Time-Reversal Symmetry and Concurrence Dynamics

Stephen S. Bullock

(joint with Gavin K. Brennen, Dianne P. O'Leary)

Mathematical and Computational Sciences Division National Institute of Standards and Technology

Quantum Information and Bose Einstein Condensate seminar
April 21, 2004

Outline

I. Multi-partite Entanglement
II. Concurrence monotone \& time-reversal
III. Matrix decompositions
IV. Kramers' non-degeneracy
V. Perturbations (entanglement phase-transition)

Entangled States

- Multi-partite Hilbert space: Kronecker product $\mathcal{H}=\otimes_{j=1}^{n} \mathcal{H}_{j}$
- Local (mixed) state: $\rho=\sum_{k=1}^{\ell} p_{k} \bigotimes_{j=1}^{n} \rho_{k}^{j}, 0 \leq p_{k} \leq 1, \sum p_{k}=1$
- Entangled state: non-local states (not of this form)
- Remark: recent extensions focus on constructible projectors rather than particle (Kronecker product) projectors

Applications of Entangled States

- Quantum Communication
- Teleportation \& Super-dense coding: (2q) Bell states
- Quantum networks, parallel architecture: many-partite states
- Quantum circuit emulation using cluster state
- Evolve full superposition by Ising interaction
- Subsequently: only one-qubit operations, one-qubit measurement
- Precision measurement: GHZ-state shot noise achieves quantum limit

Multi-Partite Entanglement Types

- Bipartite state: $|\psi\rangle_{A B}$ from $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$, with $\rho_{A B}=|\psi\rangle_{A B}\left\langle\left.\psi\right|_{A B}\right.$
- All ent. measures: fxns. of entropy $S\left(\rho_{A}\right)=-\operatorname{Tr}\left(\rho_{A} \log \rho_{A}\right)$
- Unique entanglement type
- $n \geq 3$ qubits: multiple entanglement measures, types
- Entanglement type: states not convertible by stochastic LOCC
$-3 q$, two tri-partite types of $\mathbf{G H Z} \&|W\rangle=\frac{1}{\sqrt{3}}(|001\rangle+|010\rangle+|100\rangle)$
- 4 qubits, nine types

Quantifying Multi-partite Entanglement

- Entanglement monotones:
- Does not increase on average under LOCC
- Vanishes on local mixed states
- Convex on density matrices
- Examples: Concurrence, concurrence ${ }^{2}$, 3-tangle (3q), generalized Schmidt measure, geometric distance to local states, etc.
- Mixed states: $\mu(\rho)=\min \left\{\sum_{j=1}^{\ell}\left\langle x_{j} \mid x_{j}\right\rangle \mu\left(\left|x_{j}\right\rangle\right) ; \rho=\sum_{j=1}^{\ell}\left|x_{j}\right\rangle\left\langle x_{j}\right|\right\}$

Outline

I. Multi-partite Entanglement
II. Concurrence monotone \& time-reversal
III. Matrix decompositions
IV. Kramers' non-degeneracy
V. Perturbations (entanglement phase-transition)

Time-reversal Symmetry Operator Θ

- Time-reversal symmetry operator $\Theta: \mathcal{H} \rightarrow \mathcal{H}$ definition (Wigner):
- \mathbb{C}-antilinear \& orthogonal (i.e. anti-unitary)
- projectively involutive: $\Theta^{2}=e^{i \varphi} I$
- Physical intuition: +1 eigenspace position, -1 eigenspace momentum
- Bosonic or fermionic as $\Theta^{2}= \pm I$

Quantum Bit-Flip v: One Qubit

- Picture: reverse Bloch sphere vector
- Example of Time-reversal symmetry operator

|1)

|1)

Quantum Bit-Flip $\mho \&$ Concurrence

- One qubit formula: $|\psi\rangle \stackrel{\mho}{\mapsto}\left(-i \sigma^{y}\right) \overline{|\psi\rangle}$
- \mathbb{C}-antilinear: not unitary evolution (aphysical)
- n-qubit formula: $|\psi\rangle \stackrel{\mho}{\mapsto}\left(-i \sigma^{y}\right)^{\otimes n} \overline{|\Psi\rangle}=\overline{\left(-i \sigma^{y}\right)^{\otimes n}|\psi\rangle}$
- Physical interpretation: time-reversal symmetry operator
- Concurrence Entanglement Monotone: $\left.C_{2 p}(|\psi\rangle)=|\langle\psi| \mho| \psi\right\rangle \mid /\langle\psi \mid \psi\rangle$

