



#### Jeffrey Fudin, Pharm.D., DAAPM

Clinical Pharmacy Specialist

VA Medical Center - Albany, NY

Adjunct Associate Professor of Pharmacy Practice

Albany College of Pharmacy

www.NOVAPAIN.net



#### MedWatch Alert:

FDA Public Health Advisory November 2006

"Methadone Use for Pain Control May Result in Death and Life-Threatening Changes in Breathing and Heart Beat."

What prompted this warning?

Methadone Public Health Advisory. Methadone Use for Pain Control May Result in Death and Life-Threatening Changes in Breathing and Heart Beat. Available from: <a href="http://www.fda.gov/cder/drug/advisory/methadone.htm">http://www.fda.gov/cder/drug/advisory/methadone.htm</a>. Accessed Feburary 28, 2007.

#### http://www.fda.gov/cder/drug/infopage/methadone/default.htm



#### Methadone-Related ED Visits: Trend



The number of methadone-related emergency room visits in the country has jumped in recent years

US Dept. of Health & Human Services/SAMHSA/OAS: Emergency Department Trends From the Drug Abuse Warning Network, 1995-2002, Table 2.8.0, Pub. D-24, July 2003.





Figure 2. Age-specific methadone-related death rates: 1999-2004



NOTE: Methadone-related deaths were selected regardless of underlying cause of death. SOURCE: National Center for Health Statistics, data from the National Vital Statistics System.

#### **Overview of Topics**

- Goals of Therapy
- Opioid/Opiate Pharmacotherapy
  - chemistry
  - Therapeutics
  - Advantages/disadvantages
- Methadone
- Special dosing considerations and precautions
- Unique pharmacokinetics
- Drug interactions

# Goals of Therapy for Acute Vs Chronic Pain Levy, 1985

#### <u>ACUTE</u> <u>CHRONIC</u>

| Therapeutic Goal           | Pain relief                                           | Pain prevention                                       |  |
|----------------------------|-------------------------------------------------------|-------------------------------------------------------|--|
| Sedation                   | Often desirable                                       | Usually undesirable                                   |  |
| Rapid Onset of Effect      | Important                                             | Unnecessary                                           |  |
| Desired Duration of Effect | 2-4 hours                                             | As long as possible                                   |  |
| Timing                     | PRN                                                   | Regularly (anticipation)                              |  |
| Dose                       | Usually standard                                      | Individually titrated                                 |  |
| Route                      | Parenteral / Oral                                     | Oral / Transdermal                                    |  |
| Side Effect Profile        | Minimize risk for constipation/respiratory depression | Minimize risk for constipation/respiratory depression |  |

#### **Chemical Classes of Opioids**

#### PHENANTHRENES

#### BENZOMORPHANS

#### PHENYLPIPERIDINES DIPHENYLHEPTANES











Rx EXAMPLES >

**MORPHINE** morphine codeine hydrocodone\* hydromorphone\* levorphanol\* oxycodone\* oxymorphone\* buprenorphine\* nalbuphine butorphanol\* naloxone\*

**PENTAZOCINE** pentazocine diphenoxylate loperamide

MEPERIDINE meperidine fentanyl sufentanil alfentanil remifentanil

METHADONE methadone propoxyphene

heroin (diacetyl-morphine) X-SENSITIVITY > **PROBABLE** 

LOW RISK

LOW RISK

POSSIBLE

Willette RE. Analgesic Agents. In: Delgado JN, Remers WA, eds. Wilson and Grisvold's Textbook of Organic Medicinal Chemistry. 9th ed. JB Lippincott Company, Philadelphia, Pa. 1991:629-654.

<sup>\*</sup>These agents lack the 6-OH group of morphine, possibly decreasing cross-sensitivity within the phenanthrene group. Reisine T, Pasternak G. Opioid analgesics and antagonists. In: Hardman JG, Limbird LE, Molinoff PB, Ruddon RW, Gilman AG, eds. Goodman and Gilman's The Pharmacological Basis of Therapeutics. 9th ed. New York, NY: McGraw-Hill Companies; 1996:521-555.

