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A Computational and Engineering View of Biology

Because 21st century biology is very concerned with function, it is helpful to have abstractions
available that characterize the functionality of interest. By doing so, insights derived from study of those
abstractions in other contexts become available for biological use. In addition, because biological sys-
tems are the products of eons of evolutionary history and decision making, viewing them through the
lens of engineering yields insights that are not otherwise available from an analysis that might be based
on first principles.

6.1  BIOLOGICAL INFORMATION PROCESSING1

As noted in Chapter 2, biological systems are extraordinarily complex—and partly as a conse-
quence, poorly understood. Yet it is clear that biological systems demonstrate and exemplify function-
ality at different levels.

Artifacts such as computer hardware and software also exhibit functionality and multiple levels. To
facilitate the understanding and construction of such artifacts, computer science has developed infor-
mation abstractions that seek to capture and encapsulate certain kinds of functional behavior in ma-
nipulating and managing information; such abstractions are a primary focus of study of the computer
scientist (Box 6.1).

One key connection to 21st century biology is that many biological problems now require the
simultaneous consideration of phenomena at different scales. For example, biologists can think of
genetics at the level of individual nucleotides, at the level of chromosomes, at the level of genomes, and
at the level of populations. From nucleotide to population is a span of many orders of magnitude, and
it is difficult to conceptualize such a range without moving seamlessly between different levels of
abstraction.

Section 6.1 describes several such abstractions and their specific biological applications already in
use, but the description is not intended to be exhaustive, and there are likely many more such abstrac-
tions capable of providing biological insight, including new or as yet undiscovered techniques or
concepts.  As such, this area represents opportunities for both biologists and computer scientists.

1Much of the discussion in Section 6.1 about cells as information-processing devices is adapted from R. Aviv and E. Shapiro,
“Cellular Abstractions: Cells as Computation,” Nature 419:343, 2002.
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Consider that biological processes, such as catalysis, protein synthesis, and other metabolic sys-
tems, are consumers, processors, or creators of information. As Loewenstein puts it, in biological sys-
tems, “in addition to flows of matter and energy, there is also flow of information. Biological systems
are information-processing systems and this must be an essential part of any theory we may con-
struct.”2  Sydney Brenner goes farther, arguing that “. . . this information flow, not energy per se, is the
prime mover of life—that molecular information flowing in circles brings forth the organization we call
‘organism’ and maintains it against the ever-present disorganizing pressures in the physics universe.
So viewed, the information circle becomes the unit of life.”3

The current state of intellectual affairs with respect to biological information and complexity may
have some historical analogy with the concept of energy at the beginning of the 19th century. Although
the concept was intuitively obvious, it was not formally defined or measured at that time. Carnot’s
analysis of the performance of steam engines formalized the meaning of energy, creating the basis for

Box 6.1
On the Abstractions of the Computer Scientist and Engineer

Abstraction is a generic technique that allows the scientist or engineer to focus only on certain features of a
system while hiding others. Scientists in all disciplines typically use abstractions as a way to simplify calcula-
tions for purposes of analysis, but computer scientists also use abstractions for purposes of design: to build
working computer systems. Because building systems is the central focus of much work in computer science,
the use of abstractions to cope with complexity over a wide range of scale, size, and levels of detail is central
to a computer scientist’s way of thinking.

The focus of the computer scientist in creating an abstraction is to hide the complexity of operation “underneath
the abstraction” while offering a simple and useful set of services “on top of it.” Using such abstractions is the
principal technique for organizing and constructing very sophisticated computer systems, and they enable com-
puter scientists to deal with large differences of scale. For example, one particularly useful abstraction uses
hardware, system software, and application software as successive layers on which useful computer systems can
be built. This illustrates one very important use of abstraction in computer systems: each layer provides the
capability to specify that a certain task be carried out without specifying how it should be carried out. In general,
computing artifacts embody many different abstractions that capture many different levels of detail.

A good abstraction is one that captures the important features of an artifact and allows the user to ignore the
irrelevant ones. (The features decided to be important collectively constitute the interface of the artifact to the
outside world.) By hiding details, an abstraction can make working with an artifact easier and less subject to
error. But hiding details is not cost-free—in a particular programming problem, access to a hidden detail might
in fact be quite helpful to the person who will use that abstraction. Thus, deciding how to construct an abstrac-
tion (i.e., deciding what is important or irrelevant) is one of the most challenging intellectual issues in computer
science. A second challenging issue is how to manage all of the details that are hidden. The fact that they are
hidden beneath the interface does not mean that they are irrelevant, only that the computer scientist must design
and implement approaches to handle these details “automatically” (i.e., without external specification).

SOURCE: Adapted from Computer Science and Telecommunications Board, National Research Council, Computing the Future: A Broader
Agenda for Computer Science and Engineering, National Academy Press, Washington, D.C., 1991.

2W. Loewenstein, The Touchstone of Life: Molecular Information, Cell Communication, and the Foundations of Life, Oxford University
Press, New York, 1998, p. xiv.

3S. Brenner, “Theoretical Biology in the Third Millennium,” Philosophical Transactions of the Royal Society B 354(1392):1963-1965,
1999.
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the science of thermodynamics. Only after energy had been identified and studied in the artificial realm
of steam engines was it recognized as a prime aspect of natural systems as well.

Similarly, the existing state of the theory of biological information (or, indeed, information of any
sort) is based on the work of Claude Shannon, who studied the processing of information in human
technological channels of communication, and the field of computational complexity, which was cre-
ated to analyze the performance characteristics of algorithms running on human-built computers. How-
ever, just as thermodynamics successfully widened its scope to the natural world from steam engines,
information and computation theory may become a powerful lens for describing, measuring, and
understanding processes in the natural world.

Biological information is likely to have a close relationship to information in the Shannon sense of
the term, if only because biological entities depend on information to coordinate their internal activity.
Cells coordinate their internal activity because they have harnessed intracellular Shannon information
channels. Multicellular organisms coordinate their internal activity because they have harnessed inter-
cellular Shannon information channels. These channels are the conduits through which genes transfer
their information content to proteins, proteins serve as signaling agents, and nervous systems work.
Also, Shannon’s insight about the nature of information transmission allows us to understand how
signals can reliably be sent through a noisy unpredictable environment (whether cell telephone signals,
Internet packets, or hormone signaling proteins) and received accurately at the other end.

On the other hand, Shannon information applies in the strict sense only when it is possible to
identify a sender and receiver connected by a channel. There are some places in which this applies, such
as the projection of the retina to the brain. Yet in the context of information feedback and loops rather
than channels, it is not clear that Shannon information continues to have a well-defined meaning.

There have been a number of attempts to generalize Shannon information to problems at the
cellular and subcellular levels, of which the conceptualization by Manfred Eigen of hypercycles, quasi-
species, and sequence space is one of the most notable.4  But whether these concepts are the right ones
is not as important as the recognition that new concepts are needed.

A more specific connection between biology and computation can be seen in the biological use of
information to enhance the survival and reproductive functions of an organism. That is, biological
organisms use information about the environment to stimulate or drive responses that boost the likeli-
hood of survival and successful reproduction. This process is effectively a computation that transforms
the inputs (which describe environmental conditions) into the appropriate outputs (the organism’s
behavior).5  For example, Hartwell et al. note that signals from the environment entrain circadian bio-
logical clocks to produce responses to predicted fluctuations in light intensity and temperature.6

Embedded within cells are complex signaling mechanisms that transfer information from one part
of a cell to another and intercellular mechanisms that transfer information from one part of a multicel-
lular organism to another. Indeed, signal transduction pathways—and the proteins associated with
them—appear to serve the functions of information processing and transfer,7  rather than those of more
“traditional” biology (e.g., chemical transformation of metabolic intermediates or the building of cellu-
lar structures).

4M. Eigen, “The Origin of Biological Information,” presented at the Seventh International Conference on Intelligent Systems
for Molecular Biology, August 6-10, 1999; Heidelberg, Germany, available at http://bioinf.mpi-sb.mpg.de/conferences/ismb99/
WWW/abstracts/abs-eigen.html.

5Indeed, it has been asserted that the history of life can be described as the evolution of systems that manipulate one set of
symbols representing inputs into another set of symbols that represent outputs. J.J. Hopfield, “Physics, Computation, and Why
Biology Looks So Different,” Journal of Theoretical Biology 171:53-60, 1994.

6L.H. Hartwell, J.J. Hopfield, S. Leibler, and A.W. Murray, “From Molecular to Modular Cell Biology,” Nature 402(6761
Suppl):C47-C52, 1999.

7D. Bray, “Protein Molecules as Computational Elements in Living Cells,” Nature 376(6538):307-312, 1995. The examples in the
next paragraph are also Bray’s.
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For example, a simple enzyme protein could be viewed as a computational element that takes an
input—the concentration of its “substrate,” the molecule with which it interacts—and produces an
output: a concentration of the catalyzed reaction product. An enzyme that becomes active only when it
binds to two separate regulator molecules will function something like a Boolean AND gate, and so on.
Circuits formed from these elements can be as simple as a switch or an oscillator, or as complex as to
drive a bacterium’s chemotaxis response. Indeed, the cell even possesses a kind of short-term, “random-
access” memory, in the sense that events in its environment have profoundly shaped the concentration
and activity of many thousands of molecules in the cell. In short, these protein-based circuits constitute
a kind of nervous system for the cell, providing it with much of what it needs to control its behavior.
Box 6.2 provides some additional perspective on this subject.

Additional insights can be gained from the notion that both computational processes and biological
pathways can be viewed as processes that affect the state of a system according to well-defined (though
possibly probabilistic) rules. Thus, it is possible to describe regulatory, metabolic, and signaling path-
ways, as well as multicellular processes such as immune responses, as systems of interacting computa-
tions operating in parallel. In particular, languages such as Petrinets, Statecharts (discussed in Section
4.3.1), and the Pi-calculus, originally developed for the specification and study of systems of interacting
computations, can be used to represent such systems.8  Such representations enable researchers to
simulate their behavior, and to support qualitative and quantitative reasoning on the properties of these
systems.

