
Performance and Scalability Analysis of Cray X1

Vectorization and Multistreaming Optimization

Sadaf Alam and Jeffrey Vetter

Computer Science and Mathematics Division
Oak Ridge National Laboratory

alamsr,vetterjs@ornl.gov

Abstract

Cray X1 Fortran and C/C++ compilers provide a number of loop transforma-
tions, notably vectorization and multistreaming, in order to exploit the multi-
streaming processor (MSP) hardware resources and its high memory bandwidth.
A Cray X1 node is composed of four MSPs, which in turn are composed of four
single streaming processors (SSP). Each SSP contains a superscalar processing
unit and two vector processing units. Compiler vectorization provides loop level
parallelization and uses the vector processing hardware. Multistreaming code
generation by the compiler permits execution across the SSPs of an MSP on a
block of code. In this paper, we analyze overall impact of loop-level compiler op-
timization on a scientific application called Parallel Ocean Program (POP). POP
has been extensively optimized for X1 by instrumenting the code using X1 com-
piler directives. We compare and contrast automatic and manual optimization
schemes available on X1 and analyze their impact on the code performance and
scalability. Our results show that the addition of compiler directives increases
the average vector length, thereby improving the single node performance signif-
icantly. However, this code scales at a slower rate as the local workload volume
decreases and the communication costs increase.

1 Introduction

Modern vector computers like Japan’s Earth Simulator and the Cray X1 com-
bine the vector processing architecture and Massively Parallel Processing (MPP)
in a single system design [5, 9]. They provide a very high memory bandwidth,
which is key to realizing a high percentage of theoretical peak performance. The
basic building block of the Cray X1 is the 12.8 GFlops multi-streaming processor
(MSP) [1]. Each MSP is comprised of four single-streaming processors (SSPs).
An SSP has two 32-stage 64-bit floating-point vector units and one 2-way super-
scalar unit. The SSP uses two clock frequencies, 800 MHz for the vector units
and 400 MHz for the scalar unit. Each MSP has a MByte E-cache. Cray X1 sys-
tems implement Cray’s new vector instruction set architecture, which support
decoupled scalar and vector execution for maximum performance. The Cray
X1 compiler automatically optimizes a loop for the eight vector units within

an MSP [6]. It multistreams a long vectorized loop or unvectorized outer loop.
With aggressive compiler optimization flags, the Cray X1 compiler carries out a
number loop transformations, which are presented in this paper.

We conducted experiments on a 512 MSP Cray X1 system at the Oak Ridge
National Laboratory using a complete scientific application called Parallel Ocean
Program. Several performance critical loops have been manually vectorized in
the code [14] using compiler directives and dummy loop indices. We compare
and contrast the code optimization strategies, in particular multistreaming and
vectorization, and measure their impact on the overall performance of the ap-
plication code. We also capture, using a hardware performance counter utility
from Cray called pat hwpc [7], detailed execution characteristics for complete
application runs.

The layout of the paper is as follows: Section 2 presents the Cray X1 node ar-
chitecture. Section 3 outlines various loop transformation schemes and compiler
directives that exploit the MSP architecture. Section 4 provides a brief descrip-
tion of the scientific application. Section 5 details the experimental setup. Results
are presented in section 6 and section 7 concludes the research.

2 Processing Node Architecture

The Cray X1 has a hierarchical processing node, memory and interconnection
network design [1]. A processing node is composed of four multistreaming pro-
cessors (MSPs), 16 GBytes of globally shared local memory, and an inter-MSP
communication network. Local memory latency is the same for all processors
within a single node and it is accessible by all processors on the node, processors
on the other nodes and all I/O devices. Total peak local memory bandwidth for
one node is 204.8 GBps, which also supports network traffic and I/O. Intercon-
nect design and programming models for the X1 are described in [5].

SSP0

Scalar with cache

Vector
pipe

Vector
pipe

Scalar with cache Scalar with cache Scalar with cache

Vector Vector Vector Vector
pipe pipe pipe pipe pipe pipe

Vector Vector

Cache Cache Cache Cache

SSP3 SSP2 SSP1

Fig. 1. Cray X1 multi-streaming processor architecture

Figure 1 shows the design blocks of an MSP. Each of the four SSP contain two
vector units and one scalar unit. The X1 provides a large set of registers to reduce
the number of memory accesses, reduce register spills, eliminate write-after-
read dependencies and hide memory latency. The register set includes thirty-two

64-bit vector registers, 8 vector mask registers, 64 scalar registers, 64 address
registers, 8 control registers, a bit-matrix multiply register and a vector carry
register [12].

