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Glossary of Terms

This section provides some useful definitions pertinent to GPS-synchronized devices, communication protocols and communications media. 

DFR – Digital Fault Recorder 

DDR – Dynamic Disturbance Recorder 

SER – Sequence of Events Recorder 

PMU – Phasor Measurement Unit. A device that samples analog voltage and current data in synchronism with a GPS-clock. The samples are used to compute the corresponding phasors. Phasors are computed based on an absolute time reference (UTC), typically derived from a built in GPS receiver. 

PDC – Phasor Data Concentrator. A logical unit that collects phasor data, and discrete event data from PMUs and possibly from other PDCs, and transmits data to other applications. PDCs may buffer data for a short time period but do not store the data. 

Relay – An electromechanical or electronic device applied to the purpose of power apparatus protection. A relay typically monitors voltages and currents associated with a certain power system device and may trip appropriate breakers when a potentially damaging condition is detected. 

IED – Intelligent Electronic Device. A general term indicating a multipurpose electronic device typically associated with substation control and protection. 

UTC – Coordinated Universal Time (initials order based on French). UTC represents the time-of-day at the Earth's prime meridian (0° longitude). 

IRIG-B – Time transmission formats developed by the Inter-Range Instrumentation Group (IRIG). The most common version is IRIG-B, which transmits day of year, hour, minute, and second once per second, over a 1 kHz carrier signal. 

GOES – Geostationary Operational Environmental Satellites. Operated by the National Oceanic and Atmospheric Agency (NOAA). Two GOES satellites broadcast a time code referenced to UTC. Clocks based on this transmission are accurate to 100 microseconds. 

GPS – Global Positioning System. A satellite based system for providing position and time. The accuracy of GPS based clocks can be better than 1 microsecond. 

pps – Pulse-Per-Second. A signal consisting of a train of square pulses occurring at a frequency of 1 Hz, with the rising edge synchronized with UTC seconds. This signal is typically generated by GPS receivers. 

kpps – One thousand pulses per second. A signal consisting of a train of square pulses occurring at a frequency of 1 kHz, with the rising edge of synchronized with UTC milliseconds. This signal is typically generated by GPS receivers. 

Sampling Rate – The number of samples (measurements) per second taken by an analog to digital converter system. 

Navigation – The mode in which GPS receiver has locked onto signals from three or more satellites thus providing accurate time, as well as position. 

COMTRADE-file format – COMTRADE file format is a standardized ASCII text or binary file (2 formats), originally designed for Digital Fault Recorders. It can be used to transfer locally recorded values from a PMU over to the central data storage. COMTRADE ASCII format is not efficient for long-term data storage but could be used for event file retrieval. 

PhasorFile – A binary storage format that is used by PDC for long-term storage of SynchroPhasor data. Currently, this format is not standardized, and may be left in such a state as long as stored data is made available in an industry standard format (i.e. COMTRADE). 

Communications Related Terms 
Unicast – UDP transmission from one host to another (source/destination). When talking about a link on a network, typically a unicast link is inferred. 

Broadcast – Data transmission from one host to many. The destinations will be all computers on the same sub-network. Every computer on the sub-network must process the data. Broadcast is not routable to other network segments. 

Multicast – Data transmission from one host to many. Data is transmitted to a group IP address. Any member of the group can access the address to receive the data. Anybody can then join in this multicast group, and when a server sends to the group, everyone in the group will receive the data. The advantage is that this protocol is routable and does not overload all computers in the local subnet. 

WAN – Wide Area Network, stretching across large geographical distances. Latency’s can be very large, up to many seconds. 

LAN – Local Area Network, within a small building or office. Very low latency between endpoints on the network, often less than a few milliseconds. 

VLAN – A simulated LAN that is spread across a LAN, but uses special IP addresses so that it appears a “physically” separate LAN.  

Lossless data compression – Data stored in a lossless format can be retrieved exactly as it was created. 

Lossy data compression – Data that is stored in a lossy format will have degraded accuracy when retrieved. However, more data can be stored in the same amount of space. Lossy data compression should be applied with caution and is not expected to play major role in synchrophasor data collection. 

Communication Protocols Terms 
IEEE 1344 – A highly efficient protocol for real time Synchrophasor data. Typically data is streamed in this format over UDP/IP or across a serial link. 

BPA/PDCStream – An extension of IEEE 1344, widely used by the BPA PDC and HMI software on the West Coast. 

IEEE C37.118 – This protocol and its associated standard are intended to replace IEEE 1344 and the BPA/PDCStream protocols. Typically data is streamed in this format over UDP/IP or across a serial link. 

OPC DA – (Open Process Control Data Access) OPC was created for industrial automation, for use within a factory, for example. It is designed to share simple data between computers running only Microsoft Windows®. There are 3 revisions that are commonly used. Different revisions are generally not compatible. This protocol is useful for simple data sharing between computers in a small LAN, but has serious security and performance issues when deployed across a WAN. OPC uses TCP/IP the underlying link. 

OPC HAD – (Open Process Control Historical Data Access) an offshoot of OPC DA which allows a client to request stored data. This is a separate protocol, and different servers/clients must be developed. 

OPC AE – (Open Process Control Alarms and Events) an offshoot of OPC DA, which allows clients to be notified on alarm conditions. As with OPC HAD, this is a separate protocol, and different servers/clients must be developed. 

OPC XML DA – (Open Process Control XML Data Access) – An OPC DA protocol designed for use across a WAN. This protocol uses the standard Web Services structure, using SOAP and XML. This protocol is simple to work with and will allow PMU devices that don’t run Windows® as an operating system, to be an OPC server for providing data to any client. The OPC Foundation is creating a ‘Unified Architecture’ using the XML-based structure as the foundation for future development.  

TCP/IP – TCP/IP is a low-level protocol for use mainly on Ethernet or related networks. Most of the higher-level protocols use TCP/IP to transport the data. TCP/IP provides a highly reliable connection over unreliable networks, using checksums, congestion control, and automatic resending of bad or missing data. TCP/IP requires time to handshake new connections and will block if missing data is being resent. 

UDP/IP – UDP/IP is a low-level IP protocol that provides low-latency communication across Ethernet or related networks. UDP/IP does not provide any error-control or resending of missing or bad data. The Application will need to check data for correctness. UDP/IP however, does not require time for handshaking and will not block, making it ideal for real-time data communications. 

HTTP – HTTP is a protocol made popular by the Internet and web pages. Web pages are transmitted using HTTP. It has also become the mechanism for the Web Services Paradigm using SOAP and XML. HTTP uses TCP/IP as the underlying protocol. 

FTP – FTP is the file transfer protocol. It is a simple protocol where a client can connect and request a file to be downloaded. A separate data connection is automatically created where the data is then transferred across the network while the command connection becomes unavailable. FTP is commonly used to get recorded data from devices. 

VPN – (Virtual Private Network). A communication network constructed by using public wires to connect nodes with procedures to ensure that only authorized users can access the network and that the data cannot be intercepted. These procedures typically use encryption and other security mechanisms. 

1. Introduction

1.1 Brief review of State Estimation

State Estimation plays a key role in real-time power system operations. It determines a best estimate of the current actual power system state (voltage, angle, CB status, tap, etc.), based on available SCADA measurements, power system model and other data.  MW/MVAR flows in the transmission lines, transformers, and other equipment can then be derived. State Estimation results are used by subsequent network contingency analysis, security enhancement, optimization applications, dynamic security analysis (including voltage and transient stability), and other applications. It is the foundation of power system grid security analysis. Also State Estimation provides the system topology to Simultaneous Feasibility Test, which is an important application in the power market system. In the past few years, with the advent of electricity markets and the greater emphasis on improved grid security due to blackouts, State Estimation has become a critical, ‘must-run successfully’ control center function. Fig. 1.1 describes the role of State Estimation in power system operation.

One of the key state variables in State Estimation is the bus voltage phase angle. This was not available as a measurement before. Nowadays, PMUs can provide the direct measurement of synchronized voltage phase angle at different substation buses, at rates many times faster than the SCADA scan rates which are typically in seconds. However SE may execute at 2-5 minutes intervals. Incorporating phase angle measurement in State Estimation requires little change since the angle is already the key state. The addition of current phasor data leads to more complex modifications. Modeling of these new measurements in State Estimation can be achieved by methods from Monticelli and Ali Abur’s books [24][28].
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Fig.1.1. The role of State Estimation in power system operations

There are two major PMU projects currently being conducted in North America: WAMS in the western area [21] [23] and EIPP in the eastern area [22]. More than 100 utility companies, ISOs, national labs, and vendors are participating in these projects. Hundreds of PMUs have been installed in substations and the data are now available for the network applications and system monitoring. Utilities are also typically willing to share synchronized phasor data with neighboring utilities.

Initial research from academics and vendors have shown that PMU data can provide valuable, ‘instantaneous’ information about system security (and imminent instability), and has the potential to improve the reliability and robustness of State Estimation. However there are some practical implementation issues involved when the PMU data are introduced in State Estimation. 

1.2 Organization of this document

This document is organized as follows:

· Chapter 1 gives a brief review of State Estimation and its important role in present power system operations.

· Chapter 2 reviews how phasor data can be used in State Estimation: model validation, state measurement, State Estimator enhancement, and hybrid State Estimator.
· Chapter 3 describes the data accuracy and  quality

· Chapter 4 discusses the reliability of data delivery for the GPS-synchronized equipment, data access (PI database), communication standard (OPC format)

· Chapter 5 suggests minimum requirement for the GPS-synchronized equipment, phasor data concentrator, databases, and communication network.

· Chapter 6  discusses issues when phasor data are implemented in State Estimation

· Chapter 7 describes the state estimation metrics in terms of accuracy, performance, robustness, and completeness.

