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Entangled States

� Multi-partite Hilbert space: Kronecker product H � � n
j� 1H j

� Local (mixed) state: ρ � ∑� k� 1 pk� n
j� 1 ρ j

k, 0 � pk � 1, ∑ pk � 1

� Entangled state: non-local states (not of this form)

� Remark: recent extensions focus on constructible projectors rather
than particle (Kronecker product) projectors
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Applications of Entangled States

� Quantum Communication

– Teleportation & Super-dense coding: (2q) Bell states

– Quantum networks, parallel architecture: many-partite states

� Quantum circuit emulation using cluster state

– Evolve full superposition by Ising interaction

– Subsequently: only one-qubit operations, one-qubit measurement

� Precision measurement: GHZ-state shot noise achieves quantum limit
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Multi-Partite Entanglement Types

� Bipartite state: � ψ � AB from H � HA � HB, with ρAB � � ψ � AB � ψ � AB

– All ent. measures: fxns. of entropy S � ρA � � � Tr � ρA logρA �

– Unique entanglement type

� n � 3 qubits: multiple entanglement measures, types

– Entanglement type: states not convertible by stochastic LOCC

– 3q, two tri-partite types of GHZ & � W � � 1
� 3 � � 001 �	� � 010 � � � 100 � �

– 4 qubits, nine types

5



Quantifying Multi-partite Entanglement

� Entanglement monotones:

– Does not increase on average under LOCC

– Vanishes on local mixed states

– Convex on density matrices

� Examples: Concurrence, concurrence2, 3-tangle (3q), generalized
Schmidt measure, geometric distance to local states, etc.

� Mixed states: µ � ρ � � min ∑� j� 1 � x j � x j � µ � � x j � � ; ρ � ∑� j� 1 � x j � � x j �
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Time-reversal Symmetry Operator Θ

� Time-reversal symmetry operator Θ : H � H definition (Wigner):

– � -antilinear & orthogonal (i.e. anti-unitary)

– projectively involutive: Θ2 � eiϕI

� Physical intuition:� 1 eigenspace position, � 1 eigenspace momentum

� Bosonic or fermionic as Θ2 � � I
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Quantum Bit-Flip � : One Qubit

� Picture: reverse Bloch sphere vector

� Example of Time-reversal symmetry operator
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Quantum Bit-Flip � & Concurrence

� One qubit formula: � ψ �
� �� � � iσy

� � ψ �

� � -antilinear: not unitary evolution (aphysical)

� n-qubit formula: � ψ �
� �� � � iσy

��� n
� ψ � � � � iσy

��� n

� ψ �

� Physical interpretation: time-reversal symmetry operator

� Concurrence Entanglement Monotone: C2p � � ψ � � � � � ψ ��� � ψ � �� � ψ � ψ �
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Concurrence Entanglement
Monotone: Examples

� C2p� 1 � � ψ � � � 0, for any � ψ � since � � � iσy

��� n

�

T � � � � iσy

��� n

� � GHZ � � 1

� 2 � � 0000 �	� � 1111 � � , then C4 � � GHZ � � � 1

� � W � � 1
2 � � 0001 �	� � 0010 � � � 0100 �	� � 1000 � � , then C4 � � W � � � 0

� C2p � � ψ2p� 1 � � � ψ1 � � � 0 since � ψ1 ��� 1 � ψ1 � � 0

� (Scott, Caves) � C2p � � ψ � �

2

� � O � 1� N �

11



Concurrence of Mixed States is a Monotone
(Brennen)

� Def: C2p � ρ � � min ∑� j� 1 � x j � x j � C2p � � x j � � ; ρ � ∑� j� 1 � x j � � x j �

� Proof of monotone (Brennen, following Wong,Christensen for C2
2p)

� Properties to check for monotonicity

– C2p � ∑� k� 1 pk � n
1 ρ j � � 0

– Convex: C2p � pρ1� qρ2 � � pC2p � ρ1 �� qC2p � ρ2 � , any ρ1� ρ2, p� q � 1

– Non-increasing on average under LOCC
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Matrix Decompositions

� Goal: Study entangling properties of u :Hn � Hn (entire state space)

� Technique: Matrix decompositions (factorization of matrix class)

� Examples: Singular Value Decomposition (SVD), Cosine-Sine
Decomposition (CSD), QR-Decomposition

� Producing Decompositions:

– Invoke existence theorem for factorization (implicit)

– Provide factorization algorithm (explicit)
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G � KAK Theorem for Decompositions

� G � KAK theorem outputs matrix decomposition

– Lie group G is one of three inputs

– K � G, A � G always Lie subgroups

� Many examples, several useful to quantum computing

– SVD: Gl � n� � � � U � n � ∆U � n � � KAK

– CSD: SU � 2n � � � SU � n ��� SU � n � � T � SU � n ��� SU � n � � , appropriate T

– Bloch sphere rotations: SU � 2 � � � Rz � α �� � Ry � θ �� � Rz � α ��
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New G � KAK example:
Concurrence Canonical Decomposition

� Generalizes canonical dec.: SU � 4 � � � SU � 2 � � SU � 2 � � ∆ � SU � 2 � � SU � 2 � �

– SU � 2 � � SU � 2 � : two-qubit local unitary (LU) group

– ∆: relative phase computations on Bell basis

� Sample applications: 2q control theory, 2q quantum logic circuits, 2q
computation times, 2q entanglement theory

� n-qubit CCD: extend theorem inputs for 2q-CD to n qubits
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Concurrence CD Cont.: A & K

� What K subgroup does this produce?

