligence" is applied,
as there exists di�erent kinds of human "intelligence"
ranging from high abstraction to very applied domains.
To avoid these problems the angle of approach will be
modi�ed and, as a system is generally designed for ac-

complishing a prescribed set of tasks, its "intelligence"
compared to another system will be evaluated in terms
of its "e�ciency" to collect the relevant information for
these tasks and to use it in its accomplishment. A com-
panion question is system adaptation to di�erent or even
adverse working conditions, which also amounts to eva-
luate the size of robustness ball corresponding to the
selected tasks. A di�culty however reappears with the
word "selected" as concerns "who" is chosing the tasks,
and this stresses the huge di�erence between dedicated
and self-deciding system structures. In �rst case, "intel-
ligence" measurement is limited to evaluation of simple
faithfullness in design and organization, and to robust-
ness to parameter change, whereas in second one, a new
dimension in system evaluation capability is added, sho-
wing that the problem cannot be handled in an universal
and unique framework.
Another strong restriction is coming from hardware. Ex-
ample of lightweight robot arms[2] shows that for high
enough power there exists a breakpoint where internal
material structure generates excitation of internal de-
formation modes impairing initially researched perfor-
mances. One may speculate that this could be cured by
adequate controller design using vision system, most ad-
apted to detect working environment and to give more
exibility to adapt to task change. As mounting vision
sensor on robot arm is no longer possible with defor-
mations, exterior more rigid �xture should be used. If
environment is then correctly observed, robot arm vi-
brations still remain, forbidding fast enough approach to
target. So including robot end e�ector in visual obser-
vation may appear as a natural solution, but the reality
is that this is not possible as actuator frequency range is
signi�cantly smaller than typical perturbation frequency
range. Active control robusti�cation, a constant trend in
control research over the last decades, becomes ine�cient
beyond some today crossed limit because of the inavoi-
dable spillover from low frequency actuator range to high
frequency internal system range which severely limits the
performances. This internal contradiction (more con-
trolled active power for nominally better performance



leading to secondary internal phenomena downgrading
more this performance) also makes the "intelligence" as-
sessment somewhat questionnable in the present context,
and bounds even more the domainwhere the problem has
a well de�ned meaning. Interpretation is that usefulness
of collected information from sensors is strongly system
depending, including human operator, raising the pro-
blem of its adequate selection for a given system and a
prescribed task.
Escaping from these di�culties is however possible by
observing that this limitation comes from unability of
computation-control system to reconstitute, as it classi-
cally does, actuator command from trajectory observa-
tion for its e�cient control. Two di�erent elements are
implied in this statement. One is the impossibility past
some level of complexity to distinguish between two close
enough trajectories. Even with perfect end e�ector loca-
tion in time and space, decomposition of this observation
on base representation functions becomes unrealizable
when exion and torsion e�ects are mixing up in a very
complicated motion. Control action becomes ine�cient
if one-to-one relation between control and trajectory is
no longer maintained. Even if it were maintained, the

power would have to be delivered, owing to speed and
torque requirements, in a too high frequency range for
present actuators, and this would be technically non rea-
lizable. The second element is also of fundamental nature
in that there is no direct action on deformation modes
from actuators, as they are receiving their power input
from rigid motion mode, leading to a mismatch between
internal natural power cascade and external one imposed
by feedback loop with usually spillover e�ect impairing
again system performance.
As there is inadequation between basic physics under-
standing and new bifurcated situation, classical point of
view should be changed. With trajectory non distin-
guishability the base ingredient for trajectory control, ie
its time dependence in usual state space representation,
should be abandonned. Only trajectories as a whole have
now a meaning, and global enough information is rele-
vant. Reducing the complete non controllable system
dynamics to smaller initially driving rigid ones, time de-
pendent system trajectory is embedded into a selected
class by application of �xed point theorem. The resul-
ting control, explicitely expressed in terms of global sy-
stem quantities, still gives asymptotic stability toward
desired trajectory, and exhibits the interesting property
to be at its level naturally organized toward task orien-
tation. So in progressing toward higher quality perfor-
mances with higher designed and more complex systems,
use of better components is not su�cient and control
structure has also to �t with system properties, implying
mainly application of subsidiarity principle guaranteeing

minimization of internal information ux. This resto-
res adjustment of system hardware structure to possible
task assignment, as it gives again the system the way to
have appropriate internal information exchange compa-
tible with power ux. Resulting internal coherence thus
appears as an extremely important element in the possi-
bility of measuring system "intelligence".
To illustrate the previous concepts developed at system
level, useful information is de�ned in next paragraph and
task oriented control for general Lagrangian system dy-
namical equations is considered. Application to actuated
one-link robot arm with exion and torsion deformations
carrying of-center massive object is discussed with Euler-
Bernouilli approximation. When compared to usual con-
trol based on vision system which in present case cannot
insure trajectory stability, "local" deformation e�ects are
internally taken care of by proposed control. As much
lower information ux circulation is implied, vision sy-
stem is freed for higher level task of driving the approach
to desired target, and for much more modest computing
requirement. In this sense, actual system may appear as
more "intelligent".

