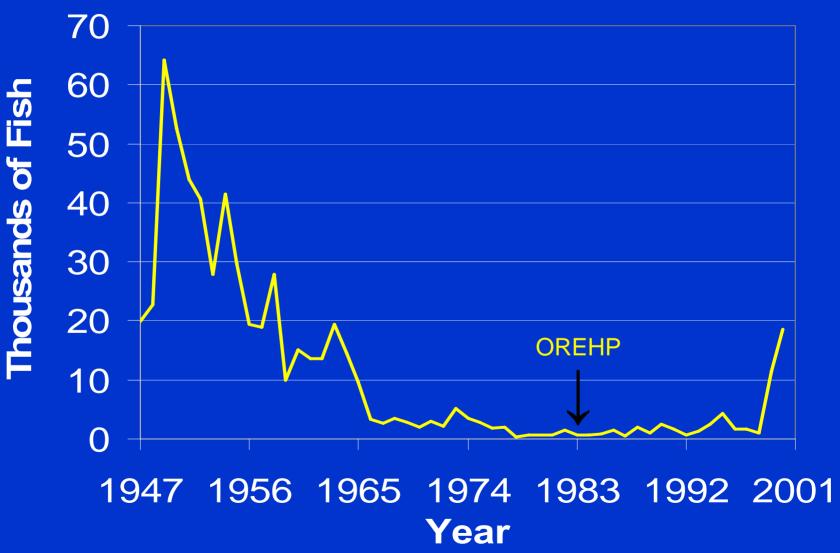
Disease Surveillance in Wild and Cultured Stocks of White Seabass (Atractoscion nobilis)

Mark S. Okihiro
California Department of Fish and Game
4065 Oceanside Blvd, suite G


Oceanside, California, 92056

White Seabass (Atractoscion nobilis)

- Family Sciaenidae
- one of the largest croaker species in the Pacific
 - 40 kg upper size limit
- Primary Range
 - Point Conception(central California)
 - Baja Mexico

White Seabass Landings (Sportfishing - California waters)

Leon Raymond Hubbard Jr. Marine Fish Hatchery

- Constructed 1995
- Owner/operator: HSWRI
- Production:
 - -2001:100,000
 - -2002: 124,000
 - -2003:142,000
 - -2004:270,000
 - -2005: 150,000 ?

2005 Disease Outbreaks

- King Harbor P. salmonis, Flexibacter
- SWYC P. salmonis (?), gill flukes
- Grape St. (SDB) Cryptobia, Ichthyobodo
- Quivira Basin (MB) disseminated Vibrio
- Huntington Harbor diss. Vibrio, gill flukes
- Catalina Island gill flukes
- Dana Point gill flukes
- Santa Barbara Flexibacter
- Carlsbad Hatchery disseminated Vibrio, Flexibacter, and Herpesvirus

Health Checks for Cultured WSB

- Two Routine Inspections:
 - once at the hatchery(prior to transport to net pens)
 - second inspection at the net pen (prior to release)
- Any time there is unexplained mortality

Diagnostic Approach

- History
- Clinical Signs
- Necropsy
- Sample selection
- Sample analyses

Selecting Fish for Necropsy

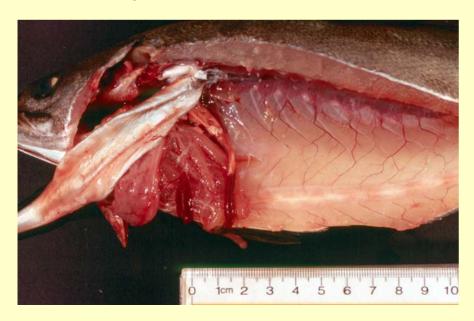
- Live moribund fish are the best fish to sample
- If moribund fish are not obvious, then catch fish from areas where sick fish congregate
- Number of fish to necropsy is variable

Necropsy

- Length / weight measurements
 TL, SL, BW (+/-)
- Blood sample (+/-)
- Gross external exam
- Skin and gill scraping
- Gross internal exam
- Sampling internal organs