Concurrence Entanglement Monotone: Examples

- $C_{2 p-1}(|\psi\rangle)=0$, for any $|\psi\rangle$ since $\left[\left(-i \sigma^{y}\right)^{\otimes n}\right]^{T}=-\left(-i \sigma^{y}\right)^{\otimes n}$
- $|\mathrm{GHZ}\rangle=\frac{1}{\sqrt{2}}(|0000\rangle+|1111\rangle)$, then $C_{4}(|\mathrm{GHZ}\rangle)=1$
- $|\mathrm{W}\rangle=\frac{1}{2}(|0001\rangle+|0010\rangle+|0100\rangle+|1000\rangle)$, then $C_{4}(|\mathrm{~W}\rangle)=0$
- $C_{2 p}\left(\left|\psi_{2 p-1}\right\rangle \otimes\left|\psi_{1}\right\rangle\right)=0$ since $\left\langle\psi_{1}\right| \mho_{1}\left|\Psi_{1}\right\rangle=0$
- (Scott, Caves) $\left\langle C_{2 p}(|\psi\rangle)^{2}\right\rangle \in O(1 / N)$

Concurrence of Mixed States is a Monotone (Brennen)

- Def: $C_{2 p}(\rho)=\min \left\{\sum_{j=1}^{\ell}\left\langle x_{j} \mid x_{j}\right\rangle C_{2 p}\left(\left|x_{j}\right\rangle\right) ; \rho=\sum_{j=1}^{\ell}\left|x_{j}\right\rangle\left\langle x_{j}\right|\right\}$
- Proof of monotone (Brennen, following Wong,Christensen for $C_{2 p}^{2}$)
- Properties to check for monotonicity
- $C_{2 p}\left(\sum_{k=1}^{\ell} p_{k} \otimes_{1}^{n} \rho_{j}\right)=0$
- Convex: $C_{2 p}\left(p \rho_{1}+q \rho_{2}\right) \leq p C_{2 p}\left(\rho_{1}\right)+q C_{2 p}\left(\rho_{2}\right)$, any $\rho_{1}, \rho_{2}, p+q=1$
- Non-increasing on average under LOCC

Outline

I. Multi-partite Entanglement
II. Concurrence monotone \& time-reversal
III. Matrix decompositions
IV. Kramers' non-degeneracy
V. Perturbations (entanglement phase-transition)

Matrix Decompositions

- Goal: Study entangling properties of $u: \mathcal{H}_{n} \rightarrow \mathcal{H}_{n}$ (entire state space)
- Technique: Matrix decompositions (factorization of matrix class)
- Examples: Singular Value Decomposition (SVD), Cosine-Sine Decomposition (CSD), $Q R$-Decomposition
- Producing Decompositions:
- Invoke existence theorem for factorization (implicit)
- Provide factorization algorithm (explicit)

$G=K A K$ Theorem for Decompositions

- $G=K A K$ theorem outputs matrix decomposition
- Lie group G is one of three inputs
- $K \subset G, A \subset G$ always Lie subgroups
- Many examples, several useful to quantum computing
- SVD: $G l(n, \mathbb{C})=U(n) \Delta U(n)=K A K$
- CSD: $S U(2 n)=[S U(n) \oplus S U(n)] T[S U(n) \oplus S U(n)]$, appropriate T
- Bloch sphere rotations: $S U(2)=\left\{R_{z}(\alpha)\right\}\left\{R_{y}(\theta)\right\}\left\{R_{z}(\alpha)\right\}$

New $G=K A K$ example: Concurrence Canonical Decomposition

- Generalizes canonical dec.: $S U(4)=[S U(2) \otimes S U(2)] \Delta[S U(2) \otimes S U(2)]$
- $S U(2) \otimes S U(2)$: two-qubit local unitary (LU) group
- Δ : relative phase computations on Bell basis
- Sample applications: 2q control theory, 2q quantum logic circuits, 2 q computation times, $2 q$ entanglement theory
- n-qubit CCD : extend theorem inputs for $2 q-C D$ to n qubits