There are three forms of cache in the X1 system. Each SSP has a 16KB
scalar data cache and a 16 KB instruction cache, while each MSP has a 2MB
instruction and data cache (E-cache) that is shared by the four SSPs within an
MSP. Processors cache data from their local node modules only; references to
memory on other node modules are not cached locally. In addition, the 32 KB
of vector register space effectively functions as the lowest level of the processor
data cache, similar to the L1 cache found on the microprocessor-based systems.

3 Vectorization and Multistreaming

Compiler vectorization provides loop-level parallelization of operations and uses
the vector processing hardware: execution pipes, load buffers and functional
unit groups. At the SSP level, vector instructions allow a large number of Single
Instruction Multiple Data (SIMD) operations to execute in a pipeline fashion
thereby tolerating memory latency and allowing for high sustained performance.
MSP parallelism is achieved by distributing loop iterations across each of the
four SSPs, which is referred as multistreaming. Vectorization and multistreaming
can be intermixed, and multistreaming often extends outside the loop boundary.
Figure 2 shows vectorization of a do loop with multistreaming. Individual iter-
ations of a loop can be distributed over the four SSPs such that four 2-vector
units of an SSP work together as a large single vector unit and can achieve an
average vector length of 64.

j=4

do j=1,4

 work (i,j)
 end do
end do

 do i=1,8

VEC(work)

j=1

SSP3

VEC(work) VEC(work) VEC(work)

SSP0SSP1SSP2

j=2 j=3

Fig. 2. Multistreaming and vectorization of a nested loop

3.1 Loop Transformations

Presently, compilers offer a number of loop transformations [2, 3], many by de-
fault, on almost all modern processor architectures. Similarly, there are a num-
ber of flags in the Cray compilers that allow for different levels of vector and
multistreaming optimization [11]. For instance, -O vector3 gives the compiler
maximum freedom to vectorize loops, while the -O stream3 allows for maxi-
mum multistreaming. Further, -O aggress option can optimize large loops. In
addition, compiler directives can be embedded manually in the code. Here we
briefly describe the Cray X1 compiler’s loop transformations that exploit the

multistreaming vector architecture. This includes loop interchange, collapsing,
unwinding and loop fusion.

Loop Interchange: Compiler attempts to automatically interchange loops to
maximize cache and vector register reuse and to reduce memory bandwidth
usage. In the example below, the i elements of vector array a can be loaded
before the j loop and i elements of vector array a(i) can be stored after the
inner loop. After the loop interchange, the completely vectorized inner loop has
no array a load and store.

before: after:
do j = 1,m do i = 1,n
do i = 1,n do j = 1,m

a(i) = a(i)+b(i,j) a(i) = a(i)+b(i,j)
end do end do

end do end do

Collapsing: The loop collapse schemes result in an increase in vector length and
multistreaming and a reduction in loop overheads. Loop overheads are reduced
by replacing a nested loop by a single loop.

Loop Fusion: In Fortran array syntax, every statement is considered a loop.
Loop fusion minimizes loop overhead and maximizes register use. For example,
array initialization a=0; b=0 is fused and vectorized.

3.2 Code Instrumentation

Compiler directives are extensively used in the POP code [14]. Cray compilers of-
fer a number of compiler directives for a range of compiler-directed optimization
including vectorization and tasking directives, streaming directives and MSP op-
timization directives. For instance, a compiler directive can inform the compiler
that a given loop can be collapsed (e.g. by inserting !CDIR COLLPASE before the
loop). Likewise, other directives can indicate that it is safe to completely un-
roll, vectorize or inline a loop. Typically, during the code optimization process,
a programmer generates the loopmark listing and identifies the optimized and
unoptimized loops. A sample loopmark output is listed below:

ftn-6204 ftn: VECTOR File = file.f, Line = 625
A loop starting at line 625 was vectorized.

ftn-6601 ftn: STREAM File = file.f, Line = 625
A loop starting at line 625 was multi-streamed.

ftn-6004 ftn: SCALAR File = file.f, Line = 627
A loop starting at line 627 was fused with the loop starting at line 625.

ftn-6289 ftn: VECTOR File = file.f, Line = 639
A loop starting at line 639 was not vectorized because a recurrence was found
on "TEMP" between lines 641 and 647.