· Chapter 8 lists the references and Chapter 9 for Appendix

2. Phasor Data Applications in State Estimation

State Estimators in modern electric utility are complex tools used to determine the state of the power system under quasi-steady state conditions. The key state of the system is defined as the collection of positive sequence voltage phasors (magnitude and angle) at all nodes in the system. The conceptual realization of phasor measurement has added a new dimension to the State Estimation problem by making possible the direct measurement of the state of the system. Since the initial PMU algorithms were developed in the mid 1980's, several uses of PMUs related to state estimators have been proposed, tested or implemented. This section reviews the most relevant proposed applications of phasor data related to State Estimation:

1. Model Validation

2. State Measurement

3. Enhanced State Estimation

4. Hybrid State Estimator 
2.1 Model Validation

The first practical application that combined the use of PMU data and State Estimators was model validation. Most of the research and analysis is performed using system models of varying levels of details and complexity depending on the application. Until the implementation of the first PMUs there were very few possibilities of evaluating the accuracy of the system model for wide-area applications. The availability of phasor measurement data has made possible the comparison of the static and dynamic behavior of the system with the one predicted by various system models. System models are not expected to provide accurate information for all possible scenarios but gross errors and incorrect model settings need to be identified and corrected in order to increase the level of confidence on the information derived from the models. Unless PMUs are available at every node in the system it is not possible to perform a model validation without the use of a state estimator data. 
In order for the simulations to be compared with PMU measurements, the initial conditions for the simulation must be as close as possible to the actual system conditions under which the PMU data is captured. The first system model validation using PMU data was performed in Georgia in June of 1992 as part of an EPRI sponsored project on Parameter Identification Data Acquisition System (PIDM). For these tests, a 500kV line under light load was open and closed while six PMUs collected data of the response of the system to the line-switching event. Figure 2.1 shows the location of the six PMUs used for this model validation. Prior to each switching event the State Estimator outputs were recorded to be used later to set initial conditions for the simulation of the same event. Figure 2.2 shows one of the oscillations recorded by the PMUs compared to the oscillations obtained from the system model of Southern company. The State Estimator information prior to the test was used to set the initial conditions for the simulation of the event. . Note from the figure that the simulation and the measurement are very close for the two substations of Southern company where the most accurate models were used. The simulation is not as accurate for the other three PMUs located at substations in other utilities due to the use of equivalents to model the external systems.
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Fig. 2.1. PMU locations for 1992 validation
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Fig. 2.2. Results of 1992 system validation


2.2 State Measurement

Since the phasor measurement units provide a direct measurement of the system state, one of the first PMU applications suggested related to state estimation is the concept of State Measurement. This futuristic application will replace the State Estimator’s RTUs with PMUs and the Weighted Least Square estimators with Linear State Estimator which uses only phasor data [2]. To incorporate redundancy on the data set for this linear estimator PMU’s current measurements would need to be added to the estimator.  The measurement vector for this proposed estimator is given as:
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(2.1)

where VB and IL are the true values of voltages and currents and εB and eL are their corresponding measurement error vectors. If the line current vector is expressed in terms of the bus voltages and system admittance, Equation (2.1) can be expressed as:
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(2.2)

Notice that I is the identity matrix. If the covariance of the error is given by
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and the measurements are assumed to be uncorrelated, W is a diagonal matrix and (2.2) can be solved as:
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where G is the constant gain matrix that will only need to be changed for topology changes in the system. Equation (2.3) is linear and the state can be estimated with a single matrix computation without the need for iterations and eliminating convergence problems. Even though this is a non iterative solution, it may still be subject to ill conditioning, in which case, the solution can be quite bad.

One of the main implementation problems with this futuristic concept is the requirement of PMU measurements at every node in the system.  Due to the high cost of having a PMU at each node, some of the studies performed  in the mid 1980’s focused on PMU placement and pseudo measurements for complete or partial observability of the system for  static and  dynamic state estimators [2][3][4][5]. One of these studies suggests a gradual placement of PMU and provides a methodology for PMU placement with a selected depth of unobservability [5]. The study defines depth of unobservability as the distance of an unobserved bus to its observed neighbors and provides a methodology for a phased installation of PMUs. Figure 2.3 shows this concept for a degree one of unobservability. The right placement of three PMUs in the given system results in only two nodes not been observable, three fully observable nodes and eight pseudo observable nodes. Fig. 2.4 shows the same concept applied to the IEEE 57bus system. 
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Fig. 2.3. Conceptual illustration of PMU placement with depth-one unobservability [8]
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Fig. 2.4. PMU placement with depth-one unoberservability for the IEEE 57 bus system [8]
2.3 State Estimator Enhancement

Several studies have been performed on the integration of PMU data into existing WLS estimators [6][7]. The measurement vector for state estimators with PMU data is given by:
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If PMUs only provide measure angle differences one of the main concerns of this implementation is the determination of the swing bus. The simplest solution to this problem is to require that a PMU be set in the selected swing bus and that the angles of all PMU be computed with respect to the swing PMU. The problem with this solution is the high dependability on the swing PMU whose absence will render PMU data useless for the estimation process. The selection of which phase angle differences to use should be dynamic so that loss of one or more readings does not make it impossible to use the phase angles at all.

The only documented implementation of a state estimator with phasor measurement was performed at Sevillana de Electricidad in Spain in the early 1990s, the implementation included a detailed analysis of the effects of angle measurement errors in the quality of the solution of the enhanced WLS estimator [7]. This study found that to have any positive effect on the estimator the precision of the phase angle must be better than 0.3 degrees, or 50 μseconds (50Hz system). For the effect of the phase angle measurement to be noticeable the precision on the angle difference must be better than 0.12 degrees (20 μsecond error in a 50Hz system). The study also found that there is little reduction in the number iterations when phasor measurements are included in the measurement set. The main results from this study are summarized in Table 2.1. 

It should be mentioned that the phasor measurement units installed at Sevillana are different to the ones being used in the EIPP project. At Sevillana the GPS signals were used to time the zero crossing of the voltage signal and the zero crossing was used to determine angle differences. Additional filters were performed on the angle measurement to determine phase angle differences every 10 seconds. In addition these units computed only phase angles, voltage magnitude data was not part of the synchronized measurement.

Table 2.1 Phasor Measurement effectiveness classification from Sevillana’s study [7]

	Synchronization

Accuracy

(microseconds)
	Standard Deviation

of phasor metering

Error (degrees)
	Classification

	>30
	>0.54
	Ineffective, No impact on estimator solution

	20 – 30
	0.36 – 0.54
	Somewhat effective, little impact on solution

	7 – 20
	0.126 – 0.36
	Effective, impact is similar to that of

other measurements

	< 7
	< 0.126
	Very Effective, strong effect on solution,

superior to that of other measurements


There are some recent studies on using the absolute angle measurement from PMU in State Estimation. Issues such as bad data and data drop out need to be considered since the absolute angles change very fast.

2.4 Hybrid State Estimator

The hybrid state estimator uses (a) a quadratic model of the system and (b) measurements consisting of traditional SCADA data and PMU data to estimate the states of a system. It can be applied to a per phase equivalent model as well as a three phase model. The description of the method uses a three phase formulation. The usual per phase equivalent approach is a subset of the described model.

2.4.1 Measurement Data Set

The measurement types supported are classified into (a) phasor measurements and (b) non-synchronized measurements. The list of measurements is given in Table 2.2.

Table 2.2 List of Measurements

	Phasor Measurements
	Non-Synchronized Measurements

	Description
	Type Code 
	Description
	Type Code 

	Voltage Phasor, 
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	1
	Voltage Magnitude, 
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	4

	Current Phasor, 
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	2
	Real Power Flow, 
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	5

	Current Injection Phasor, 
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	3
	Reactive Power Flow, 
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	Real Power Injection, 
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	Reactive Power Injection, 
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Since at each bus the model may have a neutral node as well as a ground node, the measured phase voltages are always considered as the phase to neutral voltages. The above measurements are related to the state of the system via the “model” equations. As for system states we consider the voltage phasors at all nodes of the system, i.e. the three phase voltages at all buses of the system, the neutral node voltage as well as the ground  node voltage.

It is important to note that if there is at least one synchronized measurement, then the state of the system is considered to be the phasor voltages (real and imaginary part) for all nodes. This is different from the traditional state estimation, where the phase angle of one voltage is selected to be zero.

First the state of the system is defined as the node voltage phasors at each node of the system. A bus k will have three to five nodes, phases A, B and C, possibly a neutral and possibly a ground node. The state of the system at this bus is the node voltage phasors. We will use the following symbols (for a four node bus, i.e. phases A, B, C and neutral N).
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The state for a four node bus k will be defined as follows:
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It is also important to note that normally measurements of neutral or ground voltages are not available. On the other hand these voltages are very small under normal operating conditions. For this reason, we introduce one pseudo-measurement of voltage phasor for each neutral and ground node in the system. The value of this measurement is exactly zero. The equations for each one of the measurements are given below. The symbols utilized appear in Figure 2.5.
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Similar equation can be obtained for phases B and C.
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Fig. 2.5 Measurement Definition – Three Phase Model

To facilitate the definition and the measurements and to devise a scheme for interfacing with the three phase quadratic power flow program, each measurement is defined with the following set:
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where:
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The above set allows complete correspondence between measurement and system state. This sets are utilized as follows. For each IED, the measurement pointers are defined for each channel of the IED. A sample file for a specific IED is given in Figure 2.6.