#### Neurotransmitter Signals



Stephen Stahl. Essentials of Psychopharmacology

### **Analgesic Choices**

#### **Executive Summary**

- Extended Release Products:
  - Fentanyl (Duragesic®)
  - Morphine-ER (Kadian®, MS Contin®, Oramorph SR® others)
  - Oxycodone-ER (Oxycontin®)
- Synthetic "Atypicals"
  - Methadone (Dolophine®, Methadose®)
  - Tramadol (Ultram®)
- Poor Choices for Chronic Pain
  - Propoxyphene (Darvon®, Darvocet®)
  - Meperidine (Demerol®)
  - Other short acting combination products

#### Percentage by Drug of Emergency Department Mentions of Narcotic Analgesics/Combinations in DAWN, by Year



Source: Values derived from *Emergency Department Trends From the Drug Abuse Warning Network, Final Estimates 1995-20*02, DAWN Series D-24, DHHS Pub. No. SMA 03-3780, Rockville, Md, 2003.

### Metabolic Pathway from Drug Elimination

| DRUG          | Opioid Class          | Major Metabolic Pathway                        |  |  |
|---------------|-----------------------|------------------------------------------------|--|--|
| Morphine      | Phenanthrene (w/ -OH) | Glucuronidation                                |  |  |
|               |                       |                                                |  |  |
| Hydromorphone | Phenanthrene          | Glucuronidation                                |  |  |
| Codeine       | Phenanthrene (w/ -OH) | Demthylation, glucuronidation                  |  |  |
|               |                       |                                                |  |  |
| Levorphanol   | Phenanthrene          | Glucuronidation                                |  |  |
| Oxycodone     | Phenanthrene          | Demethylation, glucuronidation, keto-reduction |  |  |
| Oxymorphine   | Phenanthrene          | Glucuronidation                                |  |  |
| Meperidine    | Phenylpiperidine      | Oxidation, hydrolysis, demethylation,          |  |  |
|               |                       | glucuronidation                                |  |  |
| Fentanyl      | Phenylpiperidine      | Oxidation, hydrolysis, minor 3A4               |  |  |
| Alfentanil    | Phenylpiperidine      | Oxidation                                      |  |  |
| Sufentanil    | Phenylpiperidine      | Dealkylation, demethylation                    |  |  |
| Methadone     | Diphenylheptane       | Demethylation, 3A4 substrate (significant)     |  |  |

Volles DF, McGory R. Pharmacokinetc considerations, 15:5:Jan 1999.

### Opioid Analgesic P-Kinetics

| Agent              | Time to<br>Peak (hr) | Half-life (hr) | Analgesic<br>Onset (min) | Analgesic<br>Duration (hr) |
|--------------------|----------------------|----------------|--------------------------|----------------------------|
| Morphine (IM)      | 0.5-1                | 2              | 10-20                    | 3-5                        |
| Hydromorphone (IM) | 0.5-1                | 2-3            | 10-20                    | 3-5                        |
| Levorphanol (IM)   | 0.5-1                | 12-16          | 10-20                    | 5-8                        |
| Hydrocodone (PO)   | 1                    | 4              | 30-60                    | 4-6                        |
| Codeine (IM)       | 0.5-1                | 3              | 10-20                    | 4-6                        |
| Oxycodone (PO)     | 0.5-1                | 2-3            | 30-60                    | 4-6                        |
| Meperidine (IM)    | 0.5-1                | 3-4            | 10-20                    | 2-5                        |
| Fentanyl (IM)      | 10-20                | 3-4            | 7-15                     | 1-2                        |
| Methadone (IM)     | 0.5-1                | 15-30          | 10-20                    | >8 (chronic)               |
| Propoxyphene (PO)  | 2-2.5                | 6-12           | 30-60                    | 4-6                        |

Combined data from: Reisine T, Paternak G 1995 and Pasero C, Portenoy RK, McCaffery M. 1999

#### Important Opioid Metabolism Considerations

- Morphine (compare to oxycodone)
  - morphine-3-glucuronide (M3G)
    - no analgesic activity
  - morphine-6-glucuronide (M6G)
    - active metabolite eliminated by kidneys
- Meperidine
  - metabolized to nor-meperidine
  - nor-meperidine is renally cleared
    - ergo, Rx accumulation ⇒ CNS excitability ⇒ seizure activity
- Methadone
  - Substrate for 3A4, consider reduced serum levels in **presence** of 3A4 inducers such as anti-retrovirals (nivirapine), rifampin, others