Compiler directives can then be used, if due to some ambiguous data depen-
dencies, the compiler is unable to transform or vectorize a loop. Given this
information the compiler can generate highly optimized code. In addition to
compiler directives, dummy loops can be inserted. This is particularly useful for
loop vectorization in Fortran code, which uses a verbose representation for array
assignment operations.

4 Application

Cray X1 optimization strategies have been reported for a set of synthetic bench-
marks [8]. In this paper, we conduct performance and scaling analysis of a sci-
entific application called Parallel Ocean Program (POP), which was developed
at the Los Alamos National Laboratory [13]. This code has been ported to a
number of high-end supercomputing systems including two mainstream vector
supercomputers: Japan’s Earth Simulator and the Cray X1. A comparative per-
formance study of POP on vector computers is presented in [4].

POP code is synchronous, and except for the infrequent I/O operations fol-
lows a Single Program Multiple Data (SPMD) programming paradigm. The code
executes in a time-step fashion with the number of time steps specified in an in-
put script file. There are two main processes in a POP time-step: baroclinic and
barotropic. Baroclinic requires only point-to-point communication and is highly
parallelizable. Barotropic contains a conjugate gradient solver, which requires
global reduction operations. Moreover, the discretized POP grid is mapped and
distributed evenly on a logical, two-dimensional processor grid [14].

Inter-processor communication in POP is performed via the Message Passing
Interface (MPI) protocol. The exception is the conjugate gradient solver, which
is implemented in Co-array Fortran [10] in order to reduce the communication
requirement of this typically expensive component. Co-Array Fortran is a small
set of extensions to Fortran 95 for SPMD parallel processing. It offers new set
of rules for work distribution and data distribution within a program. POP
optimization on Cray X1 are detailed in [14].

5 Experiments

For the performance evaluation experiments, the POP code is compiled with the
options listed in table 1.

Additionally, using the -rm flag the compiler generates the loopmark listing,
which identifies and explains optimization performed by the compiler on a given
loop. The results reported in this paper are gathered from the loopmark files. In
most cases a number of techniques identified in the paper have been applied to a
single loop. For instance, a single loop can be collapsed, unrolled and vectorized
by the compiler. Likewise, a compiler directive can result in a combination of
loop transformations.

It is worth noting here that in a parallel code, a compiler hint or a directive
should take into account the scaling effect of a given loop or loop indices. In an

Optimization Description

default equivalent to -O2

-O3,aggress compiler aggressively optimize large loops

-Ovector3,aggress aggressively vectorize loops

-Ovector3,stream3 maximum freedom to vectorize and multistream

Code instrumentation as explained in [14]

Table 1. Loop optimization applied to the POP application

SPMD program like POP, often loop iterations and memory access operations
are divided and distributed according to the size of the logical processor grid
i.e. the two-dimensional MPI processor grid. The number of processor in x and
y directions are specified at compile time in POP code. The number of simu-
lated time steps in POP is controlled via nstep parameter. Scaling experiments
are conducted for a fixed problem size, with a fixed nstep and by varying the
number of processors in the x and y directions. Cray’s pat hwpc tool is used for
calculating the runtime and average vector length.

6 Results

Table 2 shows the different loop optimization counts using the optimization listed
in table 1. The table 2 also lists the runtime, percentage of vector instructions
and average vector length, which has been collected by the pat hwpc tool. The
hand-coded version has a large number of single vector iterations and fused
loops compared to the code that is generated by the Cray Fortran compiler
without the compiler directives. As a result a larger fraction of instructions are
executed by the vector processing units. An optimal utilization of the vector
resources is translated in an increased average vector length. At the same time,
compiler optimized code has a large number of unwounded loops compared to the
hand-coded version. There is only a slight variation between different variants
of compiler optimization.

Optimization Run-
time
(sec)

Average
Vector
Length

%Vector
Instruc-
tions

Vector
loops

Multi-
streamed
loops

Single
Vector
Itera-
tions

Collap-
sed
loops

Un-
wounded
loops

default (O2) 254.32 37.243 93.06 1291 1243 76 34 192

O3,aggress 255.17 37.273 93.61 1329 1243 76 32 200

vector3,aggress 254.89 37.273 93.61 1329 1222 76 34 200

vector3,stream3 255.14 37.273 93.61 1329 1243 76 34 200

Instrumented 40.34 60.58 99.95 1306 1248 282 70 52
Table 2. Number of individual loop transformations with different optimization
schemes, pat hwpc statistics and their impact on a single node performance

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128
Ru

nt
im

e
(s

ec
)