To cite two prominent researchers in this area:

Processes, the basic interacting computational entities of these languages, have an internal state and
interaction capabilities. Process behavior is governed by reaction rules specifying the response to an input
message based on its content and the state of the process. The response can include state change, a change
in interaction capabilities, and/or sending messages. Complex entities are described hierarchically—for
example, if a and b are abstractions of two molecular domains of a single molecule, then (a parallel b) is
an abstraction of the corresponding two-domain molecule. Similarly, if a and b are abstractions of the two
possible behaviors of a molecule in one of two conformational states, depending on the ligand it binds,
then (a choice b) is an abstraction of the molecule, with the choice between a and b determined by its
interaction with a ligand process.9

Abstractions of the cell as a computing or information-processing device allow one to distinguish
between two conceptual levels: a “low-level” view that focuses on implementation (i.e., how the system
is built—where the wires go or the detailed molecular processes involved) and a “high-level” view that
focuses on functionality (what the system does—analogous to a logic gate or a computational device).10

For example, one might distinguish between the pathways involved in regulating the circadian rhythm
of an organism and its functional behavior as an oscillator.

The difference between these levels of abstraction enables biologically significant comparisons to be
made. For example, it would be instructive if two different organisms implemented the same function
in different ways. In other words, functional equivalence between related implementations in different
organisms could be regarded as a measure of the behavioral similarity of entire systems. (In the litera-
ture of evolutionary biology, the implementation of the same function in different ways is called “analo-
gous” implementation.) Perhaps more importantly, a functional perspective is an enabler for the inte-
gration of knowledge about the function, activity, and interaction of cellular molecular systems.

8R. Aviv and E. Shapiro, “Cellular Abstractions: Cells as Computation,” Nature 419:343, 2002.
9R. Aviv and E. Shapiro, “Cellular Abstractions,” 2002.
10In many circumstances, different parts of a biological system may play different roles at different times or even different

roles at different time scales at the same time. This is especially true in splicing variants, where the expression of a gene may
produce proteins with quite different functions according to the behavior of the splicing mechanism. Indeed, in some cases,
different splicings have opposite functions. Nevertheless, in understanding a given role at a given time and time scale, the high-
level abstraction focused on functionality is meaningful and scientifically significant.
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This perspective on cells as computational devices should not be taken as an argument that cells
process information the way a digital computer does. The organizations are radically different. To name
just a few differences, in a cell there is no clean separation between the data store and the central
processing unit: the cell’s memory is the same protein reaction network that does its processing. Real
proteins rarely respond or act in a completely binary fashion—the levels of concentration matter. Apart
from DNA, few portions of a cell’s internal machinery are explicitly digital in nature—with the result
that signaling in a cell must take place in a highly noisy environment.

Box 6.2
Role of Computation in Complex Regulatory Networks

Computation . . . [is] a crucial ingredient when dealing with the description of biocomplexity and its evolution,
because it turns out to be much more relevant than the underlying physics. Its dynamics is governed mainly by the
transmission, storage and manipulation of information, a process which is highly nonlinear. This nonlinearity is well
illustrated by the nature of signaling in cells: local events involving a few molecules can produce a propagating
cascade of signals through the whole system to yield a global response. . . . If we try to make predictions about the
outcomes of these signaling events in general, we are faced with the inherent unpredictability of computational
systems. It is at this level where computation becomes central and where idealized models of regulatory networks
seem appropriate enough to capture the essential features at the global scale.

Cells are probably the most complete example of this traffic of signals at all levels. . . . The cellular network can be
divided into three major self-regulated sub-webs:

• The genome, in which genes can affect each other’s level of expression;
• The proteome, defined by the set of proteins and their interactions by physical contact; and
• The metabolic network (or the metabolome), integrated by all metabolites and the pathways that link each other.

All these subnetworks are very much intertwined since, for instance, genes can only affect other genes through
special proteins, and some metabolic pathways, regulated by proteins themselves, may be the very ones to catalyze
the formation of nucleotides, in turn affecting the process of translation. . . . It is not difficult to appreciate the
enormous complexity that these networks can achieve in multicellular organisms, where large genomes have struc-
tural genes associated with at least one regulatory element and each regulatory element integrates the activity of at
least two other genes. . . .

Luckily, all this extraordinary complexity can be abstracted, at least at some levels, to simplified models which can
help in the study of the inner-workings of cellular networks. Overall, irrespective of the particular details, biological
systems show a common pattern: some low-level units produce complex, high-level dynamics coordinating their
activity through local interactions. Thus, despite the many forms of interaction found at the cellular level, all come
down to a single fact: the state of the elements in the system is a function of the state of the other elements it interacts
with. What models of network functioning try, therefore, is to understand the basic properties of general systems
composed of units whose interactions are governed by nonlinear functions. These models, being simplifications, do
not allow one to make predictions at the level of the precise state of particular units. Their average overall behavior,
however, can shed light into the way real cells behave as a system. . . .

. . . [M]any entities in cellular networks can be identified as the basic units of regulation, mainly distinguished by
their unique roles with respect to interaction with other units. These basic units are genes, each of the proteins that
the genes can produce, each of the forms of a protein, protein complexes, and all related metabolites. These units
have associated values that either represent concentrations or levels of activation. Their values depend on the values
of the units that affect them due to the mechanisms discussed, plus some parameters that govern each special form
of interaction. . . . Computer modeling of [the] network [the segment polarity network of Drosophila melanogaster]
has provided insight into various questions. A very important result is the fact that this network seems to be a
conserved module. Evidence for this has been obtained by simulations demonstrating its robustness against the
change of parameters. . . .

SOURCE: Reprinted from P. Fernandez and R.V. Sole, “The Role of Computation in Complex Regulatory Networks,” Santa Fe Institute
Working Paper, 2003, available at http://www.santafe.edu/sfi/publications/Working-Papers/03-10-055.pdf; to appear in a chapter in
Power Laws, Scale-Free Networks and Genome Biology, Landes Bioscience. Reprinted with permission.
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It is also interesting that biological function often relies on what might be called exploration with
selection—the production of many intermediate products resulting from stochastic subprocesses that
are then refined to unique and appropriate solutions.11  Taken across the entire population, explora-
tion with selection exploits the difference between creating a solution and testing a solution for
correctness—the first being in general a much more difficult computational task than the second.12

Random processes are used to explore the space of possible solutions,13  and other machinery culls
these possible solutions. As Hartwell et al. argue, “Similar messy and probabilistic intermediates
appear in engineering systems based on artificial neural networks—mathematical characterizations
of information processing that are directly inspired by biology. A neural network can usefully de-
scribe complicated deterministic input-output relationships, even though the intermediate calcula-
tions through which it proceeds lack any obvious meaning and their choice depends on random noise
in a training process.”14

6.2  AN ENGINEERING PERSPECTIVE ON BIOLOGICAL ORGANISMS

6.2.1  Biological Organisms as Engineered Entities

Engineering insights can be useful in understanding biological organisms as engineered entities,
and the rationale for seeking insights from engineering is based on three notions. First, although the
physical scales may differ in some cases, human technology and natural systems operate in the same
world and must obey the same physical rules. Knowledge that engineering fields have accumulated
about what techniques work and the limits of those techniques can serve as a potentially valuable guide
in investigating the physical basis of the operations of natural systems. This is especially true for
biomechanical feats, such as structural support, locomotion, circulation, and so on.

The second rationale is that because evolution and a long history of environmental accidents have
driven processes of natural selection, biological systems are more properly regarded as engineered
artifacts than as objects whose existence might be predicted on the basis of the first principles of physics,
although the evolutionary context means that an artifact is never “finished” and is rather evaluated on
a continuous basis.15  Both engineered artifacts and biological organisms demonstrate function, embody

11For example, the immune system relies on the random generation of pathogen detectors, which are then eliminated when
they match some definition of “self.” In single molecules, kinetic funnels direct different molecules of the same protein through
multiple, different paths from the denatured state to a unique folded structure (K.A. Dill and H.S. Chan, “From Levinthal to
Pathways to Funnels,” Nature Structural Biology 4:10-19, 1997). Within cells, the shape of the mitotic spindle is due partly to
selective stabilization of randomly generated microtubules whose ends happen to be close to a chromosome (R. Heald, R.
Tournebize, T. Blank, R. Sandaltzopoulos, P. Becker, A. Hyman, and E. Karsenti, “Self-organization of Microtubules into Bipolar
Spindles Around Artificial Chromosomes in Xenopus Egg Extracts,” Nature 382(6590):420-425, 1996). Within the brain, the pat-
terning of the nervous system is refined by the death of nerve cells and the decay of synapses that fail to connect to an appropri-
ate target.

12This point can be formalized in the language of theoretical computer science. See J. Hartmanis, “Computational Complexity
and Mathematical Proofs,” pp. 251-256 in Informatics: 10 Years Back, 10 Years Ahead, 2000, Lecture Notes in Computer Science,
Springer-Verlag, Berlin, Heidelberg, 2001.

13For example, random processes are at the heart of stochastic optimization methods that can be used for protein structure
prediction and receptor ligand docking, including simulated annealing, basin hopping, and parallel tempering. (An interesting
introduction to stochastic optimization methods can be found at W. Wenzel, “Stochastic Optimization Methods,” available at
http://iwrwww1.fzk.de/biostruct/Opti/opti.htm.) Also, the systematic exploration of ecological models discussed in Section
5.4.8 is also based on the use of random processes.

14The quote is taken from L.H. Hartwell, J.J. Hopfield, S. Leibler, and A.W. Murray, “From Molecular to Modular Cell Biol-
ogy,” Nature 402(6761 Suppl.):C47-C52, 1999. Hartwell et al. credit Sejnowski and Rosenberg with the neural network example
(T.J. Sejnowski and C.R. Rosenberg, “Parallel Networks That Learn to Pronounce English Text,” Complex Systems 1:145-168, 1987).