IED-ID  string

TIME_TAG  iDayNumber  dSeconds

VOLTAGE_PHASOR  1234 GLEN161  A-N 93.1  3.5  kV

VOLTAGE_PHASOR  1234 GLEN161  B-N -46.3  -80.6  kV

VOLTAGE_PHASOR  1234  GLEN161  C-N 46.1 79.6  kV

CURRENT_PHASOR  1534  GLEN161  A 0.833  0.081  kA

CURRENT_INJECTION_PHASOR  1534  GLEN161  A 0.000  0.000  kA

VOLTAGE_MAGNITUDE  1234  GLEN161  A-N  93.4  kV

REAL_POWER_FLOW  1534  GLEN161  A  77.55  MW

REACTIVE_POWER_FLOW 1534  GLEN161  A  7.55  MVAr

Fig. 2.6 Example File of Measurement Pointers

2.4.1 Hybrid Three-Phase State Estimator

This section presents the hybrid three-phase state estimator. This state estimator uses standard SCADA data and synchronized data together with a full three phase system model to perform state estimation. The mathematical procedure is described next.

The measurements are assumed to have an error that is statistically described with the meter accuracy. The present state estimator supports the measurements that are listed in Table 2.2. Each one of these measurements has the following mathematical model.

Phasor measurements:
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Pseudo-measurements for neutrals and grounds:
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Non-synchronized measurements:
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The state estimation problem is formulated as follows:
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                       (2.4)
It is noted that if all measurements are synchronized the state estimation problem becomes linear and the solution is obtained directly. In the presence of the non-synchronized measurements and in terms of above formulation, the problem is quadratic, consistent with the quadratized power flow. Specifically, using the quadratic formulation, the measurements can be separated into phasor and non-synchronized measurements with the following form:
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In above equations, the subscript s indicates phasor measurements while the subscript n indicates non-synchronized measurements. The best state estimate is given by:

Case 1: Phasor measurements only.
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Case 2: Phasor and non-synchronized measurements.
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where:
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3. Data Accuracy and Quality   

GPS-synchronized equipment has the capability to provide a data acquisition system with the following precision: 

1. Time tagging with precision better than 1 microsecond (or equivalently 0.02 degrees of phase at 60 Hz). 

2. Magnitude precision of 0.1% or better. 

This precision cannot be achieved for the overall system in any practical application, i.e. in the substation environment. In addition, depending on the implementation approach and equipment used, the accuracy of the collected data and the reliability of the data availability may differ. Typical GPS synchronized equipment (PMU’s) is very accurate. However, the inputs to this equipment are scaled down voltages and current via instrument transformers, control cables, attenuators, etc. We collectively refer to it as the instrumentation channel. The instrumentation channel components are typically less accurate. Specifically, potential and current instrument transformers may introduce magnitude and phase errors that can be magnitudes of order higher than the typical PMU accuracy. Although, high accuracy laboratory grade instrument transformers are available, their application in substation environment is practically and economically infeasible. 

Data accuracy can be addressed as Total Vector Error (TVE) [9] or segregate errors of magnitudes and phase angles.

3.1 Total Vector Error (TVE)

The Total Vector Error (TVE) definition that IEEE C37.118 [9] describes can be rewritten as follows:
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where:
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is the ideal phasor
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is the measured phasor

Notice that the measured phasor can be a voltage phasor or a current phasor. Figure 3.1 shows the graphical representation of the ideal, measured and error phasors.   The error phasor is:
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The circle shown in Fig. 3.1 encompasses all possible phasor measurements for a specified TVE.
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Fig. 3.1 Ideal, measured and error phasors.

The circle encompasses all possible phasor measurements for a specified TVE. For example, the TVE in percentage for a device that has magnitude error of 0.1 % and phase error of 0.1( is: 
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The above TVE calculation includes magnitude and phase errors.  TVE for magnitude error only is 0.1 % and TVE for phase error only is 0.1745 %. 

3.2 Segregate errors of magnitudes and phase angles

PMU measurements have the following characteristic. The magnitude error is typically different than the phase error. For most PMU units, the phase error is much smaller than the magnitude error. Utilizing the total phasor error results in missing information and compromises the performance of the state estimator. Within the formulation of the hybrid state estimator, the phase and magnitude errors are segregated by simply introducing an additional datum. This datum is treated as a pseudo measurement. The definition of the pseudo measurement is:
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The standard deviation of the error 
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 depends on the characteristics of the PMU. It expresses the error of the phase measurement. This formulation segregates the magnitude and phase errors of PMU data.

BPA made a number of performance tests on PMUs [35,36].  The first of these were on the original PMUs produced at Virginia Tech.  In 1995 these tests were repeated on the first commercial PMUs.  Both PMU types were found to have excellent steady state and transient response characteristics.  Steady state accuracy with standard scaling was around 0.5%.  It could be improved with calibration to 0.1% over the full load range.  Table 3.1 shows a sample of steady state phase and frequency results.  The phase angle measurements showed a constant offset error, so the deviation figures were 0.  Perhaps the most impressive result was the low measurement noise which was 3-10 times lower than the error.  This allowed determining measurement error with a single point rather than averaging several readings.

Table 3.1  Sample phase and frequency test results for the commercial PMU [37]

	Test Phase (()
	% Error
	Std Dev (()
	Max Dev (()

	30
	0.024
	n/a
	n/a

	45
	0.021
	n/a
	n/a

	200
	0.002
	n/a
	n/a

	Test Freq (Hz)
	% Error
	Std Dev (Hz)
	Max Dev (Hz)

	59.12
	0.002
	0.002
	0.007

	60
	0
	0.0002
	0.001

	60.32
	0
	0.0025
	0.006


The dynamic response tests were equally impressive.  Step and ramp changes in amplitude, phase, and frequency were injected using a digital model power line.  All changes were well within specification and expectation.  The PMU responded to step changes within a cycle with no overshoot.  The frequency measurement tracked changes within 1.5 cycles.  Figure 3.2 shows the response with 59-61-59 Hz frequency ramp.
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Fig. 3.2.  Frequency measurement response to a 59 to 61 Hz continuous ramp (sawtooth).

4. Reliability of Data Delivery

The reliability of data delivery depends on two requirements: (a) ability of the GPS-synchronized equipment to output correct data continuously (for example, some event may interrupt phasor computations for a short time), and (b) ability of the communication layers to deliver data without error or loss and on time. 

Standards for item (a) above do not exist. Standards for item (b) exist in various forms and in general are very complex. Discussion of these issues is provided below. For the purpose of setting a goal regarding reliability of data delivery, the following requirements will be placed for layer 1 applications: 

1. Correct data streaming from GPS-synchronized equipment will not be interrupted more than once in any 10 minute interval and no interruption can exceed 0.5 seconds. 

2. The reliability of the communication layer should be better than 0.999 with the ability to locally store data and avoid data loss. 

System performance must be evaluated by considering what each element in the system does.  The PMU makes the actual measurement and transmits the data digitally.  Communications move the measurement to the PDC.  The PDC correlates, stores, and re-distributes it.  Once in digital form, the measurements do not degrade.  They may be lost, misplaced, or delayed at various stages of transmission and handling.  Consequently, performance measures for the system after the PMU are data loss, component and system reliability, and operation speed.

A fully functional PDC records operating statistics including data loss, signal loss, and PMU time synchronization failures.  To do this the PDC checks each packet for errors and keeps a record of the number of packets with checksum errors as well as the total number received.  If packets are not received for a short period of time, it records a signal loss.  This is usually a communication failure but could also indicate a PMU failure.  Loss of synchronization must be detected by the PMU as it is not always evident in the data.  The BPA PDC records both short term and long term sync losses for system monitoring.  A typical performance summary is shown in Table 4.1, which shows the BPA phasor system performance reliability over a 2 month period. Signal Reliability is % of time data is continuously received, and sync reliability is the % of time the PMU is synchronized with GPS [37].

A PDC or complete communication system failure would cause loss of all data.  The only PDC failures recorded at BPA have been due to program ‘bugs’ that stalled the system.  The PDC has a hardware watchdog timer for this possibility, so if the core program fails, it will automatically re-start and be fully functional within 2 minutes.  Non-core functions, such as recording disturbance files on disc, can fail and not automatically restart, but the core input program will continue.  Very few failures of core or non-core programs have been recorded during the last 7 years of continuous operation, and no significant data loss has occurred.  BPA employs several independent communication systems, so no complete failures have occurred.  There has been some data loss from a particular substation due to the failure of a single channel. 

Table 4.1 Phasor System Performance Reliability

	Station
	Reliability (%)
	Notes

	(PMU)
	Signal
	Sync
	

	GCoul
	97.52
	99.974
	PMU fail 2 days

	JDay
	99.929
	99.996
	Normal, modem

	Malin
	99.997
	93.74
	PMU clock failure

	Colstrip
	99.82
	100
	Comm sys problems

	BigEddy
	99.99
	99.988
	Normal, fiber, digital

	MValley
	99.983
	99.74
	PMU clock problems

	Keeler
	99.996
	99.95
	Normal, modem


Many aspects of operation speed could be considered.  Each system element must operate at sufficient speed to process data without loss.  More speed does not improve loss or reliability, but can reduce delay.  Latency, the delay from event to data availability, is very important for control applications.  Delays in the order of milliseconds can be critical.  Latency can be determined for various stages in the system.  The first stage is time of measurement.  The PMU computes phasors over some number of power line cycles which will delay the apparent time of event due to averaging.  It will have additional delays due to filtering and signal processing.  The second delay is the time of transmission between the PMU and the PDC.  Third is the input processing time of the PDC.  Last is the time to output the data to a controller.  (A control system will have additional delays for controller, communication, and actuators). For state estimation, latency may not be a critical issue if phasor data are included into a traditional state estimator which typically runs once every few minutes.
The follow sections present discussion and evaluation of various options that affect reliability of data delivery. 