2-SYSTEM REPRESENTATION AND
USEFUL INFORMATION

For global system improvement, system parts have them-
selves to be improved in their various components. Basi-
cally three hardware parts always exist in a system, 1)-
a mechanical-physical part, 2)- a sensor-computing part,
and 3)- a power-actuation part, see Fig.1. There also
exists a fourth software control law part, which should
enable the system to correctly perform in targetted range
within its new physical conditions, manifested by the
creation of a (possibly in�nite) number of internal mo-
des, thus increasing its number of degrees of freedom, and
making previous classical controls inadapted. The con-
trol based on the new physical conditions theoretically
exists[2] and still makes system trajectories asymptoti-
cally stable, ie it guarantees again tracking performance
requirements.
Due to larger excited frequency band when mode num-
ber increases, the problem now rests upon 1)- sensing
and treating this new added information, and 2)- gene-
rating the corresponding power inputs as needed for in-
creasing system performances. The �rst point belongs
to sensor-computing part, and is handled within exi-
sting technology covering a large frequency band with
a wide set of technical solutions and corresponding to
broad range of accuracy. For the second point, despite
the large size domain ([10�1m; 101m]) without going into
more speci�c microsystems, there still exists a frequency
gap between classical actuators low frequency domain
([0; 30Hz]), and high frequency domain corresponding



to "smart" material systems ([3:102Hz; 3:103Hz]). Any
new information is directly usable only if it belongs to
the intersection of both sensors and actuators frequency
ranges. A very striking case is vision sensor giving an
over-detailed amount of informations not directly useful
for system control improvement. Consequently to give
the system adapted capability, the problem is not in get-
ting more information as believable from the increase
of system internal degrees of freedom, but on the con-
trary to reduce the extra-information from state space
in frequency range outside actuator's one, and in order
to maintain robust asymptotic stabilization by adapted
control within the uncertainty ball corresponding to the
unpreciseness produced by this reduction. As shown on
Fig.1, it is after collection of rough information from sen-
sors that there should exist a reduction process to �lter
the only relevant information needed for reaching system
targets. This leads to the de�nition of useful information

determined from task orientation rather than lower level
unexploitable trajectory orientation. It is based on ob-
servation that occurrence of events rests upon removal of
a double uncertainty : the usual quantitative one related
to occurence probability and the qualitative one related
to event utility for goal accomplishment. So events may
have same probability but very di�erent utility, and this
explains why some extra informations on top of existing
ones have no impact on reaching the goal. In present
case, it can be veri�ed that, calling uj and pj the utility
and the probability of event Ej, and I(uj ; pj) its associa-
ted information called useful information, the relation

I(u; p1p2) = I(u; p1) + I(u; p2) (1)

holds for event E1[E2 with same utility u. On the other
hand, there is strict proportionality between utility and
corresponding information, so

I(�u; p) = �I(u; p) (2)

With eqns(1,2), there results that useful information is
given by

I(u; p) = �ku:logp (3)

where k is Boltzmann constant. Usual entropy calcu-
lation is thus obtained by presupposing that all events
have same utility for goal accomplishment, which is cer-
tainly true in Thermodynamics where all molecules are
totally interchangeable and thus indistinguishable. As
a consequence it is well known that only the invariant
corresponding to this equivalence class, here the energy

(or the temperature), allows to separate thermodynami-
cal systems. Similarly internal system deformations (e-
xion and torsion) are undistinguishable events as they
are layered on invariant surfaces determined by the va-
lue of bending moment M at link's origin[3]. So using

their observation to improve system dynamical control
is not possible, in the same way as observing individual
molecule motion in a gas does not improve its global
control. As a result, raw sensor information has to be
�ltered so that only useful information for desired goal
is selected. This is precisely the remarkable capability
of living systems to have evolved their internal structure
so that this property is harmoniously embedded at each

level of organisation corresponding to each level of deve-
lopment. In this sense they are remarkably intelligent.
An important element here is that the process has been
subsidiased into the hardware structure in order to free
the upper levels.