15A classic paper on this subject is F. Jacob, “Evolution and Tinkering,” Science 196(4295):1161-1166, 1977.
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behavior, and manifest an evolutionary history.16  Engineered artifacts serve the purposes of their
human designers, and biological organisms serve the purposes of nature—that is, to survive and repro-
duce.17  Thus, the concepts needed to understand biological function may have some resemblance to
some of the concepts already developed for “synthetic” disciplines, of which engineering and computer
science are prime examples.

A third rationale is that the engineering disciplines have already had a long history of systems-level
thinking and, indeed, have produced artifacts that are arguably approaching biological levels of com-
plexity. For example, a Boeing 777 jetliner contains about 150,000 subsystem modules, including 1,000
computers, a number of the same order of magnitude as the estimated 300,000 different proteins in a
typical human cell. Just as in the cell, moreover, these aeronautical subsystems are linked into an
immensely complex “network of networks”—a control system that just happens to fly.18

A related point, and a key lesson from engineering, is that large systems are built out of smaller
systems that are stable. Decomposition of a complex structure into an assembly of simpler structures
whose operation is coordinated tends to be a much more successful strategy that building the complex
structure from scratch, and this approach can be seen in the structure of the cell. Consider that a human
cell has many physical structures within it—nucleus, mitochondria, and so on; each of these can be
regarded as a device, many of which compose the cell. Further, many and perhaps even most cellular
functions (e.g., genetic regulatory networks, metabolic pathways, signaling cascades) are implemented
in a manner that is highly robust against single-point failure (i.e., the function will continue to operate
properly even when one element is missing). Section 6.2.3 addresses this point in more detail.

A second view of biological organisms as engineered entities—as novel entities to be constructed by
human beings rather than as existing organisms to be understood by human beings—is discussed in
Section 8.4.2 on synthetic biology.

6.2.2  Biology as Reverse Engineering

Biological organisms are generally presented to scientists as completed entities, so the challenge of
achieving an engineering understanding of them is in fact a challenge of reverse engineering. One defini-
tion of reverse engineering is “the process of analyzing a subject system with two goals in mind: (1) to

16While it is generally recognized that biology and evolution are intimately linked, the analogous connection between engi-
neering and evolution is less well understood. Nevertheless, most human-engineered objects have a lot of historicity in them as
well. Most human objects are designs based as improvements on previous designs, not de novo, and this can complicate the
understanding of the relationship between functionality and design of a human artifact. One reason is a desire for backward
compatibility—consider the fact that two-prong electric plugs and sockets are much more hazardous than some alternative
designs and yet they are ubiquitous in appliances today. The same is true for operating systems—later versions of an operating
system often incorporate large amounts of code from previous versions to facilitate backward compatibility. A second reason is
that previous designs may have solved a design problem in a particularly effective way, and these solutions from the past are
ignored today at the designer’s peril. For example, consider the evolution of the rotary phone into today’s push-button phones.
Donald Norman observes that the cradle of the phone handset and the button-switch in it had two distinct functions: the cradle
provided a place for the user to put the phone and the button-switch turned the phone on and off. Norman notes that whether
deliberately or by accident, the particular design of the rotary phone that placed the on-off switch in a protected spot in the
cradle also protected the on-off switch from the user accidentally hanging up the phone. However, the designers of newer push-
button phones did not pick up on that feature; many push-button phones are designed so that the on-off switch and the hang-up
cradle are separate—thus making the on-off switch much easier to bump and thereby to accidentally disconnect a phone call. See
D. Norman, The Design of Everyday Things, Basic Books, New York, 1998.

17See for example L.H. Hartwell, J.J. Hopfield, S. Leibler, and A.W. Muray, “From Molecular to Modular Cell Biology,” Nature
402(6761 Suppl):C47-52, 1999, available at http://cgr.harvard.edu/publications/modular.pdf. Hartwell et al. further argue that
it is notions of function and purpose that differentiate biology from other natural sciences such as chemistry or physics, and
hence that reductionist biology—inquiry that seeks to explain biological phenomena only in chemical or physical terms—is
inherently incomplete.

18M.E. Csete and J.C. Doyle, “Reverse Engineering of Biological Complexity,” Science 295(5560):1664-1669, 2002, available at
http://www.sciencemag.org/cgi/content/abstract/295/5560/1664.
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identify the system’s components and their interrelationships and (2) to create representations of the
system in another form or at a higher level of abstraction.”19

A better description could not be developed for the goal of systems biology, even without having to
change any words in this definition. And yet reverse engineering, despite being a fairly standard
engineering topic, is not taught to biologists.20  One drawback is that the metaphor itself is foreign to
biologists; if they wanted to do engineering of any kind, they would have been engineers. Second,
reverse engineering is generally a more difficult task than forward engineering (i.e., the fabrication of a
device to implement some specific functionality), and reverse engineering of a biological organism is a
particularly difficult endeavor.

One important reason is that reverse engineering is often underdetermined, in the sense that mul-
tiple solutions can be developed to account for a given behavior. In such cases, choosing among them
thus requires either more data or a priori assumptions about the true nature of the system being reverse-
engineered. For example, in dealing with the reverse-engineering task of building detailed kinetic
models of intracellular processes from time-series data, Rice and Stolovitzky note that assumptions
such as linearity or sparseness or the use of predetermined model structures (e.g., reactions limited in
the number of possible reactants and substrates) can help to reduce the non-uniqueness.21

A second and even more important reason for the difficulty of reverse engineering is that because of
their evolutionary history, the organisms of interest are constructed in a highly nonoptimal manner.
When engineers seek to understand how an artifact has been constructed, the basic question they ask is,
Why? Why is this structure here? Why was that material used? By asking such questions of a human-
engineered artifact, the engineer can often divine a reason that answers them. The reason is that engi-
neers can be expected to design artifacts using principles such as modularity and separation of function
(i.e., to minimize unnecessary links between subsystems with different purposes). These principles
guard human designs against unforeseen side effects that would arise if components were not deliber-
ately assembled in such a way as to minimize undesired or unanticipated interactions.

However, the same is not true of biological organisms. In many cases, the only answer for biological
systems is, “That’s the way it was built.” Nature builds from accidents that happen to work and creates
new mechanisms on top of old ones. While some evolved systems are quite elegant (e.g., the sensory and
the motor components of the Escherichia coli chemotaxis mechanism), many if not most such systems at
least appear to a human as inelegant, redundant, “kludgy,” and inefficient—some of them extremely so.
Systems engineered by humans, even very poorly engineered ones and even though they too often show
their historical origins, are seldom if ever as arcane and kludgy as evolved biological organisms.

Finally, it is helpful to distinguish between two different approaches to reverse engineering. One
approach to reverse engineering of biological systems—a “top-down” approach—begins with its ob-
servable behavior and characteristics, and seeks to decompose the system into components or sub-
systems that collectively exhibit the macroscopic behavior in question. That is, the top-down approach
is based on a successive decomposition down to the system’s most elemental components.

A second approach is based on a “bottom-up” approach, which begins with an understanding of the
constituent parts at the lowest level, e.g., the macromolecules and the genetic regulatory networks of the

19E.J. Chikofsky and J.H. Cross, “Reverse Engineering and Design Recovery: A Taxonomy,” IEEE Software 13-17, 1990.
20Indeed, the BIO2010 report on undergraduate education in biology (National Research Council, Bio 2010: Undergraduate

Education to Prepare Biomedical Research Scientists, National Academies Press, Washington, DC, 2003) noted that “one approach to
the study of biology is as a problem in reverse engineering. Manufactured systems are easier to understand than biological
systems, because they have no unknown components, and their design principles can be explicitly stated. It is easiest to learn
how to analyze systems through investigating how manufactured systems achieve their designed purpose, how their function
depends on properties of their components, and how function can be reliable even with imperfect components.” Also, under-
scoring the point that engineering is not a part of biology education today, the report emphasized the importance of exposing
biology students to engineering principles and analysis in the course of their undergraduate educations. Chapter 10 has more
discussion of this point.

21J.J. Rice and G. Stolovitzky, “Making the Most of It: Pathway Reconstruction and Integrative Simulation Using the Data at
Hand,” Biosilico 2(2):70-77, 2004.
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cells that make up the system. The philosophical notion embedded in the bottom-up approach is that a
component is likely to be easier to understand than the system in which it is embedded. By successive
assembly of component parts, one is able to create ever-larger assemblies whose operation is understood.

Both approaches seek as their underlying ultimate goal an understanding of how a biological
system works in all of its complexity. But they require different strategies for acquiring data at different
levels of scale (top-down entails data acquisition at ever-smaller scales, while bottom-up entails data
acquisition at ever-larger scales). And also, it should be expected that they will generate different
intermediate outputs and products along the way to this ultimate goal.

6.2.3  Modularity in Biological Entities22

A functional perspective on biology is centrally based on the notion that biological function is
separable, into what might be called modules. The essence of a module—well known in engineering
disciplines as well as computer science—is that of an entity whose function is separable from other
modules. In the computer science context, a module might be a subroutine upon which various pro-
grams can build. These various programs would interact with the subroutine only through the pro-
gramming interface—the set of arguments to the subroutine that parameterize its behavior. Box 6.3
describes how the search for functional modules plays into systems biology.

Box 6.3
Functional Modules in Biology

An important theme in systems biology has been to look for functional modules that have been conserved and
reused. The idea of breaking biological systems into small functional blocks has obvious appeal; the parts can be
divided and conquered so that the most complex of machines become readily understood in terms of block diagrams
or sets of subroutines. Clearly, some conserved modules exist such as the ribosome and the tricarboxylic acid cycle.
One method to search for modules involves looking for higher-order structures or recurring sub-networks (often
termed “motifs”) in metabolic or gene regulatory networks. Another approach mentioned earlier is clustering expres-
sion profiles to produce groups of genes that appear to be co-regulated that should ideally reveal the functional
modules. However, this assumption does not appear to generalize to all functional groups under all conditions, as
some functional groups show well-correlated expression profiles whereas others do not. The low correlation of genes
observed within some functional groups has been attributed to the fact that some of these genes belong to multiple
functional classes. In another analysis in E. coli, 99 cases were found where one reaction existed in multiple path-
ways in EcoCyc. These observations suggest potential pitfalls with anticipating too much functional modularity in
terms of biology being neatly partitioned into non-overlapping modules. Moreover, the tissue- or species-specific
differences mentioned earlier may prevent simplistic transfer of modules from one biological system to another. It
remains to be seen if biology is as modular as the system biologist might like it to be.