Concurrence CD Cont.: A \& K

- What K subgroup does this produce?
- Concurrence form: $\mathcal{C}_{2 p}(|\phi\rangle,|\psi\rangle)=\overline{\langle\phi| \mho|\psi\rangle}$, (C-bilinear)
- K: symmetry subgroup
- $(k \in K) \Longleftrightarrow \mathcal{C}_{2 p}(k|\phi\rangle, k|\psi\rangle)=\mathcal{C}_{2 p}(|\phi\rangle,|\psi\rangle)$
- What A subgroup does this produce?
- Complicated: degrees of $G=K A K$ freedom in choice of A
- One choice: relative phasing of basis of Greenberger-Horne-Zeilinger states

Two-Qubit Entanglement Capacities

- Jun Zhang et al (Berkeley): two-qubit entanglement capacities
- Def: $\mathbb{E}_{2}(v)=\max \left\{C_{2}(v|\psi\rangle) ; C_{2}(|\psi\rangle)=0,\langle\psi \mid \psi\rangle=1\right\}$
- Strategy: study changes in entanglement induced by a factor of two-qubit canonical decomp, $v=[b \otimes c] a[d \otimes f]$
- Thm: $\mathcal{E}_{2}(v)=1$ iff the convex hull (polygonal span) of $\operatorname{spec}\left[\left(\sigma^{y}\right)^{\otimes 2} v\left(\boldsymbol{\sigma}^{y}\right)^{\otimes 2} v^{T}\right]$ holds $0 \in \mathbb{C}$
- Application: B gate; two-qubit computation with minimal possible (2) applications needed to build $S U(4)$ from $\{B, L U\}$

Even Qubit Concurrence Capacities

- Fix $n=2 p$, integral spin qubit system
- Def: Concurrence capacity

$$
\kappa_{2 p}(v)=\max \left\{C_{2 p}(v|\psi\rangle) ; C_{2 p}(|\psi\rangle)=0,\langle\psi \mid \psi\rangle=1\right\}
$$

- Prop:(BB) $\kappa_{2 p}\left(k_{1} a k_{2}\right)=\kappa_{2 p}(a)$
- Thm:(BB) $\kappa_{2 p}(v)=1$ iff the convex hull (polygonal span) of $\lambda_{c}(v)=\operatorname{spec}\left[\left(-i \sigma^{y}\right)^{\otimes 2 p} v\left(-i \sigma^{y}\right)^{\otimes 2 p} v^{T}\right]=\operatorname{spec}\left(a^{2}\right)$ holds $0 \in \mathbb{C}$
- Application: Choose an element a at random for $2 p$ large \Longrightarrow the concurrence capacity of $v=k_{1} a k_{2}$ is probably one

Picture: Sample Convex Hull

Concurrence Spectra of Other Computations

- Quantum Fourier transform: Fix $N=2^{n}, \omega=\mathrm{e}^{2 \pi i / N}$
- $\mathcal{F}=\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} \sum_{k=0}^{N-1} \omega^{j k}|k\rangle\langle j|$
- Admits $\Theta(\log N)$-sized quantum logic circuit
- Component of other quantum algorithms, e.g. Shor's factoring
- Quantum baker's map: $B_{n}=\mathcal{F}_{n}\left(I_{2} \otimes \mathcal{F}_{n-1}^{-1}\right)$
- Used in quantum chaos theory; quantum mixing
- Concurrence of $B_{n}^{k}|00 \cdots 0\rangle$ studied by Scott, Caves

$\lambda_{c}(v)=\operatorname{spec}\left(a^{2}\right)$ of \mathcal{F}_{10} (left) \& B_{10} (right)

Algorithms Computing the CCD

- Parity dependece: inner automorphism class of $K \subset S U\left(2^{n}\right)$
- $n=2 p: K=E S O\left(2^{n}\right) E^{\dagger}$, some matrix E
- $n=2 p-1: K=F S p\left(2^{n-1}\right) F^{\dagger}$, some matrix F
- $n=2 p$: Algorithm very similar to two-qubit case
- $n=2 p-1$: requires symplectic diagonalization argument
- Dongarra, Gabriel, Koelling, Wilkinson Linear Algebra \& App., '84
- Similar to work w/ quaternions of Dyson, JMP

Outline

I. Multi-partite Entanglement
II. Concurrence monotone \& time-reversal
III. Matrix decompositions
IV. Kramers' non-degeneracy
V. Perturbations (entanglement phase-transition)

Second $G=K A K$ input: $\theta: \mathfrak{g} \rightarrow \mathfrak{g}$

- (linear) Lie group G yields Lie algebra \mathfrak{g} : set of matrix logarithms
- Lie algebra: carries Lie bracket [-,-]
- Cartan involution intuition: polar-like decomposition of \mathfrak{g}
- Cartan involution: $\theta: \mathfrak{g} \rightarrow \mathfrak{g}, \theta^{2}=I \&[\theta X, \theta Y]=\theta[X, Y]$

Second $G=K A K$ input: $\theta: \mathfrak{g} \rightarrow \mathfrak{g}$ Cont.