3-LAGRANGIAN EQUATIONS FOR
DEFORMABLE SYSTEM

To proceed, advantage will be taken of the general la-
grangian form of deformable system in order to exhi-
bit directly on system equations the features discussed
above concerning information reduction. First there is
a cascade e�ect of exterior forces onto rigid dynamics
feeding itself deformation modes, allowing reduction of
complete initial (in�nite dimensional) system to (�nite
dimensional) "core" rigid system, see Fig.2. Then, and
as long as "natural" boundary conditions are conside-
red for the system, only these intrinsic elements will be
really needed to control system dynamics. By "natu-
ral" are meant boundary conditions constructed with the
remaining terms coming from the various integrations by
part needed to transform system action variation into
Lagrange equations. More speci�cally, with Lagrangian
density

LT =LT
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depending on both discrete (rigid) variables qj(t) and
�eld (deformation) variables uj(x; t) up to their pth space
derivatives, as well as their values on a part (S1) of total
system boundaries (S = S1 � S2) of the space domain
D(x) in the additive form

LT =
1

V (x)
LR

�
qj;

dqj

dt
; t

�
+ LD (5)

of a rigid variable part LR and a deformable one LD, and
where the arguments in the second part are the same as
in eqn(1). The variation of the action

I =

Z tf

t0

Z
D(x)

LTdxdt (6)



inside the space domain D(x) and over the time interval
[t0; tf ] can �nally be splitted into two parts, one under
the integral sign and another one expressed at the boun-
dary (S) of D(x) and at the limits of the time interval (if
there are "transversality conditions"), and resulting from
integrations by part. Writting that system equations are
deduced from the action I by a variational principle im-
plies two elements :

- 1 - the Lagrange equations

@
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are satis�ed inside the space-time domain, with Uj the
control acting onto the system,

- 2 - the remaining boundary terms resulting from inte-
gration by parts are equated to the work done by exterior
force terms onto the system, ie.
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with

rLT=rZ = @LT=@Z(Sj) � d=dt[@LT=@ _Z(Sj)]

DLT=Du� = @LT=@u� � @�@LT=@u��

and transversality conditions if any are satis�ed. Boun-
dary conditions are called "natural" when they are con-
structed from these quantities, and not from di�erent
ones.

For a 1-link system, the lagrangian writes in partitioned
form

L =Lr(qj(t); _qj) +

Z
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with rigid part
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in terms of rigid articular and actuator variables q1 = �,

q2 = �m, deformation part
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in terms of exion and torsion variables u(t; x), (t; x),
and interaction part
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at links boundaries, out of which dynamical equations
and boundary conditions are easily obtained[4]. (lf ; lt)
are coordinates of tip mass m with respect to link's end,
and the various other coe�cients characterize the beam
as usual within Euler-Bernouilli approximation. One can
verify that in link and actuator equations coupled by
compliance e�ect, are both acting the applied input tor-
que � and the bending momentMa = EI(@2u(t; 0)=@x2),
here the only term through which deformations are seen

by system rigid part.

4-TASK ORIENTED CONTROL

In general, the system is assigned to perform an action,
and a control is set to give the system the ability to meet
the corresponding requirements. This is always expres-
sed as satisfaction of Lyapounov theorem with adapted
Lyapounov function, writen in terms of system trajectory
parameters in state space. In other words, control is tra-
jectory oriented, and all sensors are used in this view. In
particular, vision sensor if any will provide information
on link tip motion. As seen above, this is misleading
as long as observed motion belongs to an indistiguisha-
ble class. Control has to be approached in task oriented
sense, and, for reaching the goal, is governed by a choice
of "good" informations depending of their utility de�-
ned above. Starting from partial Hamiltonian density
associated to deformable part
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one will consider system Lyapounov function
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with positive parameter gains KPj ;�V j . Its time deri-
vative along system trajectories is
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Substituting for d2qj=dt
2 from explicited Lagrange equa-

tions(7) and eliminating all other second order time de-
rivatives, one will get an "inertia" term Faj which, on
physical grounds, is equal to forces other than exterior
forces Fj acting onto system of discrete variables qj, and
coming from the (back) e�ect of the �eld variables u(x; t)
onto discrete variables qj(t). As V is positive de�nite for
large enough de�nite positive gains (KPj ;�V j), its deri-
vative can be made de�nite negative by taking control Uj
so that the term between brackets is equal to �(KV _q)j,
where matrixKV is de�nite positive. The resulting form
of the control (supposing there is no exterior force)

Uj = �KPjqj �KV _qj +KD(qj; _qj; � � �) +KFjFaj (16)

and generalizes usual PD-control to full nonlinear case.
In fact, it �ts more generally the expression of dynamical
system control