### Points to Consider About Equianalgesic Methadone Conversions

- A number of equianalgesic tables underestimate the potency of methadone.
- Conversion ratios in many equianalgesic dosing tables do not apply to repeated doses of opioids.<sup>1</sup>
- The morphine-to-methadone conversion ratio increases as the previous dose of morphine increases.<sup>2</sup>
- Conversion ratios may not be bi-directional (i.e. the morphine-to methadone conversion ratio may not be the same as the methadone-to-morphine ratio; a single ratio may not be applicable to all patients.<sup>3</sup>
- The use of high but ineffective doses of previous opioid may result in overestimation of the equivalent dose of methadone.
- 1. Management of Cancer pain, Clinical Practice Guidelines, AHCPR (1994); Cancer pain: a monograph on the management of cancer pain, Health & Welfare Canada (1984); Twycross (1990); Levy (1985).
- 2. The oal morphine to oral methadone conversion ratio may be unexpectedly much higher in patients who previously received very high doses of morphine.
- 3. Bruera E, Neumann CM. Role of methadone in the management of pain in cancer patients. Oncology (Huntingt) 1999;13:1275-82; discussion 1285-8, 1291

# After Discontinuing Methadone serum levels remain x 28 days morphine to methadone ≠ methadone to morphine



#### Methadone Conversion Study

- Ripamonti, et al 1998
  - Cross-sectional
  - Morphine to methadone
  - 38 patients
- Dose Ranges

Morphine (mg)

30-90

91-300

301 and higher

Morphine to Methadone Ratio

3.70 to 1

7.75 to 1

12.25 to 1

## "Fudin Factor" A Methadone Conversion Formula

Most exact to data from Ripamonti, et al 1998; less flowing and unlikely in real life

Methadone (mg) = 
$$\frac{X}{21}$$
  $\left\{5.7 - 3 \sin \left(\frac{90}{100}\right)^{100} - \sin \left(\frac{90}{310}\right)^{100} + 1\right\}$   
Let X= Morphine (mg)





Formula derived by Jason Fudin (Engineering Student, McGill University) in collaboration with Dr. Jeffrey Fudin

## "Fudin Factor" A Methadone Conversion Formula

Less exact to data from Ripamonti, et al 1998; more flowing and more likely in real life

Methadone (mg) = 
$$\frac{X}{21}$$
  $\left\{ 5.7 - 3 \sin \left( \frac{90}{110} \right)^5 + 1 \right\} - \sin \left( \frac{90}{320} \right)^7 + 1$   
Let X= Morphine (mg)





Formula derived by Jason Fudin (Engineering Student, McGill University) in collaboration with Dr. Jeffrey Fudin

## Potentially Clinically Relevant Methadone-Drug Interactions

- Agents That May DECREASE Serum Methadone Concentrations
  - Antiepileptics: carbamazepine, Phenobarbital, phenytoin
  - Antipsychotics: risperidone
  - Antiretrovirals: nevirapine, ritonavir
  - Antitubercular: rifampin
- Agents That May INCREASE Serum Methadone Concentrations
  - Antidepressants: SSRIs (venlafaxine is least likely), amitriptyline
  - Antifungals: fluconazole, Ketoconazole
- Agents That May Significant Increase Adverse Effects of Methadone
  - Benzodiazepines
  - St. John's Wort

# Special Population Precautions When Dosing Methadone

- Patients 65 years old and older have decreased clearance of methadone.<sup>1</sup>
- Two prospective studies on methadone excluded patients with kidney and liver disease.<sup>2,3</sup>

- 1. Plummer JL, Gourlay GK, Cherry DA, Cousins MJ. Estimation of methadone clearance: application in the management of cancer pain. Pain 1988;33:313-22.
- 2. Ripamonti C, Groff L, Brunelli C, Polastri D, Stravrakis A, De Conno F. Switching from morphine to oral methadone in treating cancer pain: what is the equianalgesic dose ratio? J Clin Oncol 1998;16:3216-21.
- 3. Mercadante S, Casuccio A, Fulfaro F et al. Switching from morphine to methadone to improve analgesia and tolerability in cancer patients: a prospective study. J Clin Oncol. 2001;19:2,898-904.

#### Summary

- Extended activity opioids have less side effects than short-acting products and foster extended periods of pain relief.
- Dosing and product selection must be patient-specific for each unique patient. No single medication is perfect for every patient.
- Methadone is not an extended release formulation.
- Only experienced clinicians should initiate and titrate methadone.
- Improper dosing of methadone (or any other opioid) could cause severe respiratory depression and death.

# Methadone has higher Potency in Some Patients. Why?

- Decreased Cross-tolerance
- d-isomer has NMDA receptor antagonism
- Opioid tolerance increases NMDA receptor activity; mediated by morphine-3-glucuronide (M-3-G)
- Conversion to methadone allows elimination of M-3-G, thereby decreasing opioid requirements.



www.NOVAPAIN.net