4.1 Data reliability of GPS-synchronized equipment

Present GPS-synchronized measurement equipment has different methods of data generation priorities. For example dedicated GPS-synchronized equipment may have an independent channel for each measurement and computation of phasors frequency and rate of change of frequency that is uninterrupted from other calculations. Other equipment may use multiplexing and the priority of the phasor, frequency and rate of frequency change computational algorithms may be affected by other functions. If the priority of such computations is suspended, the accuracy of the data will be also suspended. 

4.2 Data access

Present GPS-synchronized measurement equipment has different methods of data access and different levels of data availability. For example one manufacturer outputs only the phasors without access to the data of all three phases or point-on-waveform data. Some devices have RS232 ports, other Ethernet, etc. Some devices are interfaced to data concentrators at the substation and the data concentrator is charged with communications. With the EIPP scheme, each GPS synchronized measurement device should communicate with the PDC and each PDC should communicate with other PDCs. In other words there are several levels of communications. 

4.3 Communication standard

Within WECC, much work has been performed that resulted in standards for communicating and transferring data. The C37.118 IEEE Standard defines the data formats for PMU to PDC and PDC to PDC communications. WECC has also defined a standard protocol for PDC to PDC communications. These standards are usable today and should be retained. 

There is also activity in defining communications protocols for more general applications. The IEC Technical Committee 57 Working Group 03 (TC57 WG03) has the responsibility of developing a standard for telecontrol, teleprotection and associated telecommunications for electric power systems. The group has created the IEC 60870-5, a group of five utility-specific protocol standards. The IEC standard is being accepted by all major manufacturers of intelligent equipment for utility applications. 

It is important to note that there is a way to merge the C37.118 standard within the IEC 60870. 

The issue of network and protocols is a very complex issue and a moving target. There is a great deal of activity that has resulted in several interoperability projects and demonstrations. On the other hand BPA/PNNL has invested a great deal of effort in developing communications/network/protocols that are close to some standards but not interoperable with the new IEC standard. The issue of standardization should be extensively discussed and decisions should take place early in the game. One way to approach it is to develop filters/converters at the PDC level that will make the EIPP interoperable with other IEDs. It is important to recognize that the deployment of relays with GPS-synchronization is presently occurring and they will proliferate in the future. If we tap on this resource, it will dramatically boost the EIPP project. As the industry is moving in this direction, the two major issues will be: (a) interoperability (the relay manufacturers are addressing this issue) and (b) throughput. 

5. Suggested Minimum Requirements 

This section provides the minimum requirements for the various components of the phasor measurement network. It is based on the discussions and analysis of the issues presented in the previous sections. The suggested minimum requirements are deemed adequate for the layer 1 applications of this system, namely streaming of phasor data and event capturing. The requirements would be addressed at the following aspects: timing accuracy; measured quantities; data sample rates; phasor data rates; phase angle accuracy; magnitude accuracy; TVE (Total Vector Error); allowable latency; data formats; data transfer protocols; database; etc.

5.1 GPS-synchronized Equipment 

Table 5.1 summarizes the minimum requirements for phasor measurement units. 

Table 5.1 GPS-synchronized Equipment Suggested Minimum Requirements

	Specification 
	Suggested Minimum Requirement 

	Synchronization Mechanism 
	Data synchronized with UTC time from a GPS receiver with accuracy of 1 microsecond or better. 

	Measured Quantities 
	Voltage phasors, Current phasors, Frequency (f), rate of frequency change (df/dt), digital status indications

	Frequency Response 
	At least 10 Hz bandwidth (55-65 Hz) within 3 dB; -40 dB rejection at frequencies above the sampling Nyquist frequency, and -60 dB at power system harmonic frequencies

	Raw Data Sampling Rate 
	Minimum of 1440 samples per second 

	A/D Conversion Resolution 
	12 Bits 

	Phasor Data Rate 
	Support IEEE 1344, upgrade to IEEE C37.118 in 2006: 30 samples per second 

	Streaming Data Format 
	IEEE1344, upgrade to C37.118 in 2006 

	Event Triggering 
	Over-Current, Under/Over-Voltage, Under/Over-Frequency, Under/Over df/dt, status change 

	Naming of Event Files 
	New Standard under development (WG Report: File naming convention for time sequence data) 

	Event Data Formats 
	COMTRADE or BPA PhasorFile

	Event Data Types 
	Phasors, Optionally waveforms, Individual phase phasors 

	Event Data Record Lengths 

(Waveform Data) 
	10 cycles of pre-trigger data, 1 second total duration 

	Event Data Record Lengths 

(Phasor Data) 
	30 seconds of pre-trigger data, 120 seconds total duration 

	Event Data Retention 
	1000 events 

	Continuous Data Retention 

(Phasor Data) 
	14 days 

	Data Link 
	Ethernet (Optional leased line, dial-up, microwave) 

	Protocol 
	UDP, (Optional TCP/IP) 


5.2 Phasor Data Concentrators (PDC) 

A Phasor Data Concentrator is a logical unit that collects phasor data, and discrete event data from PMU’s and other PDC’s, and transmits data to other applications. PDC’s should have storage capability to buffer data for a reasonable time to allow data alignment and other vital tasks. Thus, a PDC is capable of receiving, aligning, storing and transmitting GPS-synchronized data. Table 5.2 below summarizes the minimum requirements for a phasor data concentrator. The minimum requirements enable applications of streaming phasor data and event capturing. 

Table 5.2: Phasor Data Concentrator Suggested Minimum Requirements

	Specification 
	Suggested Minimum Requirement 

	Input Data Format 
	IEEE1344, upgrade to C37.118 in 2006 if available 

Optional: OPC 

	Output Data Format 
	IEEE 1344. Upgrade to C37.118 in 2006. (Optional: PDC Stream, PDCxchng) 

	Data Alignment 
	Adopt BPA standard* 

	Output Data Rate 
	It should support IEEE1344 and C37.118. Default value: 30 samples per second 

	Streaming Channels 
	User Defined Configuration 

	Continuous Data Retention 
	32 Days 


* We recommend adaptation of the BPA standard described in reference. 

It is important to note that it is possible that a PDC may receive data from PMUs from different manufacturers. Aligning data from different manufacturer PMUs may be a complex task that requires knowledge of the characteristics of each unit. For application level one, the alignment of data is done on the basis of the time tag that each PMU data has. This may result in misalignments of several microseconds. For streaming data applications and event capturing applications, this misalignment is not critical. For other applications it may be critical. 

5.3 Databases 

A database resides locally with the PDC to read, record, store, and manage phasor data. Table 5.3 below summarizes the minimum requirements for a phasor database. The PDC software should be flexible to accommodate user selections. 

Table 5.3: Phasor Database Suggested Minimum Requirements

	Specification 
	Suggested Minimum Requirement 

	Data Recording Organization 
	Circular Buffer (new data overwrites oldest data) – Length of buffer should be user selected 

	Data Retention 
	Archive important data 

	Data Compression 
	Lossless Compression 

	Input Data Format 
	OPC, PDCstream, COMTRADE. IEEE 1344. Upgrade to C37.118 in 2006
Optional: (Optional PDCxchng, Phasorfile, XML) 

	Output Data Format 
	OPC. Optional: IEEE 1344, C37.118, PDCstream, COMTRADE, PDCxchng, Phasorfile, XML 

	Continuous Recording 
	Yes 


5.4 Communication Network 

The network comprises the physical communication paths for phasor data exchange. Table 5.4 summarizes the minimum requirements for a network. 

Table 5.4: Communication Network Suggested Minimum Requirements

	Specification 
	Suggested Minimum Requirement 

	PMU to PDC 
	Continuous link , leased line network. 

	PDC-PDC 
	T1 leased line 

	DB-DB 
	Internet (Optional NERCNet) 

	Bandwidth PMU to PDC 
	36800 baud (Optional 10/100 T-Base) 14,400 BPS 

	Security 
	VPN/Internet 

	Latency 
	5 seconds 

	Protocols 
	See section 4 in [38]


Data communications are usually organized as multilayer entities. The lowest layer upon which all others rest is the physical layer. Six layers exist above the physical layers, where various protocols are implemented. Detailed analysis and evaluation of each communication layer is beyond the scope of this document. However, it is useful to touch on the requirements of the bottom layer – the physical layer. There are several options for implementing the physical communications layer of the data transfer: 

      • Serial asynchronous communication channels (RS-232, 9.6 to 64 kbps) 

• 10/100 Mbps Ethernet network interface 

• SONET 

The RS-232 standard is relatively simple and has been effectively used for many years in transferring data from PMU’s to data concentrators. The main drawback of the RS-232 based communications is limited bandwidth. Table 5.5 illustrates the bandwidth requirements of PMU data transfers as a function of number of channels, and data format. The communications channel bandwidth is expressed in kilo bits per second (kbps). The table assumes a rate of 60 phasors per second for each channel. The data from each sampling instant are organized into packets which include the phasor values as well as additional information such as PMU identification and status codes as defined in the IEEE C37.118 Standard. 

Table 5.5: Required Communications Bandwidth for PMU Data 

	Number of 

Phasors 
	Required Bandwidth 

(16 Bit Integer Format) 
	Required Bandwidth 

(32 Bit Floating Point Format)

	2 
	15.3 kbps 
	21.1 kbps 

	4 
	19.2 kbps 
	28.8 kbps 

	6 
	23.0 kbps 
	36.5 kbps 

	12 
	34.6 kbps 
	59.5 kbps 

	24 
	57.6 kbps 
	105.6 kbps 

	100 
	203.5 kbps 
	397.4 kbps 


Comparing the required bandwidth to that of a standard 56kbps RS232 port it is concluded that RS232 is usable for up to 24 channels for 16 bit integer phasor representation, or 12 channels for 32 bit floating point phasor representation. Thus, for a higher number of channels a different communications hardware layer must be selected. For example, it is estimated that a 10Mbps Ethernet will support up to 1500 phasors originating from 150 different PMU’s at a rate of 30 samples/sec, while a 100Mbps Ethernet will support 15,000 phasors originating from 1500 PMU’s. 