U = Ucomp + UPDF +�U (17)

when writing the tracking condition for desired trajec-
tory qj(t) = qjd(t) and splitting the various control com-
ponents, with

UPDF = UPD +KF

�
1
0

�
Fa (18)

Moreover, from argument above, the control law in eqn
(16) gives both asymptotic tracking of desired trajectory
for discrete variables and asymptotic stability for �eld
variables as well as their �rst order time derivatives.
From eqn(15), equating the sum between brackets in its
right hand side to �(KV _q)j amounts to take a control-
ler of PDA type[5]. However, it should be observed that
the resulting invariant subset of dV=dt is the same as
when �j = 0. So the same convergence property of the
solutions is expectable for any value of �j. The reason
of introducing the new kinetic term with �j 6= 0 is in
the role of the direct acceleration term, or of the new
resulting term Faj after substitution, which is mainly to
change the relative values of inertia-damping-sti�ness sy-
stem parameters with respect to �eld modes, as already
observed and used for classical force control.

But after substitution from Lagrange equations this term
is an integral of a complicated function of �eld variables
and their space derivatives over the domain D(x). So
there is no advantage to use it in this formwhich requires
local knowledge of �eld variables inside the domain, un-
less Lagrangian structure is such that this integral trans-
forms into explicit well identi�ed and sometimes directly
measurable surface quantities. A very simple case occur
when the Lagrangian LD is such that formally
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Then from Lagrange eqns(7) there results

�

�
@LR

@qj

�
d

dt

@LR

@ _qj

�
= n�:

�
@LT

@u�

� @�
@LT

@u��

+ � � �

�
S2

The "inertia" force term Fa2 is just equal to the boun-
dary term in the �rst bracket of eqn(8) when �j = 0,
and is expressible in terms of this quantity, and of rigid
variables qj and their �rst time derivatives when �j > 0.
This global expression contains all needed information to
control the local action of (in�nite dimensional) defor-
mation e�ects, usually approached by decomposing this
source term onto all projection space and cutting at a
�nite mode number with spillover consequences[6,7].
Much more than local control, more global task oriented
control will also be independent of (too) detailed infor-
mation on link deformations. Typical task is to reach
a preassigned target under speci�c circumstances. Re-
turning to eqn(3), this amounts to minimize the total
entropy production associated to any motion in the class
of acceptable trajectories �xed by the local control de-
�ned in previous paragraph, so its expression depends
in general of all trajectory parameters. To this end, the
utility u will be taken as the gradient of a convenient
positive de�nite quantity such as a Lyapounov function
to de�ne a steepest path and more importantly, to elimi-
nate before data processing irrelevant task information,
saving enormous amount of time and data space. So with
(p) the set of all observed parameters one gets

u =
@V

@p
(20)

and in eqn(3) only will remain terms for which this ex-
pression is above a minimum threshold value correspon-
ding to system sensitivity. So all collected information
from sensors is �ltered in terms of its utility for the pre-
scribed task. This explicit result is independent of the
dedicated or selfdeciding character of the system. With

eqn(14) for instance, the only dependence of V on trajec-
tory parameters is through bending momentM , so when
taking the gradient with all sensor information, there
only remains a term @V=@M , and more detailed trajec-
tory information does not appear. So adapted control
splits �nally into a local one expressed in terms of global
(relative) invariants M , and a nonlocal one depending
on utility of these quantities for reaching �nal target.
Though trajectory oriented the �rst one directly links to
the task oriented second one and respects the very nature
of internal information provided by system structure. In
this respect, system intelligence is easily measured by in-
formation ux from eqn(3) and by associated robustness
ball of the applied control corresponding to a distance
between demand and result.



5-CONCLUSION

Analysis of system structure shows that evaluation of its
intelligence is only meaningful in task space. This re-
quires the satisfaction of internal coherence conditions
manifested by system ability to extract from its sensors
the relevant information for these tasks. The problem
is studied here by de�ning the useful information which
precisely allow to pass from initial geometrical space to
task space irrelevant of the way the system is designed
and organized. Application is made for Lagrangian sy-
stems representing deformable bodies, for which equati-
ons analysis shows that even if at �rst sight system na-
ture is drastically changing with increase of state space
dimension to in�nity, internal system organization also
changes in such a way that its local control still remains
fundamentally �nite dimensional. Observation of new
deformation modes is not only useless, but also dama-
ging in that it leads to control form interfering with na-
tural internal feedback regulating power exchange bet-
ween displacement and deformation. Sensors providing
too detailed information are not adapted as it has to
be �ltered for reconstitution of needed more global one.