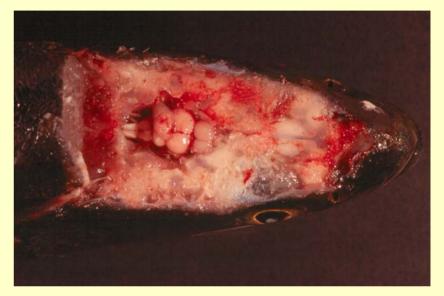
Gross External Exam

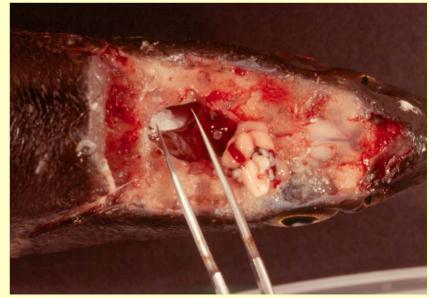
- Skin and fins
- Eyes
- Gills
- Oral cavity



Gross Internal Exam

- Heart
- Liver and gall bladder
- Stomach, PC, intestine
- Spleen, pancreas (endocrine)
- Swim bladder, gonad
- Kidney head and trunk

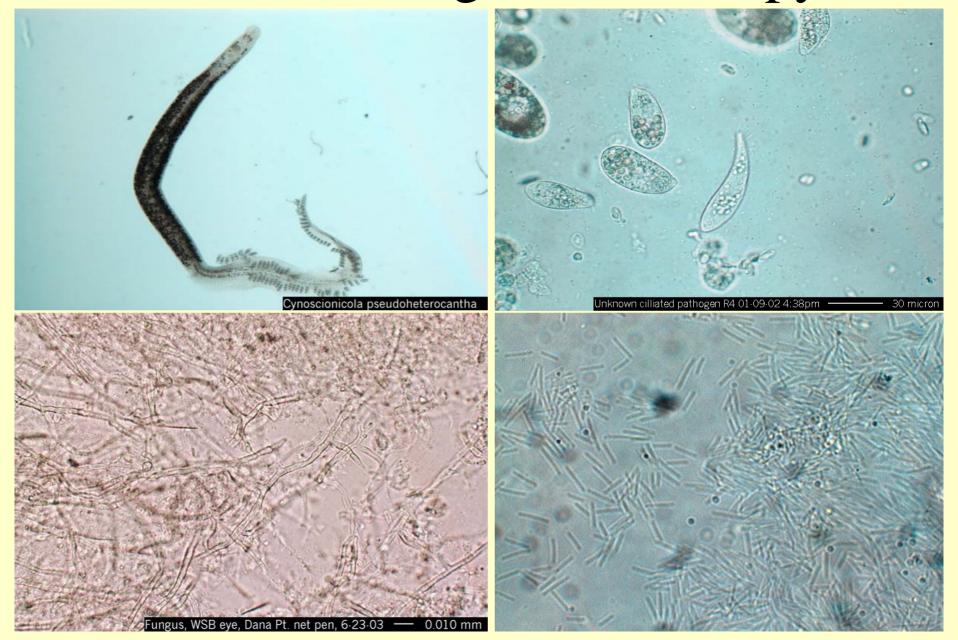




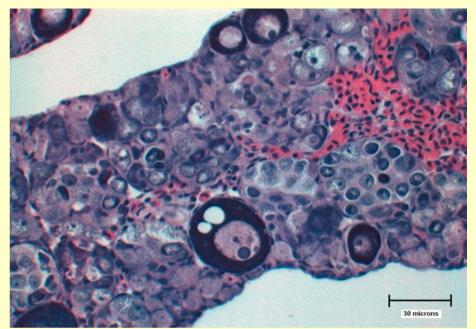
Brain and Otolith Dissection

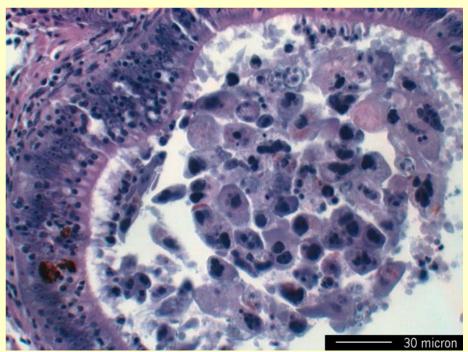
Diagnostic Techniques and Assays

- Necropsy assessment of gross lesions
- Cytology dark field light microscopy
- Histology paraffin processing, HE slides
- Microbiology virology, bacteriology
- Electron microscopy TEM, direct EM
- Polymerase Chain Reaction (PCR assays)
- Enzyme-linked immunosorbent assay (ELISA)