It is expected that due to bandwidth requirements, data links beyond the PMU to local PDC will require faster communication hardware layer such as 10/100Mbs Ethernet. It is important to note that the Ethernet network to be used for real-time phasor data communications must be free of data transfer latencies. It is possible to deploy such networks with proper equipment and protocol selection. The details of this process are beyond the scope of this document and are best handled by IT staff.

6. Integration of Phasor Data with State Estimation

As stated above, SCADA measurement is the main real-time data source to State Estimation and PMU data are different from the common SCADA data. Many practical implementation issues occur when the PMU data are introduced in State Estimation [19]:

1. PMU data conditioning. PMU data quality needs to be checked before they are used by state estimation. Similar to SCADA data problems, PMU data may be static over some time, with flipped signs, have scaling problems, etc.

2. The angle measurements available to SE may be absolute or relative angles. If absolute angles, the reference is in fact the UTC time and the GPS satellites are usually reliable. But bad data, data drop-outs and other issues during communication need to be considered. This is especially important for the absolute angle measurements since they change very quickly. If relative angles, users should be careful with selection of a reference PMU and re-assignment of the reference in case it fails. Although the location of the reference PMU has no impact on SE, the PMU data are all relative to the same reference. A reference PMU (maybe a pseudo PMU) has to guarantee to work all the time. 

3. Calibration of PMU data from different vendors. Research has found that PMU vendors have different measurement values of the same data, which may be caused by the device or the algorithm. In such cases, measurements will need to be calibrated and offsets are used to correct the data.

4. Calibration of PMU data from different utilities. PMU calculates positive sequence data based on the three-phase (ABC) measurements. Utilities may have different name conventions for their phases. Also the substation names, node names, and transmission line names. These differences need to be considered during the modeling.
5. Synchronization of the PMU (received 20-30 times a second) and SCADA data (updated every 4 seconds or even longer). The general State Estimation program (which typically runs every 2-3 minutes) uses one snapshot of SCADA data. SCADA data time skew is a big problem for the present State Estimation. With the accurate time stamp added to the PMU data, synchronized PMU data set can be used in State Estimation. Notice that phasors rotate at a rate that is proportional to the frequency deviation from nominal, so any time skew among the phasors will render as useless the phase angle differences. Since only a small portion of the substations are equipped with PMUs, the majority of SCADA data are still not synchronized. Determining the best time that PMU data to be used with other SCADA data needs a lot of system case studies. 

6. Tuning of the PMU data weights for optimal online performance. It should be noted that PMUs still rely on PTs/CTs to collect the data. These PTs/CTs are also used by other devices such as RTUs to measure the voltage and current, which are sent to SCADA. The PMU data weights in State Estimation need to consider two factors, PT/CT and PMU errors. Compared to other SCADA data, PMU data have the advantage for synchronization and can be assigned a higher weight.

7. State Estimation Metrics 

This section is an excerpt from the report “Metrics for Determining the Impact of Phasor Measurements on Power System State Estimation” that was prepared by KEMA, Inc. for the Eastern Interconnect Phasor Project in March 2006.

It is desired that a commercial state estimator excel in four principal areas:

· Accuracy – The state estimator’s principal function is to determine actual system conditions using noisy measurements. It is desired that estimated quantities be as close as possible to their true values.

· Performance – The outputs from the state estimator are needed in a timely fashion by other applications in a control center environment. 

· Robustness – In practice, commercial state estimators must operate in the presence of measurement errors that violate uncertainty assumptions, network topology that differs from that reported by the SCADA system, and network model parameters that are inconsistent with observed power flow measurements. A good state estimator is robust in that it is able to detect and correct for these problems.

· Completeness – The state estimator is required to provide estimates of power system quantities for as much of the network as possible.

The sections that follow propose metrics for each of these categories. The purpose of these metrics will be to provide a basis for measuring the effects phasor measurement units will have on the results of commercial state estimators. This places the requirement on any proposed metric that it should not make any assumptions about or place any restrictions on the algorithms used to perform the estimation. While the literature is replete with comparisons of different estimation algorithms, commercial state estimators wrap proprietary algorithms, and metrics of their performance thus must necessarily take a ‘black box’ perspective. In addition, a good metric should be relatively easy to design and test for. Difficult tests are less likely to be executed. 

With all these criteria in mind, an initial set of metrics was identified and developed.  The set was reviewed, augmented, refined and culled by a panel of helpful reviewers
. The final recommended set of metrics and supporting comments owe much to their contributions. 
Because nearly every control area or electricity market is connected to neighboring transmission systems that influence system behavior, it is nearly always necessary to extend the network model used for state estimation beyond the primary regions of interest into areas where modeling is typically less precise and telemetry less pervasive.  Accordingly, it is expected and accepted that estimation of power system quantities will be better for the immediate network than for outlying regions.  In this document, these networks shall be referred to as the internal and external networks, respectively.

The terms internal and external are intentionally loosely defined, as an appropriate partition of the network model into these two components will vary by state estimator application.  The metrics introduced in the remainder of this document will refer often to the internal network exclusively, with the assumption that the internal network corresponds to the regions where state estimator performance is needed to be the best.  This is not a prescriptive limitation, however, and all metrics identified within this report can be applied to the internal, external, or whole networks as needed.

7.1 Accuracy 

The intended use of a state estimator solution must be considered when defining the criteria for accuracy metrics. In control centers and market operations centers today, the state estimator is required to deliver a power flow solution that, as closely as possible, represents current conditions in the field.  As a tool for helping to ensure system security, it is important that the state estimator solution indicate to operators actual or near violations where they exist without triggering alarms from false positives.

For market operations, the state estimator output is required to provide a power flow solution.  This solution is commonly used to provide total system loss estimates, load bus allocations, and generator injections, all of which have direct effect on financial settlements with market participants.  Further, the calculation of ex post locational clearing prices by some markets [45] involves linearization around the quiescent operating condition provided by the state estimator solution.

7.1.1 Real-Time Accuracy Metrics

Unfortunately, it is very difficult to judge the accuracy of the state estimator during real time operation due to inability to know the actual system conditions.  What can be ascertained in real-time, however, is whether the state estimator solution (including derived quantities) satisfies important necessary conditions to be a power flow solution.

The sum of both real and reactive power injections and flows into each bus must be identically zero to satisfy network power flow equations.  For any given estimate of the state, the estimated real and reactive power flows through branches and shunts is uniquely (and easily) determined.  The sum of these branch and shunt flows necessarily must be exactly offset by the estimated real and reactive net injections from generation and load.  

Only for buses known to have no injection can a non-zero net injection estimate be known to be incorrect and labeled as a mismatch. Where the number of generators and loads is known to be exactly one (1) at a bus, the estimated injection for that apparatus may be uniquely assigned.  In this case, it is not proper to consider the difference between the estimated injection and available local injection telemetry as a mismatch indicating inaccurate estimation; the difference is only a measurement residual the statistics of which can be examined in the context of bad data identification.

When multiple devices exist, network equations do not provide a mechanism to determine the split of the estimated net injection among the devices; if individual injection estimates are required (as they are for real time market clearing, for example) then a heuristic allocation scheme must be applied. If the net injection to be assigned among the devices at the bus is consistent with the known capabilities of the devices, a full allocation of the injection should be straightforward.  In other cases, (e.g. allocation of a net injection of 300MW to two generating units, each known to be limited to 100MW in capacity), the algorithm designer will have to choose between device level consistency and nodal zero net injection.  

With some reservation, the following are proposed as metrics related to injection mismatch:
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These metrics measure real and reactive power mismatch for the internal network, defined by the set of buses Bint. The quantities included in the sums for (7.1) and (7.2) are all the estimated real and reactive network flows and estimated injections at each bus.  That is, the quantities used to calculate (7.1) and (7.2) should exactly match those corresponding to the ‘power flow’ solution from the state estimator used as input to subsequent processes and calculations.  These metrics do not measure accuracy, only the ability of the estimator to meet an important necessary condition for a solved power flow solution.

7.1.2 Controlled Test Accuracy Metrics

Other metrics for state estimation accuracy can be applied by operating the state estimator in a controlled test environment where the ‘true’ system conditions are determined from a solved power flow and the ‘actual’ measurements are created by perturbing quantities derived from the power flow solution with noise.  Such experiments are routinely performed by state estimator vendors during the refinement and tuning of their algorithms.  In short, the test procedure follows this pattern:

1) For a given network model, system conditions and topology, solve a power flow and extract voltage magnitudes, angles, branch real and reactive flows, injections, etc.;

2) Create measurement data to be submitted to the state estimator by perturbing the corresponding quantities from the power flow solution;

3) If desired, introduce topology or parameter ‘errors’ to alter the network model to be used by the state estimator;

4) Produce the state estimator solution, including derived quantities;

5) Evaluate the state estimator’s performance by comparing quantities from the power flow solution to those derived from the state estimator solution.

The most obvious (and convenient) way to generate an accuracy metric is to choose a power flow solution quantity of interest (e.g. bus voltage magnitude) and define a norm-like calculation on the difference between the ‘true’ value (from the power flow solution) and the estimated value, derived from the state estimate.

Before discussing appropriate quantities for comparison it is worthwhile to examine some implications of the form of the metric.  Consider, for example, a network model with L branches and three candidates to measure accuracy of real power flow Pf on these branches
:
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The first of these (7.3) is the 1-norm of the estimation error, and is proportional to the average error in branch flow estimation.  The second (7.4) is the square of the 2-norm (Euclidean norm) of the estimation error.  The third (7.5) is the infinity norm of the estimation error, i.e. the ‘worst case’ error.  All three seem reasonable, in that larger values indicate worse performance, and zero error results in a zero calculation.