More e�cient way is to use local control based on na-
tural system invariants, directly linkable to more global
task oriented control based on useful information (rat-
her than �ltered one) expressed in terms of utility fac-
tors constructed as the gradient of Lyapounov with re-
spect to trajectory parameters. When they aggregate
into trajectory invariants, only their derivatives �nally

appear, justifying again the choice of previous local con-
trol form. Moreover, the association of the two level form
presented here respects natural system organization and
minimizes information transfer between the two levels.
System intelligence is directly measured by task adapta-
tion expressed here as both circulating information ux
and robustness ball corresponding to local controller for
a given distance between demand and result.
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Problem : Minimize distance(demand,result)

=f(system parameters)
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Abstract

This paper tries to stress the need of having a clear understanding of the
concept of intelligence before we can progress in the formulation of a
measure for it. At the end it suggests a view of intelligence asstructural
feedback in model-based control systems.

Keywords: Intelligence, performance, behavior, mental models,
structural feedback.

1 INTRODUCTION

This paper tries to suggest the practical impossibility of finding
a singleanduseful1 measure of general intelligence for all types
of artificial systems performances unless we get some previous
result in the form of a sound theory of intelligence.

As was stated at the workshop website, its goal is to discuss
three challenges pertaining to intelligent system performance:

• how to measure performance;

• how to evaluate intelligence and

• how to put performance and intelligence into correspon-
dence.

We will try to address the three points in order (see sections
4,5 and 6), but first we want to make a first comment. When
talking about intelligence a problem appears, and it is that ”intel-
ligence” is a moving target. Some centuries ago ”a person able
to read” implied ”a person very intelligent”. Now we don’t con-
sider this ability as a symptom of intelligence in a person of our
environment. But if we talk about an animal, forsone example
a dog, ”able to read” is still considered a good manifestation of
intelligence.

So, what is that stuff that appears or disappears as you point at
different entities? Can intelligence be in the eye of the beholder?
We think that the term is used in two quite different ways: a)
As a comparison between two entities that can be both explicit
or one implicit (a normal dog) and b) As an absolute measure of
some core capability.

While we can mostly agree with Alex Meystel conception of
intelligence as acore concept underlying minds, perhaps all we

1From an engineering point of view,i.e. to build/analyze artificial systems.

are falling in the easy way of thinking mentioned by Bateson
[3, page 82] ofusing words that appear more concrete than they
are2.

Before entering into main matter, let’s start with a brief dis-
cussion about the adequacy of ascribing mental properties like
intelligenceto machines.

2 WHAT IS I NTELLIGENCE ?

It is common to address intelligence as a property inherent to
something we call mind. The use of both terms, intelligence
and mind, is not that clear. In fact, each one of us appears to
have his own notion of intelligence speaking in terms of everyday
life. Although deep thought and study about the topic can clarify
partial notions of intelligence, there is still no global perspective.

We want the following question to emerge:does intelligence
really exist? After what has been said and having in mind our
constant references to the concept, it really seems ridiculous to
question it. But we would like to point out the fact thatintel-
ligencecould well be one word hiding what can be considered
a too fuzzy concept3. By this we mean that the word does not
have a fixed reference to something that can be pointed out, such
as a dog or a table (it lacks a true referent). It is in some sense a
concept similar to a notion of a mathematical space, i.e.: every-
thing which matches certain restrictions is part ofintelligence.
The space of things that think.

The concept has lost in this way the apparent rigidity; the
question, although, may be, in a more precise way:what are
the restrictions a feature has to match to form part of intelli-
gence?And at this point the answers diverge because the num-
ber of possibilities is close to infinity.4 It would be an error to
put the question like this. Perhaps it would be better to approach
the topic in another way:what is behind everything we seem to
consider intelligent?Searching this instead of a particular set
of characteristics would eventually lead to a rule with which the
judgement of the existance of intelligence would be possible.

In any case, once it is clear if something is intelligent or not,
it would be tempting to determinehow intelligent, that is,how
much intelligence it has. This question is too particular to be

2Bateson says about these words that they are too short and this shortness
conveys an erroneous ascription of concreteness.

3A linguistic variablein its most pure sense:i.e. created by language.
4This is to be thought in a sense oftoo broad for understanding.



answered. The individual intelligent characteristics which con-
stitute theintelligent set of featuresone self possesses are each
specialised, and in this way not comparable.5 In this way, given a
set of intelligent characteristics, the only judgement that has any
sense needs to be put in terms of targets and adequation to those
targets: performance.

Returning to the rule which would enable discrimination be-
tween intelligent and not intelligent, it should not be focused on
common aspects of features we usually consider intelligent, but
on requirements which make them possible. For example paral-
lel calculation, memory, etc. Having this in mind, the decision to
consider something intelligent or not comes from the process of
analysis of the underlying capability, i.e.: learning what can be
expected from a being with such capability (eg. memory) when
in a particular environment and with a more or less elaborate set
of targets. Apparently we end again with a certain notion of per-
formance.