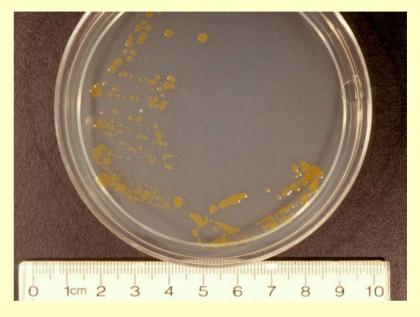

Cytology

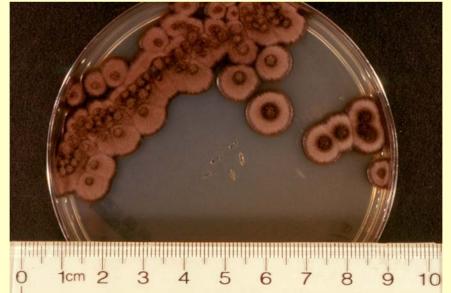
- Wet mount cytology
 - parasite ID and some microbial pathogens
- Routine gill and skin scrapings
- Occasional squash preps of kidney and nodular lesions
- Dark field microscopy



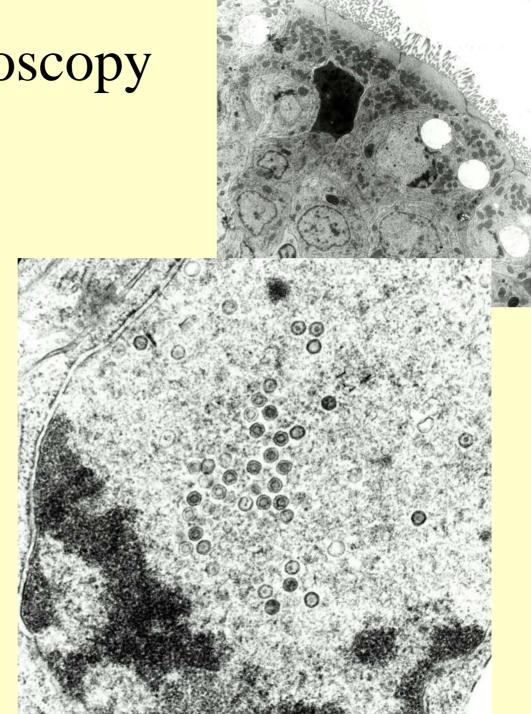

Dark Field Light Microscopy

Histology


- Used to characterize lesions and to identify pathogens
- Good application for larval fish
- 10% formalin fixation
- Routine paraffin processing; HE stain
- Turn around time as fast as 24 hrs



Microbiology



Electron Microscopy

- Transmission EM and Direct EM
- Application viruses, sporozoans,
 subcellular lesions
- Slow turn-around time (wks-mos)
- Relatively expensive
- CAHFS lab (Davis, CA)

Polymerase Chain Reaction (PCR)

- PCR assays developed for VNNV, VHSV, and *P. salmonis* (Dr. Ron Hedrick's lab at UC Davis)
- Molecular assay based on the detection of pathogen genetic material by specific primers, followed by gene amplification
- Advantages: highly sensitive and accurate
- Disadvantages:
 - cannot determine level of infection
 - cannot determine degree of host injury
 - slow turn around time

Enzyme-Linked Immunosorbant Assay

- ELISAs assess serum antibody levels to specific WSB pathogens
- ELISAs exist for VNNV, VHSV, and P. salmonis
- ELISAs developed/run by Dr. Hedrick's lab at UC Davis
- Advantage: antibodies remain in circulation for long periods of time, chances of detecting pathogen exposure are much higher compared to finding infected fish

Disadvantages:

- assays can be difficult to setup (false positives)
- no definitive endpoints (OD given as a % of positive-controls)
- the pathogen has to be cultured to provide enough antigen to start the assay

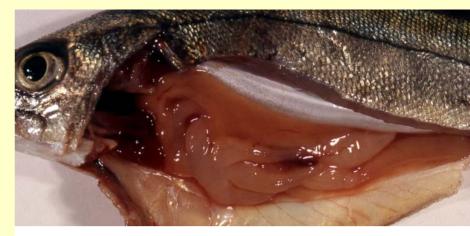

Diseases of Cultured WSB

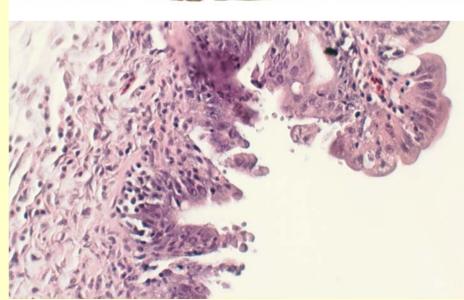
- Viral Diseases
 - VNNV, Herpesvirus, VHSV (?)
- Rickettsial Diseases
 - Piscirickettsia salmonis, Epitheliocystis
- Bacterial Diseases
 - Flexibacter, Vibrio
- Fungal Diseases
- Parasitic Diseases
 - Flukes (3 species), protozoa (8+ species)