Number of processors

O3,aggress
Compiler directives

Compiler directives + Co-array

Fig. 3. Parallel efficiency

We also analyzed the scaling behavior of the code. For these fixed problem
size experiments, increasing the number of processors did not significantly im-
prove the performance in the instrumented code. Figure 3 shows the runtime
values for the POP code generated: (1) with compiler-only optimization, (2)
with compiler directives and (3) with compiler directives and co-array Fortran.
We also compared the average vector length across different runs (shown in fig-
ure 4), which is an indirect measure of how effectively the vector resources are
exploited. We note that the vector length first decreases with the decrease in
local POP grid dimension and then stabilizes. We attribute this behavior to the
vertical dimension k of the POP grid. (i x j) POP grid points scale with the
underlying processor grid. The vertical k dimension is mapped across all proces-
sors and its value remains constant. That is why we do not observe a gradual
drop in vector length by increasing the number of processors. Furthermore, the
co-array Fortran optimization, which replaces the frequent MPI communication
routines in the POP code result in the efficient execution and scaling of the code.

 0

 10

 20

 30

 40

 50

 60

 1 2 4 8 16 32 64 128

Ve
ct

or
 le

ng
th

Number of processors

O3,aggress
Compiler directives

Compiler directives+Co-array

Fig. 4. Average vector length scaling

7 Conclusions

The Cray X1 design embodies advanced vector and superscalar concepts and it
is highly optimized for floating-point intensive scientific calculations. We studied
the loop vectorization and multistreaming strategies of the Cray X1 supercom-
puter and quantitatively evaluated their impact on the performance of a scientific
application called POP. Furthermore, we analyze the scaling of single node loop
optimization strategies, particularly code instrumentation strategies that involve
adding compiler directives and dummy loop indices. We demonstrated that the
single node performance of the instrumented code far exceeds that of the code
which relies exclusively on the compiler for optimization, even when the most
aggressive optimization flags are specified. At the same time however, for a fixed
problem size, POP scales at a slower rate, as the local workload volume de-
creases. Hence, for larger problem sizes, the instrumented POP code is likely to
more efficient than the code generated with aggressive compiler optimization.

Acknowledgements: This research was sponsored by the Office of Mathematical, Informa-
tion, and Computational Sciences, Office of Science, U.S. Department of Energy under Contract No.
DE-AC05-00OR22725 with UT-Battelle, LLC. Accordingly, the U.S. Government retains a nonex-
clusive, royalty-free license to publish or reproduce the published form of this contribution, or allow
others to do so, for U.S. Government purposes.

References

1. P. K. Agarwal, et. al. ORNL Cray X1 evaluation status report, Proceedings of the
46th Cray User Group Conference, 2004.

2. A. V. Aho, M. Hill and J. D. Ullman, Compilers: Principles, Techniques, and Tools,
Addison-Wesley Longman Publishing Co., Inc. USA, 1986.

3. R. Allen and K. Kennedy, Optimizing Compilers for Modern Architecture: A De-
pendence Based Approach, 1st ed. Morgan Kaufmann Publishers, 2001.

4. T. H. Dunigan, et. al. Early evaluation of the Cray X1, Proceedings of the 17th
Annual International Conference on Supercomputing, 2003.

5. T. H. Dunigan, et. al. Performance Evaluation of the Cray X1 Distributed Memory
Architecture, IEEE Micro 25(1), 2005.

6. Optimizing Applications on the Cray X1 System: Loopmark Listings. Available at
http://www.cray.com

7. Optimizing Applications on the Cray X1 System: Using CrayPAT Tools. Available
at http://www.cray.com

8. H. Shan and E. Strohmaier, Performance Characteristics of the Cray X1 and Their
Implications for Application Performance Tuning, Proceedings of the 18th Annual
International Conference on Supercomputing, 2004.

9. A. J. van der Steen and J. J. Dongarra, Overview of Recent Supercomputers, 2004.
10. R.W. Numrich and J.K. Reid, Co-Array Fortran for Parallel Programming, ACM

SIGPLAN Fortran Forum, volume 17, no 2, 1998.
11. Cray Fortran Compiler Commands and Directives Reference Manual. Available at

http://www.cray.com.
12. Cray X1 System Overview. Available at http://www.cray.com.
13. The Parallel Ocean Program Homepage, http://climate.lanl.gov/Models/POP
14. P. Worley and J. Levesque, The Performance Evolution of the Parallel Ocean Pro-

gram on the Cray X1, Proceedings of the 46th Cray User Group Conference, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