Biological modules may turn out be more interconnected and overlapping than independent in many systems. In
addition, the experiences with pathway reconstruction suggest that the combinations of data source produce a more
accurate if not more complete characterization of the system under study. These observations point to an eventual
need to develop large-scale, predictive models based on a multitude of data sources. For example, metabolic models
may combine data from many sources into a quantitative set of equations that can make predictions amenable to
experimental verification. In another system, cardiac models can bridge data at multiple levels (i.e. molecular,
cellular, organ, etc.) and their corresponding characteristic timescales. In this system, modeling efforts at the single-
cell level in the heart suggested a mechanism of increased contraction force that was later confirmed in experimental
studies of whole heart.

SOURCE: Reprinted by permission from J.J. Rice and G. Stolovitzky, “Making the Most of It: Pathway Reconstruction and Integrative
Simulation Using the Data at Hand,” Biosilico 2(2):70-77. Copyright 2004 Elsevier.

22Section 6.2.3 is based largely on L.H. Hartwell, J.J. Hopfield, S. Leibler, and A.W. Murray, “From Molecular to Modular Cell
Biology,” Nature 402(6761 Suppl.):C47-C52, 1999.
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Important insights into biological organisms can be gained by seeking to identify general principles that
govern the structure and function of modules (Box 6.4). In a biological context, a module might be an entity
that performs some biochemical function apart from other modules, isolated from those other modules by
spatial localization (i.e., it is physically separated from those other modules) or by chemical specificity (i.e., its
biochemical processes are sensitive only to the specific chemical signals of that module and not to others that
may be present). Furthermore, modules must be able to interact with each other selectively. Specific connec-
tivity enables module A to influence the functional behavior of module B, but not to affect the operation of
modules C through Z. Also, the particular pattern of connectivity can account for some emergent properties
of these modules, such as an ability to integrate information from multiple sources.

As noted by Hartwell et al., “Higher-level functions can be built by connecting modules together.
For example, the super-module whose function is the accurate distribution of chromosomes to daughter
cells at mitosis contains modules that assemble the mitotic spindle, a module that monitors chromo-
some alignment on the spindle, and a cell-cycle oscillator that regulates transitions between interphase
and mitosis.” When a function of a protein is restricted to one module, and the connections of that
module to other modules are through such proteins, it becomes much easier to alter connections to
other modules without global consequences for the entire organism.

Modular structures have many advantages. For example, the imposition of modular design on an
entity allows a module to be used repeatedly by different parts of the entity. Furthermore, changes
internal to the module do not have global impact if those changes do not affect its functional behavior.
Modules can be combined and recombined in ways that alter the functionality of the complete system—

Box 6.4
Some Mechanisms Underlying the Structure and Function of Modules

1. Positive feedback loops can drive rapid transitions between two different stable states of a system. For example,
positive feedback drives cells rapidly into mitosis, and another makes the exit from mitosis a rapid and irreversible
event.1

2. Negative feedback loops can maintain an output parameter within a narrow range, despite widely fluctuating
input. For example, negative feedback in bacterial chemotaxis2 allows the sensory system to detect subtle variations
in an input signal whose absolute size can vary by several orders of magnitude.3 (This topic—robustness against
noise—is described in more detail in Section 6.2.5.)
3. Coincidence detection systems require two or more events to occur simultaneously in order to activate an output.
For example, coincidence detection is central in eukaryotic gene transcription, in which several different transcrip-
tion factors must be present simultaneously at a promoter site before transcription can occur. (Note the similarity to
a multi-input AND gate.)
4. Parallel circuits allow devices to survive failures in one of the circuits. For example, DNA replication involves
proofreading by the DNA polymerase backed up by a mismatch repair process that removes incorrect bases after the
polymerase has moved on. Both of these must fail before a cell cannot produce viable progeny, and these two
mechanisms, combined with a system for killing potentially cancerous cells, reduce the frequency at which individ-
ual cells give rise to cancer to about 1 in 1015.
5. Quality control systems monitor the output of many biological processes to ensure that the processes have
executed correctly. Such systems can be seen in cell-cycle checkpoints, DNA replication and repair, choices be-
tween cell survival and death after insults to cells, or quality control in protein folding and/or sorting events.

1
D.O. Morgan, “Cyclin-dependent Kinases: Engines, Clocks, and Microprocessors,” Annual Review of Cell and Developmental Biology

13:261-291, 1997.
2
Chemotaxis is the propensity of certain bacteria, such as E. coli, to swim toward higher concentrations of nutrients.

3
H.C. Berg, “A Physicist Looks at Bacterial Chemotaxis,” Cold Spring Harbor Symposium on Quantitative Biology 53(1):1-9, 1988.

SOURCE: Items 1-4 adapted from L. Hartwell, J.J. Hopfield, S. Leibler, and A.W. Murray, “From Molecular to Modular Cell Biology,”
Nature 402(Suppl.):C47-C52, 1999.
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the building blocks remain more or less stable, while the connectivity among them determines the
character of the system.

If biological modules really do exist, one might expect to find them reused in different cellular
contexts, performing the same function but to different ends. Understanding the function and behavior
of a cellular pathway would entail the discovery and characterization of such modular building blocks,
tasks that should be simpler than trying to understand biological networks of different organisms as an
irreducible whole.

Several independent pieces of evidence have emerged supporting the modularity hypothesis. For
example, evidence is accruing that certain regions of DNA are “conserved” from one species to another.
These regions may be associated with genes coding for proteins or with regulatory and structural
functionality. Caenepeel et al. found that the human and mouse kinomes (i.e., the collection of protein
kinases in an organism) are 99 percent identical, although the percentage of identity between orthologues
(i.e., genes or proteins from different organisms that have the same function) ranges from 70 percent to
99 percent (with single nucleotide insertions or deletions in many cases).23  Dermitzakis et al. found that
perhaps a third of the highly conserved DNA regions between mouse and human code for proteins,
while much of the rest probably codes for regulatory and structural functionality.24

Genetic expression networks may also display regular patterns of interconnections (motifs) recur-
ring in many different parts of a network at frequencies much higher than those found in randomized
networks.25  Such motifs might be regarded as building blocks that can be used to assemble entities of
more complex functionality.26  For example, Shen-Orr et al. discovered a series of simple, recurring
network motifs in the gene interaction map of the bacterium E. coli.27  Shortly afterwards, Richard
Young and colleagues found the same motifs to recur at statistically surprising frequencies in yeast.28

Milo et al. found that these motifs were also overrepresented in a neuronal connectivity network of
Caenorhabditis elegans as well as the connectivity networks in the ISCAS89 benchmark set of sequential
logic electronic circuits, but not in ecosystem food webs.29  Milo et al. speculate that these motifs reflect
the underlying processes that generated each type of network, in this case one set of motifs for those that
process information (the genetic regulation, neuronal connectivity, and electronic logic networks) and
another set of motifs for those that process and carry energy.

Finally, a collaborative project led by Eric Davidson and his group at the California Institute of
Technology, and involving Bolouri and Hood at the Institute for Systems Biology, also suggests simple
design principles and building blocks in genetic networks. Figure 6.1 is a map of the interactions among

23S. Caenepeel, G. Charydezak, S. Sudarsanam, T. Hunter, and G. Manning, “The Mouse Kinome: Discovery and Comparative
Genomics of All Mouse Protein Kinases,” Proceedings of the National Academy of Sciences 101(32):11707-11712, 2004.

24E.T. Dermitzakis, A. Reymond, R. Lyle, N. Scamuffa, C. Ucla, S. Deutsch, B.J. Stevenson, et al., “Numerous Potentially
Functional But Non-genic Conserved Sequences on Human Chromosome 21,” Nature 420(6915):578-582, 2002.

25R. Milo, S. Shen-Or, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, “Network Motifs: Simple Building Blocks of
Complex Networks,” Science 298(5594):824-827, 2002.

26Alon refines the notion of module as building block to suggest that modules and motifs are related but separate concepts. In
Alon’s view, a module in a network is a set of nodes that have strong interactions and a common function. Some nodes are
internal and do not interact significantly with nodes outside the module. Other nodes accept inputs and produce outputs that
control the module’s interactions with the rest of the network. Alon argues that one reason modules evolve in biology is that new
devices or entities can be constructed out of existing, well-tested modules; thus, adaptation to new conditions (and new forces of
natural selection) is more easily accomplished. If modules are to be swapped in and out, they must possess the property that
their input-output response is approximately independent of what is connected to them—that is, that the module is functionally
encapsulated. By contrast, a motif is an overrepresented patterns of interconnections in a network that is likely to perform some
useful behavior. However, it may not be functionally encapsulated, in which case it is not a module. For more discussion, see U.
Alon, “Biological Networks: The Tinkerer as an Engineer,” Science 301(5641):1866-1867, 2003.

27S.S. Shen-Orr, R. Milo, S. Mangan, and U. Alon, “Network Motifs in the Transcriptional Regulation Network of Escherichia
coli,” Nature Genetics 31(1):64-68, 2002.

28T.I. Lee, H.J. Yang, S.Y. Lin, M.T. Lee, H.D. Lin, L.E. Braverman, and K.T. Tang, “Transcriptional Regulatory Networks in
Saccharomyces cerevisiae,” Science 298(5594):799-804, 2002.

29R. Milo et al., “Network Motifs,” 2002.
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FIGURE 6.1 The endomesoderm specification network in the sea urchin species Strongylocentrotus purpuratus.
The period of activity represented spans embryonic growth from single cell to gastrulation (approximately 600

cells). The different background colors denote different cell types, as indicated on the cartoon of an early blastula-
stage embryo on the top right. The short, thick horizontal lines represent regulatory DNA of a particular gene in
the network, to which transcription factors bind to activate or repress transcription. The bent arrow emanating
from each regulatory domain represents the basal transcription apparatus of the gene, and the line(s) emerging
from it represent the interactions of the product of the gene with other proteins (via the white and black interaction
boxes) or cis-regulatory DNA.