Each of (7.4) and (7.5) can return very different ‘scores’ for nearly equivalent network models with the same state estimator solution and same power flow solution.  The top half of Fig. 7.1 shows a simple (lossless) branch with a 0.2 p.u. error in estimation of real power flow.  In the bottom half of the diagram, additional buses have been added to split the line into three line segments; the actual and estimated flows remain the same. With three line segments instead of one, the contribution to the 1-norm (7.3) is three times as much, although both models represent equivalent subsets of the network. 

Only the infinity norm, (7.5), is immune to these effects, in that it always reports the ‘worst case’ estimation error.  Unlike the first two, however, one lone bad estimation error can result in a poor score, incorrectly suggesting the estimation was poor.
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Fig. 7.1  Effect of Line Segments on Flow Metrics

In conclusion, it is perhaps important to keep in mind that metrics similar to those shown above usually lack a meaningful physical interpretation, and are somewhat sensitive to model construction.  Accordingly, while they are useful to compare differences in algorithm or differences in measurements for a fixed network model, their use in other circumstances should be approached with caution.

With these caveats in mind, two simple metrics are now introduced that judge the state estimator’s ability to estimate the most important quantities defining a power flow solution: voltages and flows.

An important attribute of the state estimator is its ability to predict real and reactive power flow on branches.  By combining these as one complex quantity (
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), the following metric for complex power flow estimation accuracy is proposed:
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In (7.6), the summation index j ranges over all branches in the internal network; as indicated in the equation, error terms for complex flow at each end of the branch should be included.  The term MVA in the denominator is a limit of the branches capacity; its inclusion in recognition that a 10MW estimation error, for example, is more operationally significant for a small 69kV line than for a large 500 kV branch. Importantly, note that each squared term is the magnitude of a difference of complex numbers, not the difference of magnitudes.  

A commonly reported accuracy metric for state estimation in many fields of application, including power system state estimation, is a norm of the error of the state estimate.  For nearly all power system state estimator implementations, nearly all the elements of the state vector consist of bus voltage magnitudes and angles. While it is reasonable to compare voltage magnitude errors and voltage angle errors separately, it is straightforward to combine both in a norm metric that captures the effect of both:  
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In (7.7), 
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 are the ‘true’ and estimated complex phasor voltage at the jth bus of the internal network reported on a per unit basis.  It is important, of course, that the same reference bus be used for both ‘true’ and estimated voltages.

Different weighting factors than those used in (7.6) and (7.7) may prove more useful for specific applications.  If the investigator finds it necessary to adjust the weightings for a specific purpose, it is recommended he/she also report test statistics using the formulae as specified here. 

The accuracy metrics (7.6) and (7.7) were designed and chosen to test the ability of the state estimator to match a controlled test model in the aggregate; it is suggested that a state estimator that returns good (low) values on these metrics and on the mismatch metrics (7.1) and (7.2) has done a good job of producing a power flow solution matching system conditions.  The use of the 2-norm is a compromise between the 1-norm, related to the average estimation error over estimated quantities, and the infinity norm, which while useful for ‘worst case’ analysis punishes state estimators which produce only a handful of bad estimates.  The 2-norm is comprehensive in that it sums over all quantities, and punishes bad estimates with the quadratic term.
  

7.1.3 Other Candidate Measures of Accuracy

The value of the objective function is nearly always readily available upon completion of state estimation. Certainly for fixed inputs (measurements, topology and model parameters), an improvement in the objective function indicates superior state estimator performance. It is tempting to compare objective function values with and without phasor measurements to measure the impact of the phasor measurements on the state estimator performance.

It is straightforward to show, however, that a weighted least squares estimator capable of finding the global optimum will always return a larger objective function value when new measurements are added.  Consider the optimal objective function value J1 for a weighted least square (WLS) implementation with m (non-PMU) measurements zi, where i = 1…m:
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In (7.8), the vector 
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are the nonlinear power flow equations describing the m measurements, and 
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are (optional) constraints representing, for example, equality constraints included for zero-injection buses. Adding only p new measurements (from PMUs or elsewhere) and reëstimating always yields an objective function value J2 that is at least as great as J1: 
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The inequality shown in (7.9) is derived as follows: The first line (equality) is the minimum over set 
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of the combined sum and is the value of the objective function when all m + p measurements are considered.  The second line states that this minimum is greater than or equal to the sum of the minima over the two sets of measurements (the sets u and v are of the same dimension as 
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). The third line recognizes the first (global) minimum in line two as exactly 
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 from (7.8) above.  The last line recognizes the second minimum to be nonnegative and draws the inequality relationship.

Accordingly, the objective function value cannot be used as a metric for accuracy to compare state estimator performance with different measurement sets. It is straightforward to show that other commonly used objective functions also must increase with added measurements. For this reason, despite its ease of application, the objective function should not be used as a metric when comparing the impact of new or different measurements (e.g. from PMUs) on the state estimator solution.

An accuracy metric for controlled tests cited in the literature is the Error Estimation Index (EEI) [31], given as 
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where 
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is the actual standard deviation of the Guassian, zero-mean random noise used to pollute the noise-free measurement 
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. The introduction of the normalizing factor 
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in the denominator effectively serves to discount measurement estimation errors for noisy measurements.  Recalling that the stated objective of the accuracy metric is to measure the ability to produce an accurate power flow solution, the EEI suffers in comparison to the metrics recommended above for two reasons.  First, the introduction of the term 
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eliminates from the calculation any power system quantities that are not in the measurement set.  While improving measurement accuracy is one goal of a state estimator, as important is the ability to provide accurate visibility of unmetered quantities.  Second, the importance of an accurately estimated quantity to the end user of the state estimator bears no relation to the measurement error variance; the normalizing factor 
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is not appropriate in this context.  

A similar candidate metric is the performance index (PIP) used in [33] to determine the ability of the state estimator to accurately discern real power flow measurements:
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where Pf denotes real power flow on mpf branches. For good estimation, the estimate of each flow will lie closer to the true than will the measured value, and the entire metric will be less than one. The introduction of the actual flow measurements in the denominator, however, eliminates the possibility of including estimation accuracy for unmetered lines.  For this reason, (7.11) is not recommended as an alternative to (7.6).  

7.2 Performance

While it is desirable that the state estimator program be as accurate as possible, there are additional performance requirements observed in practice that relate to the ability of the state estimator to deliver to downstream processes a stable solution in reasonable and predictable time. 

7.2.1 Convergence

The precision, if not the accuracy, of a state estimator that uses an iterative solution scheme can be judged by its ability to converge.  The confidence that users of real-time state estimators have in the value of the solution is diminished if significant changes in state variables or objective function are still occurring at the terminal iteration.
  The following three metrics are either known to be in use today in control center environments or are minor variations thereof:
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For each of these, kterm denotes the terminal iteration.  The metric
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 shown in (7.12) measures the relative change in objective function value J at the last iteration, while the metric 
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 shown in (7.13) measures the largest final relative change in bus voltage magnitude over the buses of interest.  Note that 
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uses the absolute difference to avoid problems when the angle is near zero, which will occur near the system reference bus.

A clarifying example of use of these metrics is given by the following statement: ‘The real-time state estimator solution shall be deemed acceptable if at termination the power mismatch metric 
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 is no larger than 50 MW and both of the convergence metrics 
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 are no larger than 0.002’.
  This statement very closely matches the criteria used by a large North American ISO to monitor their real-time state estimator performance.

Another convergence metric is suggested by a necessary condition for the state estimator to find the optimum solution, namely 
[image: image100.wmf].
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 If a conventional weight least squares algorithm is used, the objective function is as follows: 
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and the necessary  condition for optimality is given by the vector equation
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Accordingly, it may be of interest to report
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as a scalar measure of the satisfaction of (7.16) at the terminating iteration kterm. However, the burden introduced by the complexity of the calculation does not warrant the recommendation of this measure and a convergence metric for general use.  Algorithm designers and researchers may find merit in its use, however.

7.2.2 Timing

The faster that state estimation software executes successfully, the more realistic a picture of evolving system conditions the operators will have. Ideally, the estimated state would be available as soon and as often as the telemetry is updated. A candidate timing metric is the average execution time in seconds for state estimation, taken over a significant sample of cases. 

Measuring process timing precisely and consistently on real-time systems operating on computers with many shared processes, however, can be difficult.  Recall that the motivation for this study is the need to measure the benefits that inclusion of phasor measurement units have on state estimation. It is the majority opinion of the contributors to this study that any effect on execution time from the augmentation of the measurement set with phasor measurements will be not meaningful.  Accordingly, and because in nearly all control center environments algorithmic execution time is not perceived to be a limiting factor on system performance, no timing metric is recommended for broad use at this time. 

7.3 Robustness 

Robustness is the ability of the state estimator algorithm to perform its function in other than ideal conditions. In particular, commercial state estimators are required to perform in the presence of bad measurement data, bad network topology information, and bad or uncertain parameters used to describe the power system network model. In addition, it is of interest to know the sensitivity of overall estimation accuracy to the accuracy of the measurement system. Missing measurements are addressed in a subsequent section on completeness.