The last point we would like to focus on comes from looking
at the problem from a different angle. What ifintelligencewere
a concept only suitable -clear enough- for human minds? That
is, we callsomethingintelligence, but it does not seem to have a
bounded notion behind. So, supposing it is a collection of fea-
tures we have grouped together, and not considering the fact that
we could have done so in other ways, what makes us think that
intelligenceis something (a table, a bus)? In other words, what
makes us think an alien would have a notion parallel to ourin-
telligenceas he would if he came to Earth and saw a table or a
boat?

3 HUMAN (SPECIES) CHAUVINISM

Let’s see what philosophers think about mental properties of ma-
chines. An example is what Crockett [5, p.193] says about the
use of human–like phrases to refer to machine thinking:

Our anthropomorphizing proclivity is to reify those ab-
stractions and suppose that the computer program pos-
sesses something approximating the range of proper-
ties that we associate with similar abstractions in hu-
man minds.

Even more amazing is his continuation:

This is harmless so long as we remember that such
characterizations can lead to considerable philosophic
misunderstanding.

What amazes me more in this text is that people like Crocket
strongly believe thatwe knowwhat are the ”abstractions in hu-
man minds” but onlysupposewhat the computer program pos-
sess. In our experience we know -most of the time- what are the
abstractions -the representations- in mechanical minds but only
suppose what are those abstractions in biological minds.

5It would be like comparing -adding, subtracting, etc.- apples and dogs: im-
possible.

It is these days is when we are starting to get some direct in-
sight into the inner working of human minds by means of PET
(positron emission tomography) or fMR (functional magnetic
ressonance [4]). As an example, fMR has confirmed what many
had long suspected –that men and women think differently. Yale
Medical School investigators did compare the brain operation of
men and women while reading, discovering different activation
patterns in their brains while performing the reading task.

Another example of the difficulties in matching human mental
concepts with machine mental concepts can be found in [2]:

Indeed, if mechanical devices can distinguish wave-
lengths of light without having sensations, then why
do I experience any sensation at all?.

Most people tend to think that the humansensationis some-
thing more than the mere recognition of a input signal. Recog-
nition at the simple level of signal capture, representation and
triggering of activity. ”Sensation” is nothing more than the trig-
gering of activity due to an input signal. The immediate imple-
mentation in a computer is as an interrupt handler. The only
difference is the high level of concurrence in biological comput-
ers that let them be truly concurrent in responses to sensations.
There are also human sensations that are so strong that they dis-
able further sensations. This is, exactly, the type of behavior
found when a computer interrupt handler disables further inter-
ruptions.

Computers provide minds for physical systems, and it is time
to clarify the true meaning ofmental concepts.

4 PERFORMANCE AND MIPS IN BRAINS

A visible feature of biological intelligence isperformanceas Jim
Albus pointed in his definition of intelligence. This is related
to how we use the term for humans (remember the title of the
book by Sternberg and Wagner,Practical Intelligence: Nature
and Origins of Competence in the Everyday World).

In our search for metrics for intelligence, we are exactly in the
same situation as computer consumers and manufacturers were
some decades ago in relation with client-requested performance
measures. As they both discovered, the old-basic measure of per-
formance (MIPS: Million Instruction per Second) was useless to
compare different architectures (e.g.CISC vs. RISC) or applica-
tions (e.g.data-bases vs. finite-element analysis). The onlyuse-
ful possibility they found was the evaluation of the performance
in specific tasks, and hence this was the origin of benchmark-
ing. Unfortunately benchmarks are not single measures, and at-
tempts to build weighted benchmarks only changed the focus of
the benchmark but not the final usability of them (they are always
measures of niches of functionality).

Task-independent measures, like MIPS orbits/secondor en-
tropy, are too raw to be useful for most engineering purposes
because they are so far from the desired performance specifica-



tion that we lack a theory that can map one into another6. For
example, suppose that we want a distillation column controller
intelligent enough to minimize recirculation (a desired perfor-
mance). Who can decide, based on a MIPS-like measure, if a
fuzzy controller A can fulfill the task, or if model-based predic-
tive controller B is better that A?.

This theory that maps aMIPS-like measureto performance
specified in useful termsis what we are seeking in our research
on intelligent systems, because it is –in fact–The True Theory of
Intelligence. The theory will not only let us evaluate alternative
designs, it will be a true explanatory discourse that will reduce
intelligence to simpler, well grounded, terms.