The architecture of the network is based on perturbation and expression data, on data from cis-regulatory
analyses for several genes, and on other experiments discussed in the references below. For quantitative results of
perturbation experiments and temporal details and the latest view of the network, see http://sugp.caltech.edu/
endomes/.

The repression cascade motif referred to in the text is indicated by the thick black (upstream gene) and gray
(downstream genes) arrows. This work is described in the following:

1. E.H. Davidson, J.P. Rast, P. Oliveri, A. Ransick, C. Calestani, C.H. Yuh, T. Minokawa, et al., “A Genomic
Regulatory Network for Development,” Science 295(5560):1669-1678, 2002.

2. H. Bolouri and E.H. Davidson, “Modeling DNA Sequence-based cis-Regulatory Gene Networks,” Develop-
mental Biology 246(1):2-13, 2002.

3. C.T. Brown, A.G. Rust, P.J.C. Clarke, Z. Pan, M.J. Schilstra, T. De Buysscher, G. Griffin, et al., “New Compu-
tational Approaches for Analysis of cis-Regulatory Networks,” Developmental Biology 246(1):86-102, 2002.

4. A. Ransick, J.P. Rast, T. Minokawa, C. Calestani, and E.H. Davidson, “New Early Zygotic Regulators of
Endomesoderm Specification in Sea Urchin Embryos Discovered by Differential Array Hybridization,” Develop-
mental Biology 246(1):132-147, 2002.

5. C.H. Yuh, C.T. Brown, C.B. Livi, L. Rowen, P.J.C. Clarke, and E.H. Davidson, “Patchy Interspecific Sequence
Similarities Efficiently Identify Positive cis-Regulatory Elements in the Sea Urchin,” Developmental Biology
246(1):148-161, 2002.
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approximately 50 genes underlying an early cell-type specification event in sea urchin embryos that
includes several recurring interaction motifs. For example, there are several cases in which a gene (thick
black arrow), instead of activating another gene directly, represses a repressor of the target gene (thick
gray arrows). Such an arrangement can provide a number of possible advantages, including a sharper
activation profile for the target gene, important in defining spatial boundaries between cell types.

Modularity and conservation suggest a potential for comparative studies across species (e.g.,
pufferfish, mice, humans) to contribute to an understanding of biological function. That is, understand-
ing the role of a certain protein in mice, for example, may suggest a similar role for that same protein if
it is found in humans.

These comments should not be taken to mean that functional modules in biological entities are
necessarily simple or static. Biological systems are often made up of elements with multiple functions
interacting in ways that are complex and difficult to separate, and nature exploits multiple linkages that
a human engineer would not tolerate in the design of an artifact.30  For example, a component of one
module may (or may not) play a role in a different module at a different time. A module’s functional
behavior may be quantitatively regulated or switched between qualitatively different functions by
chemical signals from other modules. Despite these important differences between biological modules
and the modules that constitute humanly engineered artifacts, the notion of a collection of parts that can
be counted on to perform a given function—that is, a module—is meaningful from an analytical per-
spective and our understanding of that function.

6.2.4  Robustness in Biological Entities

Robustness is one of the characteristics of biological systems that is most admired and most desired
for engineered systems. Especially as compared to software and information systems, which are notori-
ously brittle, biological systems maintain functionality in the face of a range of perturbations. More
traditional hardware engineering, however, has studied the questions of robustness (under various
names including fault-tolerance and control systems). Applying the analytical techniques developed in
engineering to studying the mechanics of robustness in biology, the logic goes, might reveal new
insights not only about biology, but about robust system design.

In biology, the term robustness is used in many different ways in different subfields, including the
preservation of species diversity, a measure of healing, comprehensibility in the face of incomplete
information, continuity of evolutionary lineages, phenotypic stability in development, cell metabolic
stability in the face of stochastic events, or resistance to point mutations.31  Its most general usage,

6. E.H. Davidson, J.P. Rast, P. Oliveri, A. Ransick, C. Calestani, C.H. Yuh, T. Minokawa, et al., “A Provisional
Regulatory Gene Network for Specification of Endomesoderm in the Sea Urchin Embryo,” Developmental Biology
246(1):162-190, 2002.

7. J.P. Rast, R.A. Cameron, A.J. Poustka, and E.H. Davidson, “Brachyury Target Genes in the Early Sea Urchin
Embryo Isolated by Differential Macroarray Screening,” Developmental Biology 246(1):191-208, 2002.

8. P. Oliveri, D.M. Carrick, and E.H. Davidson, “A Regulatory Gene Network That Directs Micromere Specifi-
cation in the Sea Urchin Embryo,” Developmental Biology 246(1):209-228, 2002.
SOURCE: Figure from M. Levine and E.H. Davidson, “Gene Regulatory Networks for Development,” Proceedings
of the National Academy of Sciences 102(14):4936-4942, 2005, available at http://www.pnas.org/cgi/content/full/
102/14/4936. Copyright 2005 National Academy of Sciences.

30This is not to say that human-engineered artifacts are not affected by their origins. “Capture by history” characterizes many
human artifacts as well, but likely not as strongly. For more discussion of these points, see D. Norman, 1998, cited in Footnote 16.

31D.C. Krakauer, “Robustness in Biological Systems—A Provisional Taxonomy,” Complex Systems Science in Biomedicine, T.S.
Deisboeck, J.Y. Kresh, and T.B. Kepler, eds., Kluwer, New York, 2003.
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however, refers to the ability of a structure or process to persist in the face of perturbations of internal
components or the environment. Those perturbations might include outright component failure, unex-
pected behavior from components or other cooperating systems, stochastic changes in chemical concen-
trations or reaction rates, mutations, or the motion of external biochemical parameters. These sorts of
perturbations, such as stochastic changes of molecular concentrations, are intrinsic to the nature of
biology, from the molecular scale to the ecological.

A robust response to these perturbations generally consists of one of three types: (1) parameter
insensitivity, meaning that a robust process does not depend on a single ideal value of an input; (2)
graceful degradation, in which the level of functionality of the system is indeed lessened by component
failures, but it continues to function; and (3) adaptation, in which internal components reconfigure to
react to a change to maintain the same level of functionality.32

Kitano notes that robustness is attained in biological systems by using mechanisms well known to
human engineers. He describes four mechanisms or approaches to biological robustness:33

1. System control mechanisms such as negative-feedback and feed-forward control;
2. Redundancy, whereby multiple components with equivalent functions are introduced for backup;
3. Structural stability, where intrinsic mechanisms are built to promote stability; and
4. Modularity, where subsystems are physically or functionally insulated so that failure in one

module does not spread to other parts and lead to system-wide catastrophe.

Kitano then notes that these approaches used in engineering systems are also found in biological
systems, pointing out that “redundancy is seen at the gene level, where it functions in control of the cell
cycle and circadian rhythms, and at the circuit level, where it operates in alternative metabolic path-
ways in E. coli.” Furthermore, engineering approaches have proven to be a useful lens when investigat-
ing biological robustness.

For example, Barkai and Leibler34  established a model (later confirmed experimentally) to explain
perfect robust adaptation in bacterial chemotaxis, or the ability of bacteria to move toward increased
concentrations of certain ligands. It had long been known that the mechanism responsible for this ability
had several key attributes, among them a high sensitivity to changes in chemical concentration, together
with an ability to adapt to the absolute level of that concentration. Working with the known molecular
makeup of these cells (e.g., the receptors, kinases, and diffusible messenger proteins), Barkai and Leibler
showed that when varied separately, many of the rate constants (such as molecular concentrations of
elements of the signaling network or reaction rates) could be varied by orders of magnitude without
affecting the magnitude of the response.35

Later work by Yi et al. used the mathematics of control systems to show how the Barkai-Leibler
model was a special case of integral feedback control, a well-studied approach of control theory.36  In
addition to control theory (including feedback and feed-forward control), many other engineering
approaches are found in biological systems, including redundancy, modularity, purging (quickly elimi-
nating failing components), and spatial compartmentalization.37

32H. Kitano, “Systems Biology: A Brief Overview,” Science 295(5560):1662-1664, 2002. Available at http://www.sciencemag.
org/cgi/content/abstract/295/5560/1662.

33H. Kitano, “Systems Biology,” 2002.
34N. Barkai and S. Leibler, “Robustness in Simple Biochemical Networks,” Nature 387(6636):913-917, 1997.
35 However, the mechanism does not account for the full dynamic range of the sensor patches at a molecular level. (It may be

that some sort of emergent property of the sensor patch as a whole, as opposed to some property of the individual sensor
complexes, is necessary to obtain the full dynamic range. See, for example, T.S. Shimizu, S.V. Aksenov, and D. Bray, “A Spatially
Extended Stochastic Model of the Bacterial Chemotaxis Signaling Pathway,” Journal of Molecular Biology 329(2):291-309, 2003.)

36T.M. Yi, Y. Huang, M.I. Simon, and J. Doyle, “Robust Perfect Adaptation in Bacterial Chemotaxis Through Integral Feedback
Control,” Proceedings of the National Academy of Sciences 97(9):4649-4653, 2000.

37D.C. Krakauer, “Robustness in Biological Systems,” 2003.
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Kitano makes the point that robustness is a property of an entire system;38  it may be that no
individual component or process within a system would be robust, but the system-wide architecture
still provides robust behavior. This presents a challenge for analysis, since elucidating such behaviors
can be counterintuitive and computationally demanding.39  In one such example, von Dassow and
colleagues investigated the development of striped patterns in Drosophila.40  They computationally mod-
eled a network of interactions between genes and regulatory proteins active during embryogenesis and
explored the parameter space to see which sets of parameters produced stable striping. In their first
attempt, they were unable to reproduce such behavior computationally. However, once they added two
more molecular events and their interactions to the network, a surprisingly high proportion of the
randomly chosen parameters produced the desired results. This strongly implies that such a network,
taken as a whole, is a robust developmental module, able to produce a particular effect despite wide
variation in reaction parameters.