– Concurrence form: C2p � � φ �� � ψ � � � � φ ��� � ψ � , ( � -bilinear)

– K: symmetry subgroup

– � k � K ��� � C2p � k � φ �� k � ψ � � � C2p � � φ �� � ψ � �

� What A subgroup does this produce?

– Complicated: degrees of G � KAK freedom in choice of A

– One choice: relative phasing of basis of Greenberger-Horne-Zeilinger
states
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Two-Qubit Entanglement Capacities

� Jun Zhang et al (Berkeley): two-qubit entanglement capacities

– Def: E2 � v � � max � C2 � v � ψ � � ; C2 � � ψ � � � 0� � ψ � ψ � � 1�

– Strategy: study changes in entanglement induced by a factor of
two-qubit canonical decomp, v � � b � c � a � d � f �

– Thm: E2 � v � � 1 iff the convex hull (polygonal span) of
spec � � σy

��� 2 v � σy

��� 2 vT

� holds 0 � �

� Application: B gate; two-qubit computation with minimal possible (2)
applications needed to build SU � 4 � from � B� LU�
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Even Qubit Concurrence Capacities

� Fix n � 2p, integral spin qubit system

– Def: Concurrence capacity

κ2p � v � � max � C2p � v � ψ � � ; C2p � � ψ � � � 0� � ψ � ψ � � 1�

– Prop:(BB) κ2p � k1ak2 � � κ2p � a �

– Thm:(BB) κ2p � v � � 1 iff the convex hull (polygonal span) of
λc � v � � spec � � � iσy

��� 2p v � � iσy

�� 2p vT
� � spec � a

2

� holds 0 � �

� Application: Choose an element a at random for 2p large � � the
concurrence capacity of v � k1ak2 is probably one
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Picture: Sample Convex Hull
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Concurrence Spectra of Other Computations

� Quantum Fourier transform: Fix N � 2n, ω � e2πi

�

N

– F � 1

� N
∑N� 1

j� 0 ∑N� 1
k� 0 ω jk

� k � � j �

– Admits Θ � logN � -sized quantum logic circuit

– Component of other quantum algorithms, e.g. Shor’s factoring

� Quantum baker’s map: Bn � Fn � I2 � F� 1
n� 1 �

– Used in quantum chaos theory; quantum mixing

– Concurrence of Bk
n � 00 � � � 0 � studied by Scott, Caves
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λc �

v

�

� spec

�

a2

�

of F10 (left) & B10 (right)
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Algorithms Computing the CCD

� Parity dependece: inner automorphism class of K � SU � 2
n

�

– n � 2p: K � E SO � 2
n

� E
†, some matrix E

– n � 2p � 1: K � F Sp � 2
n� 1

� F†, some matrix F

� n � 2p: Algorithm very similar to two-qubit case

� n � 2p � 1: requires symplectic diagonalization argument

– Dongarra, Gabriel, Koelling, Wilkinson Linear Algebra & App., ’84

– Similar to work w/ quaternions of Dyson, JMP
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Second G � KAK input: θ : � �

� (linear) Lie group G yields Lie algebra � : set of matrix logarithms

� Lie algebra: carries Lie bracket � �
�

� �

� Cartan involution intuition: polar-like decomposition of �

� Cartan involution: θ : � � � , θ2 � I & � θX� θY � � θ � X� Y �
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Second G � KAK input: θ : � � Cont.

� Example: for Singular value decomposition

– ��� � n� � � � � n � n � logGl � n� � �
– θ � X � � � X†, w/ � 1 eigenspace Hermitian matrices and� 1 eigenspace

antiHermitian

– Exponentials of eigenspaces: Hermitian & unitary matrices

� �� � 2
n

� � � iH ; tr � H � � 0� H � H†�

� CCD involution: θ � iH � � � � � iσy

��� n

�

†

� iH � � � iσy

�� n � � � 1

� iH � �
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CCD at Hamiltonian Level

� Observed slightly earlier: Bremner-Dodd-Nielsen-Bacon

� Notation: iσ� J, multiindex J � j1 j2 � � � jk � � � jn

– σ0 � I, j � � 0� x� y� z�

– iσ� J � i � n
j� 1 σ j � � � N �

– Traceless if some jk �� 0; #J � # � k ; jk �� 0� 1 � k � n�

� �� � N � � � iH ; H � H†

� tr � H � � 0� � � #J �� 0� iσ� J
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CCD at Hamiltonian Level Cont.