- Example: for Singular value decomposition
$-\mathfrak{g l}(n, \mathbb{C})=\mathbb{C}^{n \times n}=\log G l(n, \mathbb{C})$
- $\theta(X)=-X^{\dagger}, \mathrm{w} /-1$ eigenspace Hermitian matrices and +1 eigenspace antiHermitian
- Exponentials of eigenspaces: Hermitian \& unitary matrices
- $\mathfrak{s u}\left(2^{n}\right)=\left\{i H ; \operatorname{tr}(H)=0, H=H^{\dagger}\right\}$
- CCD involution: $\theta(i H)=\left[\left(-i \boldsymbol{\sigma}^{y}\right)^{\otimes n}\right]^{\dagger}(i H)\left(-i \boldsymbol{\sigma}^{y}\right)^{\otimes n}=\mho^{-1}(i H) \mho$

CCD at Hamiltonian Level

- Observed slightly earlier: Bremner-Dodd-Nielsen-Bacon
- Notation: $i \sigma^{\otimes J}$, multiindex $J=j_{1} j_{2} \cdots j_{k} \cdots j_{n}$
$-\sigma^{0}=I, j \in\{0, x, y, z\}$
- $i \sigma^{\otimes J}=i \otimes_{j=1}^{n} \sigma^{j} \in \mathfrak{u}(N)$
- Traceless if some $j_{k} \neq 0 ; \# J=\#\left\{k ; j_{k} \neq 0,1 \leq k \leq n\right\}$
- $\mathfrak{s u}(N)=\left\{i H ; H=H^{\dagger}, \operatorname{tr}(H)=0\right\}=\oplus_{\# J \neq 0} \mathbb{R} i \sigma^{\otimes J}$

CCD at Hamiltonian Level Cont.

- \mathbb{F}_{2} grading: $\mathfrak{s u}(N)=\left(\oplus_{\# J \equiv 0} \bmod 2, \# J \neq 0 \mathbb{R}^{\mathbb{R}}\left\{\boldsymbol{\sigma}^{\otimes J J}\right\}\right) \oplus\left(\oplus_{\# J \equiv 1 \bmod 2} \mathbb{R}\left\{i \sigma^{\otimes J}\right\}\right)$
- time-reversal symmetry w.r.t. $\mho: \mathfrak{p}=\bigoplus_{\# J \equiv 0, \bmod 2, \# J \neq 0} \mathbb{R} i \sigma^{\otimes J}$
- time-reversal anti-symmetry w.r.t. $\mho: \mathfrak{k}=\oplus_{\# J \equiv 1 \bmod 2} \mathbb{R} i \sigma^{\otimes J}$
- Preview: Demonstrate eigenstates of all $i H \in \mathfrak{p}$ are degenerate or else have concurrence one

Offhand Remarks

- Recall K earlier as symmetries of concurrence form
- So K is a group
- $K=\{\exp (i H) ; H$ time-reversal anti-symmetric $\}$
- Anti-symmetric evolutions form a group
- Last $G=K A K$ input is $\mathfrak{a}=\log A$; must be in -1 e -space
- Time-symmetric evolutions do not form a group; cf. Hermitian matrices

Kramers' Degeneracy \& $G=K A K$ Classification

- Kramers' degeneracy: Half integral spin system, time-symmetric energy Hamiltonian \Longrightarrow degenerate eigenstates
- Time-symmetric Hamiltonian: CCD simplifies
$-v=\exp (i H), v=k a k^{\dagger}$ and $H=k H_{\mathfrak{a}} k^{\dagger}, H_{\mathfrak{a}} \in \mathfrak{a}, k \in K$
- Structure of \mathfrak{a} algebra (depends on parity of n)
- Cartan classication of all θ up to Lie isomorphism
- $K \cong S p\left(2^{n-1}\right) \Longrightarrow$ repeat eigenvalues

Eigenstates for Time-Symmetric H (Kramers' proof)

Prop (Kramers): Let H be a traceless Hamiltonian which is time-reversal symmetric (i.e. $i H \in \mathfrak{s u}(N), i H \in \mathfrak{p}$.) Say $|\psi\rangle \in \mathcal{H}_{n}$ is a λ-eigenstate. Then the bit-flip $\mathcal{J}|\psi\rangle$ is also a λ-eigenstate.