In a refinement to that work, Ingolia investigated the architecture of that network to attempt to
determine the structural sources of such robust behavior.41  He determined that the source of the robust-
ness at the network level was a pair of positive feedback loops of gene expression, which led to cells
being forced to one of two stable states (bistability). That is, small perturbations or changes in certain
parameters would necessarily result in individual cells reaching one of two states. Ingolia showed that
such bistability, at both an individual cell level and a network level, is an important architectural
property leading to robust behavior and that the latter is in fact a consequence of the former. Moreover,
it is this bistability that is responsible for the ability of the network to maintain a fixed pattern of gene
expression even in the face of cell division and growth.42

Robustness comes at a cost of increased complexity. The simplest bacteria can survive only within
narrow ranges of environmental parameters, while more complex bacteria, such as E. coli (with a
genome an order of magnitude larger than mycoplasma), can withstand more severe environmental
fluctuations.43  This increased complexity can in turn be the root of cascading failures, if the elements of
the network responsible for the adaptive response fail. This implies that increased robustness of a
certain aspect or element of a system with respect to a certain perturbation may come at the cost of
increased vulnerability in a different aspect or element or to a different attack.

Robustness can also serve as a signpost for discovering the details of biological function. Although
there may be a prohibitively large number of ways that a genetic network could produce a given result,
for example, only a few of those ways are likely to do so robustly. Knowledge of the robust qualities of
a biological system, coupled with theoretical or simulated analysis of networks, could aid in reverse
engineering the system to determine its actual configuration.44

An open and intriguing question is the relationship between robustness and evolution. Because
robustness is the quality of maintaining stability, in some sense it stands as a potential inhibitor to
evolution, for example, by masking the effects of point mutations. And yet robust modules or organ-
isms are more likely to survive, and thus pass on into succeeding generations. How does robustness
evolve? How do robust systems evolve? One engineering approach to this problem is to consider
biological systems as sets of components interacting through protocols,45  with one critical measure of a

38H. Kitano, “Systems Biology,” 2002. Available at http://www.sciencemag.org/cgi/content/abstract/295/5560/1662.
39A.D. Lander, “A Calculus of Purpose,” PLoS Biology 2(6):e164, 2004.
40G. von Dassow, E. Meir, E.M. Munro, and G.M. Odell, “The Segment Polarity Network Is a Robust Developmental Module,”

Nature 406(6792):188-192, 2000.
41N.T. Ingolia, “Topology and Robustness in the Drosophila Segment Polarity Network,” PLoS Biology 2(6):e123, 2004.
42A.D. Lander, “A Calculus of Purpose,” 2004.
43J.M. Carlson and J. Doyle, “Complexity and Robustness,” Proceedings of the National Academy of Sciences 99(Suppl. 1):2538-

2545, 2002.
44U. Alon, “Biological Networks: The Tinkerer as an Engineer,” Science 301:1866-1867, 2003.
45M.E. Csete and J.C. Doyle, “Reverse Engineering of Biological Complexity,” Science 295:1664-1669, 2002.
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good protocol being its ability to support both robustness and evolvability, a key consideration in
technical protocols of human engineering such as TCP/IP.

6.2.5  Noise in Biological Phenomena46

As one illustration of how engineering disciplines might shed light on biological mechanism, con-
sider the opposition of robustness and noise in biological phenomena. Biological organisms exhibit high
degrees of robustness in the face of changing environments. Engineered artifacts designed by human
beings have used mechanisms such as negative feedback to provide stability, redundancy to provide
backup, and modularity for the isolation of failures to enhance robustness. As the discussion below
indicates, these mechanisms are used for these purposes in biological organisms, as well.47

In a biological context, noise can take the form of fluctuations in quantities such as reaction rates,
concentrations, spatial distributions, and fluxes. In addition, fluctuations may also occur at the molecu-
lar level. However, despite the noise inherent in the internal environment of a cell, cells operate—often
robustly and quite stably—within strict parameters, and robustness has been hypothesized as an intrin-
sic property of intracellular networks. (For instance, the chemotaxis pathway in E. coli functions over a
wide range of enzymatic activities and protein concentrations.48  Robustness is also illustrated in some
developmental processes49  and phage lambda regulation.50 ) This robustness suggests that cells use and
reject noise in a systematic manner.

For the analysis of biological noise, much of the analysis originally derived from signal processing
and control theory is applicable.51  Indeed, pathways can be regarded as analog filters and classified in
terms of frequency response, where the differences between filtering electronic noise and filtering
biological noise are reflected only in the details of the underlying mechanisms rather than in high-level
abstractions of filtering theory.

Cascades and relays such as two-component systems and the mitogen-activated protein kinase
pathway function as low-pass filters (i.e., filters that attenuate high-frequency noise).52  As a general
rule, longer cascades are more effective at reducing noise. However, because noise arises in the pathway
itself, the amount of internally generated noise increases with cascade length—suggesting that there is
an optimal cascade length for attenuating noise.53

It is not surprising that low-pass filters are components of biological systems. As noted above,
biological systems operate homeostatically,54  and the essential principle underlying homeostasis is that
of negative feedback. From the standpoint of signal processing, a negative feedback loop functions as a
low-pass filter.

46Section 6.2.5 is based on and incorporates several excerpts from C.V. Rao, D.M. Wolf, and A.P. Arkin, “Control, Exploitation
and Tolerance of Intracellular Noise,” Nature 420(6912):231-237, 2002.

47H. Kitano, “Systems Biology: A Brief Overview,” Science 295(5560):1662-1664, 2002. Available at http://www.sciencemag.
org/cgi/content/abstract/295/5560/1662.

48N. Barkai and S. Leibler, “Robustness in Simple Biochemical Networks,” Nature 387:913-917, 1997; U. Alon, M.G. Surette, N.
Barkai and S. Leibler, “Robustness in Bacterial Chemotaxis,” Nature 397:168-171, 1999. (Cited in Rao et al., 2002.)

49G. von Dassow, E. Meir, E.M. Munro, and G.M. Odell, “The Segment Polarity Network Is a Robust Developmental Module,”
Nature 406:188-192, 2000; E. Meir, G. von Dassow, E. Munro, and G.M. Odell, “Robustness, Flexibility, and the Role of Lateral
Inhibition in the Neurogenic Network,” Current Biology 12:778-786, 2002. (Cited in Rao et al., 2002.)

50J.W. Little, D.P. Shepley, and D.W. Wert, “Robustness of a Gene Regulatory Circuit,” EMBO Journal 18:4299-4307, 1999.
51A.P. Arkin, “Signal Processing by Biochemical Reaction Networks,” pp. 112-144, Self-organized Biological Dynamics and Non-

linear Control, J. Walleczek, ed., Cambridge University Press, London, 2000; M. Samoilov, A. Arkin, and J. Ross, “Signal Process-
ing by Simple Chemical Systems,” Journal of Physical Chemistry 106:10205-10221, 2002. (Cited in Rao et al., 2002.)

52P.B. Detwiler, S.A. Ramanathan, A. Sengupta, and B.I. Shraiman, “Engineering Aspects of Enzymatic Signal Transduction:
Photoreceptors in the Retina,” Biophysical Journal 79(6):2801-2817, 2000. (Cited in Rao et al., 2002.)

53M. Thattai and A.Van Oudenaarden, “Attenuation of Noise in Ultrasensitive Signaling Cascades,” Biophysical Journal
82(6):2943-2950, 2002. (Cited in Rao et al., 2002.)

54Homeostasis is the property of a system that enables it to respond to changes in its environment in such a way that it tends to
maintain its original state.
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A second useful construct from signal processing is the bandpass filter, which is based on the
control theory notion of integral feedback. Integral feedback is a kind of negative feedback that ampli-
fies intermediate frequencies and attenuates low and high frequencies. A biological instantiation of
integral feedback is contained in bacterial chemotaxis.55

In addition to the filters described above, other mechanisms attenuate noise in systems. These
include the following:

• Redundancy. Noise in a single channel might be misinterpreted as a genuine signal. However,
redundancy—in the form of multiple channels serving the same function—can help to minimize the
likelihood of such an occurrence. In a biological context, redundancy has been demonstrated in mecha-
nisms such as gene dosage and parallel cascades,56  which attenuate the effects of noise by increasing the
likelihood of gene expression or establishing a consensus from multiple signals.

• Checkpointing. Noise can interfere with the successful completion of various biological operations
that are essential in a pathway. However, a checkpoint can ensure that each step in a pathway is
completed successfully before proceeding with the next step. Such checkpoints have been characterized
in the cell cycle and flagellar biosynthesis.57

• Proofreading. Noise can introduce errors into a process. But error-correcting mechanisms can
reduce this effect of noise, as is the case of kinetic proofreading in protein translation.58

A final, and surprising, mechanism is that complexity itself in some cases can be implicated in the
robustness of an organism against noise. In 1942, Waddington noted the stability of phenotypes (from
the same species) against a backdrop of considerable genetic variation, a phenomenon known as canali-
zation.59  In principle, such stability could result from explicit genetic control of phenotype features,
such as the number of fingers on a hand or the placement of wings on an insect’s body. However, Siegal
and Bergman modeled the developmental process responsible for the emergence of such features as a
network of interacting transcriptional regulators and found that the network constrains the genetic
system to produce canalization.60  Furthermore, the extent of canalization, measured as the insensitivity
of a phenotype to changes in the genotype (i.e., to mutations), depends on the complexity of the
network, such that more highly connected (i.e., more complex) networks evolve to be more canalized.
(Box 6.5 provides more details.)