� � 2 grading: �� � N � � � #J� 0 mod2 � #J �� 0� � iσ� J� � � #J� 1 mod2� � iσ� J�

� time-reversal symmetry w.r.t. � : � � � #J� 0 � mod2 � #J �� 0� iσ� J

� time-reversal anti-symmetry w.r.t. � : � � � #J� 1 mod2� iσ� J

� Preview: Demonstrate eigenstates of all iH � � are degenerate or else
have concurrence one
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Offhand Remarks

� Recall K earlier as symmetries of concurrence form

– So K is a group

– K � � exp � iH � ; H time-reversal anti-symmetric�

– Anti-symmetric evolutions form a group

� Last G � KAK input is � � log A; must be in � 1 e-space

� Time-symmetric evolutions do not form a group; cf. Hermitian matrices
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Kramers’ Degeneracy & G � KAK Classification

� Kramers’ degeneracy: Half integral spin system, time-symmetric
energy Hamiltonian � � degenerate eigenstates

� Time-symmetric Hamiltonian: CCD simplifies

– v � exp � iH � , v � kak† and H � kH � k†, H � � � , k � K

� Structure of � algebra (depends on parity of n)

– Cartan classication of all θ up to Lie isomorphism

– K �� Sp � 2
n� 1

� � � repeat eigenvalues
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Eigenstates for Time-Symmetric H
(Kramers’ proof)

Prop (Kramers): Let H be a traceless Hamiltonian which is time-reversal
symmetric (i.e. iH � �� � N � , iH � � .) Say � ψ � � Hn is a λ-eigenstate. Then
the bit-flip � � ψ � is also a λ-eigenstate.

Proof: Since H � H†, note that λ is real. Thus antilinearity causes � λ � ψ � �

λ� � ψ � . By symmetry, � H� � 1 � H, i.e. � H � H� . Thus given H � ψ � � λ � ψ � ,

H� � ψ � � � H � ψ � � � λ � ψ � � λ� � ψ �
Thus � � ψ � is a λ-eigenstate. �
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Kramers’ Non-degeneracy (B B O’L)

� Fix n � 2p, H traceless, time-symmetric, nondegenerate

� H � ψ � � λ � ψ � � � � � ψ � also λ-eigenstate

� Nondegenerate: must have � � ψ � � eiϕ

� ψ �

� Consequence: C2p � � ψ � � � � � ψ � � � ψ � � � 1;
any nondegenerate eigenstate of H is maximally concurrent
( � � entangled)

32



Outline

I. Multi-partite Entanglement
II. Concurrence monotone & time-reversal

III. Matrix decompositions
IV. Kramers’ non-degeneracy
V. Perturbations (entanglement phase-transition)

33



Examples of Time-Symmetric Hamiltonians

� E.g. XY Hamiltonian: HXY � J ∑2p� 1
j� 0

1 � g
4 σx

jσ
x

� j � 1 ��� �� 2p�

1� g
4 σy

jσ
y

� j � 1 ��� �� 2p

� Time symmetric: Each summand has even # of Pauli operators.

� Literature (Lieb): nondegenerate (no repeat eigenvalues)

� Consequence: Very entangled eigenstates, in particular ground state

� Could one produce maximally concurrent states by cooling?
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Perturbations of Time Symmetry (GKB)

� Proof fails if perturbative individual one-qubit spins are added:

H � J
2p� 1

∑
j� 0

1� g
4

σx
jσ

x

� j � 1 ��� �� 2p�

1 � g
4

σy
jσ

y

� j � 1 ��� �� 2p �

hz

2

2p� 1

∑
j� 0

σz
j

� Question (GKB): How does concurrence change in hz and in balance
of σx � σx vs. σy � σy given by g?

� Four qubit answer: over
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Perturbations of Time Symmetry (GKB) Cont.
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Concurrence at Finite Temp, g � hz � 0 (GKB)
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Conclusions

� Concurrence Canonical Decomposition:

– Loosely: Singular Value Decomp. for time-reversal symmetry

– Generalizes 2q-entanglement dynamics to n-qubit concurrence dy-
namics

� Structures visible at n � 2 qubits, exclusive

– Kramers’ degeneracy, as total spin integral, half-integral

– Many-partite concurrence of eigenstates
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Ongoing Work

� Scaling of sides of concurrence phase-transition as hz varies

– Seems to scale as 1� n, n � #qubits

– Break less marked if � σx
�� 2, � σy

�� 2 weights differ

� Bang-bang correction of real time-reversal symmetric Hamiltonians, &
Bang-gnab for K (anti-symmetric)

� Concurrence of finite-temperature (mixed) states of HXY

� Measurement of concurrence of n-qubit system, n large
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