Proof: Since $H=H^{\dagger}$, note that λ is real. Thus antilinearity causes $\mho \lambda \lambda|\psi\rangle=$ $\lambda \mho|\psi\rangle$. By symmetry, $\mho H \mho^{-1}=H$, i.e. $\mho H=H \mho$. Thus given $H|\psi\rangle=\lambda|\psi\rangle$,

$$
H \mho|\psi\rangle=\mho H|\psi\rangle=\mho \lambda|\psi\rangle=\lambda \mho|\psi\rangle
$$

Thus $\mho|\psi\rangle$ is a λ-eigenstate.

Kramers' Non-degeneracy (B B O'L)

- Fix $n=2 p, H$ traceless, time-symmetric, nondegenerate
- $H|\psi\rangle=\lambda|\psi\rangle \Longrightarrow \mho|\psi\rangle$ also λ-eigenstate
- Nondegenerate: must have $\mho \zeta|\psi\rangle=\mathrm{e}^{i \varphi}|\Psi\rangle$
- Consequence: $\left.C_{2 p}(|\psi\rangle)=|\langle\psi| \mho| \psi\right\rangle \mid=1$; any nondegenerate eigenstate of H is maximally concurrent (\Longrightarrow entangled)

Outline

I. Multi-partite Entanglement
II. Concurrence monotone \& time-reversal
III. Matrix decompositions
IV. Kramers' non-degeneracy
V. Perturbations (entanglement phase-transition)

Examples of Time-Symmetric Hamiltonians

- E.g. $X Y$ Hamiltonian: $H_{X Y}=J \sum_{j=0}^{2 p-1}\left(\frac{1+g}{4} \sigma_{j}^{x} \sigma_{(j+1) \bmod 2 p}^{x}+\frac{1-g}{4} \sigma_{j}^{y} \sigma_{(j+1) \bmod 2 p}^{y}\right)$
- Time symmetric: Each summand has even \# of Pauli operators.
- Literature (Lieb): nondegenerate (no repeat eigenvalues)
- Consequence: Very entangled eigenstates, in particular ground state
- Could one produce maximally concurrent states by cooling?

Perturbations of Time Symmetry (GKB)

- Proof fails if perturbative individual one-qubit spins are added:

$$
H=J \sum_{j=0}^{2 p-1}\left(\frac{1+g}{4} \sigma_{j}^{x} \sigma_{(j+1) \bmod 2 p}^{x}+\frac{1-g}{4} \sigma_{j}^{y} \sigma_{(j+1) \bmod 2 p}^{y}\right)+\frac{h_{z}}{2} \sum_{j=0}^{2 p-1} \sigma_{j}^{z}
$$

- Question (GKB): How does concurrence change in h_{z} and in balance of $\sigma^{x} \otimes \sigma^{x}$ vs. $\sigma^{y} \otimes \sigma^{y}$ given by g ?
- Four qubit answer: over

Perturbations of Time Symmetry (GKB) Cont.

Concurrence at Finite Temp, $g=h_{z}=0$ (GKB)

Conclusions

- Concurrence Canonical Decomposition:
- Loosely: Singular Value Decomp. for time-reversal symmetry
- Generalizes $2 q$-entanglement dynamics to n-qubit concurrence dynamics
- Structures visible at $n>2$ qubits, exclusive
- Kramers' degeneracy, as total spin integral, half-integral
- Many-partite concurrence of eigenstates

Ongoing Work

- Scaling of sides of concurrence phase-transition as h_{z} varies
- Seems to scale as $1 / n, n=$ \#qubits
- Break less marked if $\left(\sigma^{x}\right)^{\otimes 2},\left(\sigma^{y}\right)^{\otimes 2}$ weights differ
- Bang-bang correction of real time-reversal symmetric Hamiltonians, \& Bang-gnab for K (anti-symmetric)
- Concurrence of finite-temperature (mixed) states of $H_{X Y}$
- Measurement of concurrence of n-qubit system, n large