Consider that noise can also make positive contributions to biological systems. For example, it is
well known from the agricultural context that monocultures are less robust than ecosystems that
involve multiple species—the first can be wiped out by a disease that targets the specific crop in
question, whereas the second cannot. Thus, some degree of variation in a populating species is
desirable, and noise is one mechanism for introducing variation that results in population heteroge-

55The size of a single bacterium is so small that the bacterium is unable to sense a spatial gradient across the length of its body.
Thus, to sense a spatial gradient, the bacterium moves around and senses chemical concentrations in different locations at
different times; the result is a motion bias toward attractants. See T.M. Yi, Y. Huang, M.I. Simon, and J. Doyle, “Robust Perfect
Adaptation in Bacterial Chemotaxis Through Integral Feedback Control,” Proceedings of the National Academy of Sciences 97(9):4649-
4653, 2000. (Cited in Rao et al., 2002.)

56H.H. McAdams and A. Arkin, “It’s a Noisy Business! Genetic Regulation at the Nanomolar Scale,” Trends in Genetics 15(2):65-
69, 1999; D.L. Cook, A.N. Gerber, and S.J. Tapscott, “Modeling Stochastic Gene Expression: Implications for Haploinsufficiency,”
Proceedings of the National Academy of Sciences 95(26):15641-15646, 1998. (Cited in Rao et al., 2002.)

57L.H. Hartwell and T.A. Weinert, “Checkpoints: Controls That Ensure the Order of Cell Cycle Events,” Science 246(4930):629-
634, 1989. (Cited in Rao et al., 2002.)

58M.V. Rodnina and W. Wintermeyer, “Ribosome Fidelity: tRNA Discrimination, Proofreading and Enduced Fit,” Trends in
Biochemical Science 26(2):124-130, 2001. (Cited in Rao et al., 2002.)

59C.H. Waddington, “Canalization of Development and the Inheritance of Acquired Characters,” Nature 150:563-565, 1942.
60M.L. Siegal and A. Bergman, “Waddington’s Canalization Revisited: Developmental Stability and Evolution,” Proceedings of

the National Academy of Sciences 99(16):10528-10532, 2002.
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neity and diversity. For example, noise (in the form of molecular fluctuations) introduced into the
genetic circuit governing development in phage lambda can cause an initially homogeneous popula-
tion to separate into lytic and lysogenic populations.61  (In this case, the basic mechanism involves

Box 6.5
Canalization and the Connectivity of Transcriptional Regulatory Networks

To explore the possibility that genetic canalization may be a by-product of other selective forces, . . . [we start with]
the model of A. Wagner, who treats development as the interaction of a network of transcriptional regulatory genes,
phenotype as the equilibrium state of this network, and fitness as a function of the distance between an individual’s
equilibrium state and the optimum state. . . . Evolution in the model [a generalized version of Wagner’s] consists of
three phases: mating, development, and selection. Mating and selection are modeled in accord with traditional
population-genetic approaches. . . . [To handle development] one can represent a network of transcriptional regula-
tors by a state vector containing the concentration of each gene product and a matrix, the entries of which represent
the effects of each gene product on the expression of each gene. Entries may be either positive (activating) or
negative (repressing) and may differ in magnitude. Zero elements in the matrix represent the absence of interaction
between the given gene product and gene. The developmental process is then fully described by a set of nonlinear
coupled difference equations. . . . Wagner draws an analogy between the rows of the interaction matrix and the
enhancer regions of the genes in the network and further justifies the biological realism of this type of model by
reference to data from actual genetic networks. An important assumption in the model, also justified by A. Wagner,
is that functional genetic networks will reach a stable equilibrium gene-expression state, and that unstable networks
reflect, in a sense, the failure of development. Thus, in his model and ours, development itself enforces a kind of
selection, because we require that the network of regulatory interactions produce a stable equilibrium gene-expres-
sion state (its “phenotype”), whose distance to an optimum state can then be measured during the selection phase.

. . . We report here the results of numerical simulations of our model of an evolving developmental-genetic system.
We demonstrate an important, perhaps primary, role for the developmental process itself in creating canalization, in
that insensitivity to mutation evolves even when stabilizing selection is absent. We go on to demonstrate that the
complexity of the network is a key factor in this evolutionary process, in that networks with a greater proportion of
connections evolve greater insensitivity to mutation.

. . . One is led to wonder whether the evolution of canalization under no stabilizing selection on the gene-expression
pattern is an artifact of the modeling framework or whether it represents a finding of real biological significance. We
argue that the latter is true on a number of counts. To begin, we acknowledge that it is difficult to envision a scenario
in nature in which the stability of a developmental module is required, but the phenotype produced by that module
is not subject to selection. One situation in which this condition may hold is when a species colonizes a new territory
with virtually unlimited resources, so selection is only for those that develop to reproduce. Furthermore, even if such
a scenario does not pertain, the conceptual decomposition of stabilizing selection into selection for an optimum and
selection for developmental stability is important. Thus, even in scenarios in which members of a population are
subject to selection for an optimum, the evolution of canalization may proceed because of the underlying selection
for stability of the developmental outcome. Our results suggest that this underlying selection can occur very fast.
Because others have argued that the evolution of canalization under stabilizing selection may be slow, developmen-
tal stability may therefore be the dominant force in the evolution of canalization.

SOURCE: Reprinted by permission from M.L. Siegal and A. Bergman, “Waddington’s Canalization Revisited: Developmental Stability and
Evolution,” Proceedings of the National Academy of Sciences 99(16):10528-10532, 2002. Copyright 2002 National Academy of Sciences.
(References and figures are omitted above and can be found in the original article.)

61A. Arkin, J. Ross, and H.H. McAdams, “Stochastic Kinetic Analysis of Developmental Pathway Bifurcation in Phage Lambda-
infected Escherichia coli Cells,” Genetics 149(4):1633-1648, 1998. (Cited in Rao et al., 2002.)
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two antagonistic feedback loops that create a switch and molecular fluctuations that partition the
initial population stochastically.)

Noise can be used to enhance a signal when certain nonlinear effects are present, as demonstrated
by the phenomenon of stochastic resonance.62  Stochastic resonance is found in many biological sys-
tems, including the electroreceptors of paddlefish,63  mechanoreceptors in the tail fins of crayfish,64  and
hair cells in crickets.65  A similar phenomenon can potentially increase sensitivity in certain signaling
cascades.66

Finally, noise can be useful for introducing stability. The network that controls circadian rhythms
consists of multiple, complex, interlocking feedback loops. Both deterministic and stochastic mecha-
nisms for noise resistance in circadian rhythms have been explored,67  and it turns out that stochastic
models are able to produce regular oscillations when the deterministic models do not,68  suggesting that
the regulatory networks may utilize molecular fluctuations to their advantage.

The discussion above suggests that biological robustness is in some ways a problem of controlling
the effects of noise and in other ways one of exploiting those effects. Considerations of noise and
robustness thus offer insight into the design and function of intracellular networks.69  That is, the
function of an intracellular network may require specific regulatory and information structures, and
certain design features are necessary for a stable network phenotype.

Finally, note that mechanisms of the sorts described above do not generally function in isolation,
but rather interact in complex networks involving multiple feedback loops, and the resulting networks
can produce diverse phenomena, including switches, memory, and oscillators.70  Such coupling also has
an important analytical consequence—namely, that the composite behavior of multiple coupled mecha-
nisms is much more difficult to predict than the behavior of individual components. To analyze mul-
tiple coupled systems, computational models are highly useful.

6.3  A COMPUTATIONAL METAPHOR FOR BIOLOGY

In addition to the abstractions described above, computing and computer science can also provide
life scientists with a rich source of language, metaphors, and analogies with which to describe biological
phenomena and insights from a computational perspective. These linguistic and cognitive aspects may
well make it easier for insights originating in computing to be made relevant to biology, and thus

62L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, “Stochastic Resonance,” Reviews of Modern Physics 70:223-287, 1998.
(Cited in Rao et al., 2002.)

63D.F. Russell, L.A. Wilkens, and F. Moss, “Use of Behavioural Stochastic Resonance by Paddle Fish for Feeding,” Nature
402(6759):291-294, 1999. (Cited in Rao et al., 2002.)

64J.K. Douglass, L. Wilkens, E. Pantazelou, and F. Moss, “Noise Enhancement of Information Transfer in Crayfish Mechanore-
ceptors by Stochastic Resonance,” Nature 365(6444):337-340, 1993. (Cited in Rao et al., 2002.)

65J.E. Levin and J.P. Miller, “Broadband Neural Encoding in the Cricket Cercal Sensory System Enhanced by Stochastic
Rresonance,” Nature 380(6570):165-168, 1996. (Cited in Rao et al., 2002.)

66J. Paulsson, O.G. Berg, and M. Ehrenberg, “Stochastic Focusing: Fluctuation-enhanced Sensitivity of Intracellular Regula-
tion,” Proceedings of the National Academy of Sciences 97(13):7148-7153, 2000. (Cited in Rao et al., 2002.)

67N. Barkai and S. Leibler, “Circadian Clocks Limited by Noise,” Nature 403(6767):267-268, 2000; D. Gonze, J. Halloy, and A.
Goldbeter, “Robustness of Circadian Rhythms with Respect to Molecular Noise,” Proceedings of the National Academy of Sciences
99(2):673-678, 2002; P. Smolen, D.A. Baxter, and J.H. Byrne, “Modeling Circadian Oscillations with Interlocking Positive and
Negative Feedback Loops,” Journal of Neuroscience 21(17):6644-6656, 2001. (Cited in Rao et al., 2002.)

68J.M. Vilar, H.Y. Kueh, N. Barkai, and S. Leibler, “Mechanisms of Noise Resistance in Genetic Oscillators,” Proceedings of the
National Academy of Sciences 99(9):5988-5992, 2002. (Cited in Rao et al., 2002.)

69M.E. Csete and J.C. Doyle, “Reverse Engineering of Biological Complexity,” Science 295(5560):1664-1669, 2002; M. Morohashi,
et al., “Robustness as a Measure of Plausibility in Models of Biochemical Networks,” Journal of Theoretical Biology 216(1):19-30,
2002; L.H. Hartwell, J.J. Hopfield, S. Leibler, and A.W. Murray, “From Molecular to Modular Cell Biology,” Nature 402(6761
Suppl):C47-C52, 1999. (Cited in Rao et al., 2002.)