Viral Nervous Necrosis (VNN)

- Lethal nodaviral pathogen
- Primarily affects larval WSB 20-40 dph
- Frequent epizootics prior to installation of ozone treatment system in spring 2003
- Clinical paralyzed fish floating on side at surface
- Target organs retina, brain, spinal cord
- Dx: histo, culture, TEM, PCR
- No treatment available

Piscirickettsia salmonis


- Lethal rickettsial pathogen
- Rare disease of juvenile WSB (two epizootics: 1998, 2005)
- Clinical moderate to high mortality; moribund fish with focal white skin lesions
- Target organs: liver, gill, heart, intestine, skin
- Dx: gross findings, histo, culture, PCR, TEM
- **Treatment?** possibly oxytetracycline in feed



Herpesvirus Gastroenteritis

- Lethal disease of juvenile WSB
- First confirmed epizootic fall 2002
- Currently (Nov. 2005) ongoing epizootic at the Carlsbad Hatchery
- Presumptive etiology: herpesvirus
- Clinical high mortality, spiraling prior to death
- Dx: gross lesions, histo, TEM
- Necropsy: moderate to severe dilation of GI tract
- No treatment available

How does OREHP manage outbreaks of lethal, highly contagious disease in cultured WSB?

- Losses are never 100% even with the most virulent pathogens of WSB
- Should recovered healthy fish be released if they have been exposed to VNNV, VHS, herpes, or *P. salmonis* ?
- Management decisions with an "enhancement" program need to take into consideration disease risk to wild fish stocks

Disease Surveillance in Wild WSB

- Goal: survey wild WSB to determine which diseases are naturally-occurring
- Rationale: if a disease is naturallyoccurring, then the risk from infected or exposed cultured WSB is small

• Plan:

- sample a large number of wild WSB
- assess pathogen exposure and infection levels with a variety of diagnostic assays
- use survey data to make informed decisions regarding release of cultured WSB

Collection of Wild Juvenile and Subadult WSB

Collection of Wild Adult WSB

Wild WSB Samples Collected from 2002-2005

- 272 adult, subadult, and juvenile WSB
- 195 ELISA serum samples
- 200+ brain and eye samples
 - VNNV isolation / PCR
- 160+ spleen and kidney samples
 - VHSV isolation / PCR
- 80+ liver samples
 - − *P. salmonis* isolation / PCR
- 100+ intestinal content samples
 - direct EM for herpesvirus

Preliminary ELISA Results from Wild WSB Disease Survey

- 18% (14/78) wild juvenile WSB were ELISA positive for VNNV exposure
- 53% (9/17) wild adult WSB were ELISA positive for VNNV exposure
- 0% (0/94) wild juvenile and adult WSB were ELISA positive for *P. salmonis* exposure
- ELISA results for VHSV exposure pending
- No ELISA assay available for WSB herpesvirus (currently unable to grow herpesvirus in culture)

Preliminary Pathogen Isolation and PCR Results from Wild WSB Disease Survey

- Virus Isolation samples all negative
- Rickettsial Isolation samples all negative
- PCR samples results pending
- Detection of Herpesvirus via Direct EM
 - 50 intestinal content samples analyzed
 - One suspicious, but not definitively positive, sample

Conclusions from Wild Fish Disease Survey

- VNNV is a naturally-occurring disease among wild WSB
- P. salmonis is an exotic disease
- Wild fish disease status for VHSV and herpesvirus is unknown

Impact of Wild Fish Disease Survey on Hatchery Operations

- Since VNNV exposure is widespread among wild WSB, exposed but healthy cultured WSB can be released
- *P. salmonis* is an exotic disease, so infected cultured stocks must be destroyed
- Herpesvirus and VHSV status of wild fish are unknown; both must be assumed to be exotic diseases and infected hatchery fish cannot be released