7.3.1 Bad Measurement Identification and Detection

An important property of any state estimator in use is the ability to identify and reject bad measurements, i.e. measurements for which the observed data has error that is inconsistent with the modeling assumptions. While bad measurement (and topology, and parameter) rejection will impact a state estimator’s ability to score well on accuracy tests with properly designed experiments, it is also a simple matter to construct tests to measure bad measurement identification explicitly. A flexible metric for this purpose is given as follows:

	 
	Mmeas(p, a) =  
	% of cases the state estimator correctly identifies all p bad measurements created by adding a constant term of a or –a (with equal likelihood) to the measurement, where is the assumed standard deviation of the measurement error.
	(7.17)


Most commercial state estimators are easily capable of flagging single or isolated bad measurements; accordingly, the parameter p in (7.17) allows the test designer to build more difficult test cases where multiple measurements are bad.  Multiple sets of input data should be created to use this metric, and the same data sets should be used when comparing algorithms or comparing measurement sets.  Finally, it is important that the parameter a in (7.17) be large enough so as not to generate measurements that could alternately be viewed as either bad or good but unlikely.

The description of (7.17) requires the tester to measure the algorithm’s ability to identify ‘correctly’ all p bad measurements.  Two acceptable standards for correctness are:

1. Explicit identification of exactly the p bad measurements;

2. Identification of the p bad measurements, but also with the identification of other measurements as bad (false positives).

The former of these is obviously preferred to the latter, but even the latter may be considered acceptable; a state estimator that ‘accidentally’ discards a few good measurements is usually still able to produce a very good state estimate.  When using (7.17) the tester should be explicit as to what defines correct bad measurement detection when reporting results.

Bad meter calibration can be simulated by perturbing measured values with an affine or quadratic transformation. Typically, multiple measurement scans are required to detect non-random calibration errors using a generalization of state estimation known as remote meter calibration. While the use case of meter calibration via generalized state estimation is beyond the scope considered here, it is a straightforward exercise to create metrics to measure performance.

It is worthwhile considering a metric for the detection of bad data (necessary but not sufficient for bad data identification). Consistent with the assumptions required for WLS estimation to be maximum likelihood estimation, the measurement errors are usually assumed to be Guassian with zero mean and known variance.  This means that for data that are not ‘bad’ that each measurement error when normalized by dividing by its standard deviation will have a standard normal distribution
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The sum of squares of m independent standard normal variables is a random variable with a 
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 distribution having mean m and variance 2m.  If these same variables are coupled by n constraints, their sum of squares with m-n degrees of freedom has a 
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distribution with mean m-n and variance 2(m-n). It follows that the sum of normalized measurement errors follows such a distribution:
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Clearly large normalized measurement errors will make the sum 
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 large.  A single instance of this sum available after state estimation can be compared to the 
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distribution to determine the probability p the a random draw of the distribution can be as large as the observed sum:
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Many commercial state estimator programs compare p to a confidence threshold to decide whether the measurement set contains bad data.  If the threshold remains fixed, then p can be used as a metric to forecast whether the state estimator algorithm can detect (if not identify) bad data.  Because the inclusion of such calculations is non-trivial, and because most commercial vendors will already be using χ2 analysis in the determination of (7.17), the application of the technique in a metric is judged not warranted.

7.3.2 Bad Topology Detection

Perhaps the greatest obstacle to reliable and accurate power system state estimation is the not uncommon occurrence of the actual network topology differing from the assumed network model because of inaccurate knowledge of switch settings. When compared to bad measurement detection, for which there are reasonably straightforward and commonly accepted hypothesis tests and strategies for bad measurement identification and elimination, network topology identification algorithms are computationally more difficult, more recent in design, and therefore less pervasive in commercial application.

Very often the SCADA system relies upon manual operator entry of switch settings to define branch connectivity, and these data are prone to inaccuracy. Operating with an incorrect topology, the state estimator struggles to find a system state vector consistent with measured values. Accordingly, recent advances in commercial state estimation algorithms known alternately as generalized state estimation or topology estimation have been focused on the determination (and correction) of incorrect open/closed breaker settings. Topology estimation can be embedded within the state estimation algorithm or packaged as a distinct process.

The suggested metric is similar to those proposed for bad measurement detection: 

	Mtop(p) =  
	% of cases the state estimator correctly identifies all p topology errors.
	(7.21)


7.3.3 Parameter Estimation

The power system model also may have substantially incorrect modeling parameters for branch reactance, resistance, and line charging susceptance that adversely impacts the state estimator’s ability to determine an accurate state estimate. Some commercial state estimators today are capable of parameter estimation, where questionable model parameters are treated as augmentations of the state vector so that they may be estimated. If the software permits the detection and estimation of questionable values, parameter ‘errors’ can be introduced into the test case and a metric that is similar to (7.17) may be used. 

7.4 Completeness 

In addition to refining the accuracy of measurements, the state estimator is required to provide reasonable estimates of measurable power system quantities where measurement devices do not exist. The extent to which this is possible at any given time is measured by observability; the robustness of observability with respect to measurement loss is redundancy. 

7.4.1 Observability

One of the primary goals of state estimation is to provide the estimation of measurements on branches and at buses where no telemetry exists. It is a standard requirement for commercial state estimation software to determine the unobservable areas of the network and to generate a minimal set of pseudo measurements that restores system observability.

Much published work exists (e.g. [25] and [29]) on cost-effective methods to increase system observability by PMUs, using techniques very much the same as those used for optimal meter placement. Most optimal placement techniques attempt to restore to full rank matrices associated with either the topology or the gain matrix
. Accordingly, it is tempting to propose metrics for observability based upon the rank of various matrices. However, doing so tends to impose an algorithmic approach upon the estimation algorithm, which is not appropriate for the purpose of this study. 

Instead, it is proposed to let the estimation algorithm use its own methods for determining observability and report the number of in-service buses that are unobservable and require pseudomeasurements:

	 
	Mobs =
	# of in-service buses of interest that are unobservable, i.e. are contained within unobservable islands.
	(7.22)

	
	
	
	


The phrase ‘of interest’ in (7.22) allows the metric to be applied in a manner consistent with use of the state estimator (e.g. the internal network).  While identification of the unobservable portion of the network is nontrivial, this functionality is considered standard on modern commercial state estimation programs.  Accordingly, (7.22) is recommended because its application in a testing environment is expected to be straightforward.

7.4.2 Redundancy

Redundancy relates to the effect upon estimation of the loss of one or more measurements. The most important impact of loss of measurements is the loss of system observability; a measurement that is required to maintain observability is said to be a critical measurement.  A simple, but incomplete, measure of a measurement set’s redundancy is the number of critical measurements.  The measure is incomplete, because it considers only loss of observability from single measurements, whereas remote terminal unit (RTU) failure or communications link failure may result in loss of several measurements at the same time.  Although a measure for redundancy considering and combining multiple levels of redundancy has been proposed [43], it is not known to be in use and is not recommended at this time.  

For a critical measurement, the measurement residual defined as the difference between the measurement value and the estimated measurement value 
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 is zero.  That is, any error in the measurement is transferred directly to the estimated measurement.  For any given measurement, a useful measure of redundancy is the ratio of the variance of the measurement residual to the variance of the measurement error.  As redundancy improves, the sensitivity of the estimated measurement to measurement errors will decrease, and the ratio of the variance of the residual variance to the measurement error variance will approach unity. A suggested measure of redundancy for the entire system is the minimum ratio over all measurements:

	 
	
[image: image112.wmf]2

2

...

1

min

j

j

m

j

s

r

=


	(7.23)

	
	
	


Where 
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 are the residual variance and measurement error variance of the jth measurement, respectively.  If weighted least squares estimation is used with the error variances used for weighting (in the usual manner), then the quantity 
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where H is the (state dependent) Jacobian of the power flow equations and Rz is the covariance matrix of the measurement errors.

Because the above and similar measures of redundancy are either algorithm dependent or difficult to implement in a testing environment, no redundancy metric is recommended at this time.  Redundancy measures can play an important role in sensor placement algorithms (see for example [28] Ch. 7, [24] Ch. 4). 
7.5 PMU Placement for State Estimation

Recall that the motivating factor behind the creation of the metrics summarized in this section is to define a framework for evaluating the impact of phasor measurements on state estimator results.  In general, most utilities and control areas today have few (if any) PMUs in place, and also have telemetry in place to provide observability for the internal network.  Accordingly, when considering the location of new PMUs to increase state estimator performance in a cost effective manner, the problem to be solved is one of incremental measurement placement – finding the best places to add ‘meters’ to a measurement system that is already fairly well metered.  

For the incremental measurement placement problem, it is likely that accuracy in the state estimator solution is deemed the metric for which improvement is wanted most.  For systems with very few meters, improving observability may be the most important criteria.  Considerable effort has been devoted to meter placement to improve observability (see for example [44][40]) resulting in techniques applicable to sensors of all types, including PMUs.  More recently, researchers have devoted specific attention to algorithms for improving observability using PMUs in particular (see for example [18][25][29]).  

Most algorithms for improving accuracy of the state estimator solution via incremental meter placement do so by attempting to reduce uncertainty in the estimate of the state vector; [40] is a good example.  The inverse of the gain matrix, 
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is easily shown to be the covariance matrix of the state error vector 
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 when weighted least squares estimation is used, and the Jacobian H is evaluated at the final solution.  Quite sensibly, many published algorithms identify candidate measurements for addition by looking for ways to reduce the large diagonal elements of 
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 (computationally efficient using sparse inverse techniques).  In [40], for example, a subset of available measurements are identified that are proximal to buses corresponding to large state error variances; from each measurement in that subset the diagonal elements of 
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 are reevaluated with the measurement added and the ones with the greatest variance reductions are ultimately selected.