70M.B. Elowitz and S. Leibler, “A Synthetic Oscillatory Network of Transcriptional Regulators,” Nature 403(6767):335-338,
2000; T.S. Gardner, C.R. Cantor, and J.J. Collins, “Construction of a Genetic Toggle Switch in Escherichia coli,” Nature 403(6767):339-
342, 2000. (Cited in Rao et al., 2002.)
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information abstractions can be used to communicate about or to explain biological processes and
concepts. Consider, for example, the Jacob and Monod description of the genome as a “genetic pro-
gram,” capable of controlling its own execution.71  (Conversely, biological metaphors and language
might offer analogous benefits to computing, which is the subject of Chapter 8.) At the same time,
poorly chosen metaphors can limit understanding by carrying over misleading or irrelevant details. For
example, the “genetic program” metaphor described above might lead one to think of protein synthesis
as being executed one instruction at a time (as most computer programs would be), obscuring the
parallel and interconnected nature of the genetic protein synthesis network.72

The use of a metaphor (to look at a problem in field A through the lens of field B) invites one to
apply insights from field B to the problem in field A. Metaphors are often (indeed, almost always)
imprecise and somewhat vague, because they are not specific about which insights from field B are
relevant to field A. They can nevertheless be useful, because they constitute an additional source of
insight and new ways of thinking to be brought to bear on field A that might not otherwise be available
in the absence of those metaphors. Moreover, field B—as a discipline—constitutes an existence proof
that the insights in question can in fact be part of an intellectually coherent whole.

Consider, for example, extending the notion of the “genetic program.” In some sense, the DNA sequence
can be analogized to the binary code of a program. However, in many real computer programs, a program
structure or architecture or individual components may be apparent from representing the program in its
source code form, where things such as variable declarations and subroutines make manifestly obvious what
is obscured in the binary representation. Calling sequences between program and subprogram define pro-
gram interfaces and protocols for how different components of a program may communicate—data defini-
tions, formats, and semantics, for instance. Thus, it may be meaningful to inquire about the analogous things
in biology, and indeed, a gene contained in DNA might well be one analogue of a subprogram or the action
potential in neuroscience one analogue of a communications protocol.

Another analogy can be drawn between the evolution of computing and the biological transition
from single-cell organisms to multicell organisms. Multicellular life exploits four broad strategies: col-
laboration between highly specialized cells; communication by polymorphic messages; self, defined by
a stigmergic structure; and self, protected by programmed cell death. These strategies are rare in single-
cell organisms but nearly universal in multicellular organisms, and evolved before or coincident with
the emergence of multicellular life. As described in Table 6.1, each of these strategies may be analogous
to trends seen in computing today.

To illustrate how the use of a computational metaphor can provide insight and lead to deeper explora-
tion, note that cellular processes are concurrent (i.e., changes in the surrounding environment can trigger the
execution of many parallel processes); operate at many levels including the submolecular, molecular, subcel-
lular, and cellular; and involve relationships among many subcellular and molecular objects. Computer
scientists have devised a number of formalisms that are capable of representing such processes, and Kam et
al.73  modeled aspects of T-cell activation using the formalism of Statecharts,74  as they have been adapted to
the framework of object-oriented modeling.75  Because the object-oriented Statechart approach supports

71F. Jacob and J. Monod, “Genetic Regulatory Mechanisms in the Synthesis of Proteins,” Journal of Molecular Biology 3:318-356,
1961.

72E.F. Keller, Making Sense of Life—Explaining Biological Developments with Models, Metaphors, and Machines, Harvard University
Press, Cambridge, MA, 2003.

73N. Kam, I.R. Cohen, and D. Harel, “The Immune System as a Reactive System: Modeling T Cell Activation with Statecharts,”
Proceedings of a Symposium on Visual Languages and Formal Methods (VLFM’01), part of IEEE Symposium on Human-centric
Computing (HCC’01), 2001, pp. 15-22.

74D. Harel, “Statecharts: A Visual Formalism for Complex Systems,” Science of Computer Programming 8:231-274, 1987. (Cited in
Kam et al., “ The Immune System as a Reactive System,” 2001.)

75G. Booch, Object-Oriented Analysis and Design, with Applications, Addison-Wesley, Menlo Park, CA, 1994; D. Harel and E.
Gery, “Executable Object Modeling with Statecharts,” Computer, 31-42, 1997; J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen, Object-Oriented Modeling and Design, Prentice Hall, Englewood Cliffs, NJ, 1991. (Cited in Kam et al., 2001.)
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concurrency, multilevel description, and object orientation, Kam et al. constructed a T-cell simulation that
presents its results by displaying animated versions of the model’s Statecharts.

A second example is provided by the work of Searls. It is a common, if not inescapable, metaphor
that DNA represents the language of life. In the late 1980s and early 1990s, David B. Searls and collabo-
rators made the metaphor much more concrete, applying formal language theory to the analysis of
nucleic acid sequences.76  Linguistics theory considers four levels of interpretation of text: lexical (the

TABLE 6.1 Principles of Operation for Multicellular Organisms and Networked Computing

Principle Multicellular Organisms Networked Computing

Collaboration Cells in biofilms specialize Today most computers retain a
between highly temporarily according to “quorum” large repertoire of unused general
specialized cells cues from neighbors. Cells in behavior susceptible to viral or

“true” multicellular organisms worm attack. Biology suggests
permanently specialize that more specialization and less
(differentiate) during development. monoculture would be
Loss of differentiation is an early advantageous (although market
sign of cancer. forces may oppose this).

Communication Cells in multicelled organisms Executable code is the analogue of
by polymorphic communicate with each other via DNA. Most PCs permit easy, and
messages messenger molecules, never DNA. hidden, download of executable

The “meaning” of cell-to-cell code (Active-X or even exe).
messages is determined by the However, importing executable
receiving cell, not the sender. code is well known to create

security risks, and secure systems
minimize or eliminate this
capability.

“Self” defined by Multicelled organisms and biofilms Determination of self is largely ad
a stigmergic build extracellular stigmergic hoc in today’s systems. However,
structure structures (bone, shell, or just an organization’s intranet is a

slime) that define the persistent stigmergic structure, as are its
self. “Selfness” resides as much in persistent databases.
the extracellular matrix as in the
cells.

“Self” protected Every healthy cell in a multicelled A familiar example in computing
by programmed organism is prepared to commit is the Blue Screen of Death, which
cell death (PCD) suicide. PCD evolved to deal with is a programmed response to an

DNA replication errors, viral unrecoverable error. An analogous
infection, and rogue undifferentiated computer should sense its own
cells. PCD reflects a multicellular rogue behavior (e.g., download of
perspective—sacrificing the uncertified code) and disconnect
individual cell for the good of the itself from the network or reboot
multicellular organism. itself periodically to give itself a

clean initial state.

SOURCE: Steve Burbeck, IBM, personal communication, October 11, 2004.

76D.B. Searls, “The Linguistics of DNA,” American Scientist 80:579-591, 1992. Formal language theory is a major subfield of
computer science theory; it is based on Noam Chomsky’s work on linguistics in the 1950s and 1960s, especially the Chomsky
hierarchy, a categorization of languages by their inherent complexity. Formal languages are at the heart of parsers and compilers,
and there exists a wide range of both theoretic analysis and practical software tools for the production, transformation, and
analysis of text. The main algorithmic tool of language theory is the generative grammar, a series of rules that transforms higher-
level abstract units of meaning (such as “sentence” or “noun phrase”) into more concrete potential statements in a given lan-
guage. Grammars can be categorized into regular, context-free, context-sensitive, and recursively enumerable, each of which
requires more algorithmic complexity to recognize than the level before it.
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identification of specific words), syntactic (the grouping of words into grammatically correct phrases),
semantic (the assignment of meaning to words and phrases), and pragmatic (the role of a piece of text in
the larger context). These match entirely well to genomic analysis: grouping bases into codons, genes,
the function of the resulting protein, and the role of that protein in the larger molecular system.77

Linguistic analyses can reveal or explain relationships between bases that are far apart in a se-
quence. For example, an RNA structure called a stem-loop has a palindrome-like sequence, with Watson-
Crick pairs at equal distances away from the center. Traditional probabilistic or pattern-searching
approaches would have some difficulty recognizing this structure, but it is quite simple with a grammar
that produces palindromes. Some sequences of nucleic acids result in ambiguous linguistic interpreta-
tions; while this is a difficulty for computer languages, it represents a strength of biological linguistic
analysis, because these ambiguities correctly represent alternative secondary structures.78

This approach has been fruitful for analyzing genetic sequences and characterizing the complexity
and structure of genes. GenLang, a software system that employs linguistic approaches, has success-
fully identified tRNA genes, group I introns, protein-encoding genes, and the specification of gene
regulatory elements.79  Other important findings include placing RNA in the Chomsky hierarchy as at
least beyond context-free languages. Finally, the approach provides a powerful tool for understanding
the evolution of nucleic acid sequences; since the first sequences were most likely random (and thus
regular languages), there must be a mechanism that somehow promoted sequence language into more
powerful linguistic categories. This can be seen as an algebraic problem of operational closure, and the
question is, For which string operations are regular languages and context-free languages not closed?80

77D.B. Searls, “Reading the Book of Life,” Bioinformatics 17(7):579-580, 2001.
78D.B. Searls, “The Language of Genes,” Nature 420(6912):211-217, 2002.
79D.B. Searls, and S. Dong, “A Syntactic Pattern Recognition System for DNA Sequences” in Proceedings of the Second Interna-

tional Conference on Bioinformatics, Supercomputing, and Complex Genome Analysis, H.A. Lim, J. Fickett, C.R. Cantor, and R.J. Robbins,
eds., World Scientific Publishing Co., pp. 89-101, 1993.

80D.B. Searls, “Formal Language Theory and Biological Macromolecules,” Series in Discrete Mathematics and Theoretical Com-
puter Science 47:117-140, 1999.