To follow Bateson suggestion of marking concepts that are
not concrete enough and require further thinking, we can use
the termi-stuff to refer to the substance measured by True In-
telligence Metrics. George Saridis probably will equate i-stuff
to negentropy and Jim Albus to performance. We will make a
suggestion at the end of the paper.

5 INTELLIGENCE AND BODILY CAPABILITIES

In relation with what can we measure, we agree with Chris Lan-
dauer in the fact that ”Success is not by itself the right crite-
rion” because we have to split success into two contributions:
mind and body (and bodily intelligence is not what we are talk-
ing about). As an example consider two implementations of a
future Mars rover whose main mission is going from point A to
point B, one kilometer away, taking a sample of the ground each
50 meters:

Implementation H: 200 Ton. Caterpillar structure based on a
combination of bulldozer, power shovel and truck. Control
of sample taking based on mechanical coupling of power
shovel to caterpillar (50 meters = sample). It lacks direc-
tional control because it is not necessary (it will advance
straightbulldozeringany obstacle.)

Implementation T: 50 Kilograms. 10 Watt solar power panel.
Microrobotic arm.

Who will attain success? If both are successful, who is more
intelligent? Is performance a manifestation of intelligence? The
two first questions are rhetoric. The answer for the last one is
”not always”.

There are some attempts to extend fundamental physical the-
ory to include information at the same level as mass and energy.
In some sense we can analyze biological behavior as an exchange
of mass (feeding in / excreting out), energy (chemical in / ther-
mal & mechanical out) or information (sensing in / speech out).
We can attach these interchanges to human subsystems, and in-
formation will become associated to the mental system. This
division is, however, not very strict, because information is sup-
ported by means of mass or energy, and some energy inputs are
managed as mass inputs (specially in animals).

6This is, in fact, the third point mentioned in the introduction.

6 CONCLUSIONS

Our analysis of the Mars rover story is that if the T implementa-
tion is successful everybody will agree that it is more intelligent
than the H implementation. Even if both attain success. TO
achieve this result the T implementation needs some mental con-
tent and some algorithms to exploit this mental content.

As we did say before we will propose a different interpretation
of i-stuff: it is focused onmental models. Following this idea,
an intelligent being is a being that has models of his world in
his mind and achieves intelligent behavior using its models for
action. Intelligence is, from this perspective, a two sided con-
cept: model-based mental content (static view of intelligence)
and model-based generation of behavior (dynamic view of intel-
ligence).

Can the i-stuff be that collection models? Not so. Because all
we know some knowledgeable people that are plain stupid.

What we consider the true core of intelligence is -plainly-
feedback. When feedback for action is done trough good mod-
els of the world it achieves incredible performance levels. When
feedback is used to tune parameter models it make systems adapt
to changing circumstances in the world. When feedback is used
to modify models of the world this is a pure learning process.
When feedback is used to structurally modify the algorithms ex-
ploiting the models we are talking of creativity7. Structural feed-
backis perhaps the highest manifestation of intelligence; when a
system is able to create new control policies that will enhance its
effectiveness.

Perhaps this proposal only muddles more the discussion be-
causemodelis even shorter thanintelligenceand it seems even
more concrete; but we think that it is relatively easier to devise
metrics for model quality.

But even if we can measure quality of models and model evo-
lution algorithms, we are still halfway to the metric of intelligent
behavior, because we still lack a quality measure of the use of
the model to generate the behavior (i.e. a metric of the archi-
tecture). Performance-based metrics, as suggested by Jim Albus
definition of intelligence, will fit this niche but still they will be
domain-dependent.

We strongly believe that, in the future, all these theories of
intelligence will consolidate in a Great Unification Theory (and
this structural feedbackseems to us a good promising starting
point), that will let engineers build artificial intelligences with
the plasticity enough to adapt or tune to specific needs. Being
this the case, in our opinion the core foundation of it will be
raw information processing with capability to autoorganize in the
form of models of the world and model exploitators generating
behavior. The theory of intelligence can be viewed as a theory of
action, a theory of representation or both.

7Adaptation, learning, evolution, creativity, are facets -i.e. perceptions from
an external entity- of a system changing in response to interactions with the
world.
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Preface

Mimetic Synthesis is a new terminology that more accurately describes a programming
methodology used to mimic human behavior in a computer such as a PC.  Previous work
in this field has been incorrectly categorized under various aspects of Artificial Intelligence
(AI).