In other fields where state estimation is regularly performed (especially target localization and tracking via image sensors (good recent examples are [42][49]) the information theoretic concept of entropy is used identify optimal sensor placement.  First introduced by Shannon ([47]
), entropy (also known as information entropy, Shannon entropy, and differential entropy) is a scalar measure of the uncertainty associate with a multivariate random distribution.  For the estimated state vector 
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An algorithm based on reduction in entropy to site new meters for state estimation can be found in [46], the key concepts of which are now summarized here. If all the ‘usual’ assumptions regarding Guassian measurement errors are made and weighted least squares estimation is assumed, then it is straightforward to show that the Shannon entropy is given by 
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where n is the number of states.  If 
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 is a decomposition of G into lower (L) and upper (U) triangular square matrices, then the last term in (7.26) can be simplified: 
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Determining the reduction in entropy associated with adding a new measurement requires only to update the diagonal elements of the matrix U resulting from the change to G and calculating the sum shown in (7.27).

An example shows how entropy might be used to site PMUs to improve measurement accuracy.  Consider the IEEE 300 bus test system
, which is sufficiently large enough to be nontrivial and small enough to facilitate algorithmic investigation.  A base measurement set was created for this system as follows:

1. Real and reactive power flow measurements were added at one end of each of the 411 lines.  For each measurement, a standard deviation of 1.39%
 of full scale rating was used, where full scale rating was approximated as 150% of the MVA observed for the base case power flow.  

2. Real and reactive power injection measurements were added for each of 69 generating units.  For each measurement, a standard deviation of 1.39% of full scale rating was used, where full scale rating was approximated as 150% of the injection MVA observed for the base case power flow.

3. Voltage magnitude was measured at every 10% of out of 10 of 300 buses.  For each measurement, a standard deviation of 0.89% of full scale rating was used, where full scale rating was approximated as 1.0 p.u.

The measurement scheme is, of course, purely fictional.  The difficulty in ascertaining measurement errors for actual devices in the field is very real, however.  Very often the weights used in commercial state estimators are chosen and modified to achieve consistent algorithmic convergence, and not based upon careful calculation of expected measurement error variances.  

To measure the impact of PMU location on entropy reduction, in sequence one PMU was added to each bus, and the change on entropy was estimated using (7.27).  At the same time, the percentage reduction in the expected variance of the phase angle error at the PMU bus was calculated by observing the change in the corresponding diagonal entry of the state error covariance matrix
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The calculation results are shown as scatter plots in Figs.7.2-4 for three different levels of PMU accuracy (standard deviations of 0.001, 0.1 and 1.0 degrees, respectively).  Each graph has two sets of data: (1) entropy reduction vs. % bus angle variance reduction, and (2) entropy reduction vs. original case bus angle variance.  For each scenario, the voltage phasor measurement error standard deviation was set equal to 0.0089 p.u., matching the assumption made for the other voltage magnitude measurements.

Several observations can be made from the results:

1. Adding a PMU always reduces entropy.  This is necessarily true; adding a new sensor, even one that is known to have very poor accuracy, always improves estimation with the addition of new information.

2. For very accurate PMUs (standard deviation = 0.001 degrees), the state estimator is expected to eliminate nearly all (100%) of the uncertainty in the angle variance where the PMU is located.  This is entirely expected, of course.

3. The reduction in total state uncertainty as measured by the reduction in Shannon entropy is decreased as the PMU accuracy is decreased.

4. For accurate PMUs (0.1 degrees), the relationship between local uncertainty reduction (angle variance reduction) and total system state uncertainty reduction (entropy reduction) by PMU is nearly monotonic.  Even for inaccurate PMUs (1.0 degrees), the relationship shows a positive correlation.

5. For extremely accurate (0.001 degrees) and very accurate (0.1 degrees) PMUs, the sites (buses) where PMU addition results in maximal entropy reduction correlate very strongly to the buses where the estimated system without PMUs exhibits the largest expected phase angle variance.  This is seen by observing that in Fig. 7.2 and Fig. 7.3 the scatter plots of entropy reduction versus angle variance are nearly monotonic.

The observed correlations between entropy reduction and both local bus angle variance reduction and original bus angle variance are perhaps not surprising; they suggest that the effects of a newly added PMU are very local, and will significantly improve overall estimation accuracy only when the knowledge of the ‘local’ state is poor.  If this hypothesis proves true in the general case (it would be good to derive appropriate theory to support the example calculations here), a simple guideline for placing PMUs to improve state estimation accuracy is suggested: place them where corresponding diagonal entries of 
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Enthusiasm for any sensor placement techniques that require numerical analysis of any matrices dependent on measurement error statistics (e.g. the gain matrix 
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) should be tempered because most utilities and control areas do not maintain good knowledge of the observed accuracy of existing telemetry.  The recommended solution is remote meter calibration (e.g. [17][39]), a variant of parameter estimation that permits both measurement accuracy determination and correction.
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Fig. 7.2.  Effect of PMU Placement (PMU Accuracy = 0.001 Degrees)
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Fig. 7.3.  Effect of PMU Placement (PMU Accuracy = 0.1 Degrees)
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Fig. 7.4. Effect of PMU Placement (PMU Accuracy = 1.0 Degrees)
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9 Appendix SuperCalibrator [38]

Background: GPS-synchronized equipment receives inputs from instrument transformers, control cables, attenuators, etc. Many utilities will use CCVTs for instrument transformers. While GPS-synchronized equipment are more accurate devices than typical utility SCADA and other monitoring equipment, the overall precision of GPS-synchronized measurements is limited by the instrumentation channel. For example, while GPS-synchronized equipment has the capability of measuring the phase angle to a precision of 0.01 degrees, the instrumentation channel may introduce a phase error that may be ten times larger. In particular, CCVTs introduce an error to the measurement that is appreciable at the power frequency as compared to the precision of PMU equipment and very large with respect to PMU equipment at other frequencies. Depending on the application, this performance may be unacceptable. 

Conceptually, the overall precision issue can be resolved with sophisticated calibration methods. This approach is quite expensive and faces difficult technical problems. It is extremely difficult to calibrate instrument transformers and the overall instrumentation channel in the field. Laboratory calibration of instrument transformers is possible but a very expensive proposition if all instrument transformers need to be calibrated. In the early 90's I directed a research project in which we developed calibration procedures for selected NYPA’s high voltage instrument transformers [1]. From the practical point of view, this approach is an economic impossibility. 

We propose a viable and practical approach to correct for these errors. The approach is based on an estimation process at the substation level for correcting for these errors. Specifically, we propose to develop a methodology and a software product that will perform as a “supercalibrator”. This product may reside at the PDC level, and it will operate on the streaming data. The process is expected to be fast and therefore it will introduce only minor time latencies. The procedure will maintain the data format including the time tags of the data. 

A brief description of the methodology follows. A detailed model of the substation (from which PMU data are originating) will be constructed. This model will be an integrated model, i.e. it will include the three phase model of the substation, the model of the instrumentation channels that feed inputs to the PMUs and the model of the PMUs. As the data stream, each set of data at a specific time tag will be processed via a general state estimation process. The procedure will provide the best estimate of the data as well as performance metrics of the estimation process. The most important metric will be the expected value of the error of the estimates. The software will continuously display these metrics and it will also store the computed metrics. The best estimate of the data will be used to regenerate the streaming data flow. 

It is important to note that the proposed super-calibrator is also a tool for remote calibration. Since these equipment are digital and since the super-calibrator will determine what the “reading” of each device should be, a calibration factor can be inserted into each channel of the GPS-synchronized equipment. This very simple method is also very effective. 

















































































































































� Special thanks go to Ali Abur, John Allemong, and the state estimation and PMU experts at ABB, AREVA, Siemens and PNNL.  Their suggestions have been invaluable in determining metrics that are both useful and reasonable to apply to modern commercial state estimators.


� Here, and elsewhere in this section the superscripts true and est denote ‘true’ and ‘estimated’ quantities, respectively.  ‘True’ quantities are determined from the power flow solution, while estimated quantities are calculated from power flow equations evaluated using the estimated state.


� There are compelling reasons (e.g. robustness) to use the infinity norm in designing the state estimation algorithm; see Chapter 6 of [24] for an excellent treatment.  


� Whereas most state estimators use iterative algorithms and require convergence before terminating, other criteria such as iteration limits, time limits, or detection of cycling may cause ‘early’ termination.


� This example is a rewording (using metrics defined in this document) of the condition the Midwest ISO published as the acceptable criteria for the estimator prior to market start.  Found in a document simple titled ‘Metric Interpretive Guidance 03 Completed and Verified’ at � HYPERLINK "http://www.midwestmarket.org/publish/Document/2df21_101f7800020_-7f840a48324a?rev=1" �http://www.midwestmarket.org/publish/Document/2df21_101f7800020_-7f840a48324a?rev=1� (link valid as of 09 Jan 2006), the original quote is ‘State Estimator Solution must converge to .002 per unit voltage magnitude and/or angle and maximum power mismatch of 50MW State Estimator model within the Midwest ISO Market footprint.’


� The gain matrix, usually denoted by G in the state estimation literature, defines the relationship between the gradient of the objective function and updates to the state estimate for iterative algorithms.  If weighted least squares estimation is employed with higher order terms ignored, G takes the state (�EMBED Equation.3���) dependent form �EMBED Equation.3���where H is the gradient of the power flow equations and W is a diagonal weighting matrix. 


� A good complement to this paper for those interested in the history of entropy and estimation is [48].


� This system, originally assembled by a IEEE Power Engineering Society Test Systems task force in 1993 under the direction of Mike Adibi, is currently available for download from the University of Washington Power System Test Case Archive maintained by Richard Christie at http://www.ee.washington.edu/research/pstca/.


� The measurement error range estimates for voltage magnitude and real and reactive power magnitude have been adopted from [39].


� The assumption is that the estimation algorithm (WLS, in this case) is aware of the accuracy of the newly added sensor and weights the measurement accordingly.  If the weight is too high for the actual accuracy of the meter, or if the error statistics of the meter violate the assumptions of matching a zero mean Gaussian assumptions, the inaccuracy in the estimate may be increased. 
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