On Intelligence

Testing and quantifying intelligence is difficult at best, even if it’s human intelligence. To
Quote Tariq Samad from “Notes on Measuring Intelligence in Constructed Systems”, “The
difficulty of compressing the multifaceted nature of intelligence into one scalar quotient has
led to proposals to consider intelligence not as one unitary quantity but as a collection of
properties that are mutually incommensurable.” Furthermore, one of the many lessons from
a century of work on human intelligence is that we still don’t really know what intelligence is.

Mimetic Entities

The early mimetic systems developed by Robby Garner are hierarchical in structure. This
allows the “Mimetic Entity” to synthesize the combined behavior of subsystems into a
unified presentation. This structure certainly suggests that one way to measure the
intelligence of such machines is to review the hierarchical concepts it uses and the
processes that contribute to the goals of the whole system.

One of the first hierarchical mimetic synthesizers was called Albert. This program
combined the behavior of several methods that shared the same goal of simulating human
conversation. Each method represents a separate strategy used to form the response to a
human stimulus phrase.

The first method is based on a simple model of behavior, where conversation is
represented by strings of (stimulus à response) nodes. The goal of this particular method
is to find a match for the user’s input stimulus in a database, and form the reply with the
corresponding “response” from the database. If the first method is not successful, the
program follows down the hierarchy from most specific method, to least specific.



The second method looks in a table of Boolean rules and attempts to fit a rule to the user’s
input.  If a rule is satisfied, its corresponding response is used. The goal of this method is
to satisfy a Boolean expression based on the user’s input phrase.

And so on, the third method attempts to find a generalization about the user’s input phrase
using a “framed” template to determine a match. The goal of this method is to find a
generalization that applies to the user’s input phrase.

Then finally, if none of the other methods has succeeded, a final method selects a “new
topic” from a pool of unused topics. The goal of this method is merely to make a response.
(To change the subject)

So, one can see that the overall goal of simulating conversation is attempted by using a
variety of strategies, all contributing to the main goal. The hierarchical structure ensures
that the best possible response may be used.

It must be obvious that the performance of the mimetic entity with regards to simulating a
conversation depends entirely on the performance of all of these various methods or
subsystems. Yet it depends first and foremost on the person talking to it.

The Loebner Show

But what can we say about Albert’s intelligence?  None of the methods used are intelligent,
so their “unified” representation is not intelligent.  Albert may be perceived as intelligent by
a human being as is evidenced by the 1998 Loebner Prize Contest, but the program is not
in fact intelligent.  http://www.cs.flinders.edu.au/research/AI/LoebnerPrize/

Then if we can know what intelligence is not, does that tell us what intelligence is?

No, because none of the competitors in the Loebner contest have exhibited
intelligence. At best they exhibit a behavior which seems familiar to the
user (judge), and some of them have used very cleaver means to achieve this. But the
ingenuity of the programmer does not make the program intelligent.

One also has to agree that an imitation is not the same as the thing it imitates.
Furthermore, some may object to things that are artificial for no other reason except that
they are artificial. Yet if a thing works, does it matter why it works or what it is made from?
Some people would say that if a thing is not really "intelligent" then it is an impostor, and
therefore “dangerous.” But if a tool performs a job according to specification, why is that
less intelligent than if a human being had performed the same job?

By doing a job, there is at least one goal implied, and that is the completion of the
job. If a computer completes the same job as a human in a smaller amount of
time, we would say the computer has better performance, not better intelligence?



Human Intelligence

In dealing with other people, we assess their intelligence on a casual basis by observing
their behavior, the things they say, their solutions to problems, or other factors, many of
which are purely subjective.

Measuring machine intelligence would be much easier if people could agree on
how to measure human intelligence!

So I think there is always a disparity between "perceived intelligence" and "actual
intelligence", especially in evaluation of human intelligence. Intelligence is not solely
performance, but is it possible to measure intelligence without also measuring a
performance?

Sometimes a performance involves a great deal of preparation and training. If a man
repeats the same sequence of behavior, practices it over and over until it can be done
repetitively without thinking, is that intelligence?

Summary

The key to true intelligence is the ability of an entity to enlist strategy to accomplish its
mission, not preconceived knowledge, or rote behavior.

Military confrontation is a good example according to R. Neil Bishop. “Time and time
again, superior firepower and resources have been overcome by an inferior force with an
intuitive strategy, which gave them a monumental advantage.”

Also strategy is the key element needed to develop successful research techniques which,
in pure science, may not even exist before the scientist begins. The strategy of obtaining
and integrating knowledge is the key to reaching beyond what is presently known or
understood.

The use of strategy applies not only to the highest level of abstraction, but is also evident in
the “rank and file” subsystems that perform even the most basic tasks required by an entity
as a whole. The strategy or algorithm employed by a programmer may be akin to “instinct”
in some systems. Is instinctive behavior intelligent?
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