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We present a hew algorithm to canonize molecular graphs using the signature molecular descriptor introduced
in the previous papers of this series. While developed specifically for molecular structures, the algorithm
can be used for any graph and is not limited to acyclic graphs, planar graphs, bounded valence, or bounded
genus graphs, for which polynomial time algorithms exist. The algorithm is tested with benzenoid
hydrocarbons and a database of 126 705 organic compounds. The algorithm’s performances are compared
against Brendan Mc Kay’s Nauty algorithm, which is believed to be the fastest graph canonization algorithm
for general graphs, with five series of graphs each comprising up to 30000 vertices: 2D meshes
(pericondensed benzenoids), 3D cages (fullerenes and nanotubes), 3D meshes (crystal lattices), 4D cages,
and power law graphs (protein and gene networks). The algorithm can be downloaded as an open source
code at http://www.cs.sandia.gevfaulon/QSAR.

INTRODUCTION used Brendan McKay's Nauty algorithtawhich is believed
. ) to be the fastest graph canonization algorithm. In the current
The molecular descriptor we casignatureis based on  haher we propose a novel canonization algorithm de facto
extended valence sequences. An extended valence SeqUenCRypacing steps 24 of the above procedure.
or molecular signature, is a veg:tor_of occurrence numbers Beyond canonizing signatures, our proposed algorithm can
of extended valences', or atomlc' signatures. The extended, s he used to canonize molecular graphs. According to
valence of an atom is a canonical representation of the proposition 4 of our first paper, for any given molecule and

topological environment of the considered atom up 10 a yny given height greater than the diameter of the molecule,
predefined height. The first papeof the series investigates  ona can reconstruct in linear time the entire molecular graph

the use of the signature in quantitative structaetivity from any of its atomic signatures. Thus, any algorithm
relationship (QSAR) and quantitative SUUCHHBOPErty  4nnizing a signature will also canonize a molecular graph
relationship (QSPR) analyses, the second PaprIPOSes 54 |ong as the signature’s height is greater than the diameter
an algorithm for enumerating molecules from signatures, and ¢ {10 graph.

the lth'.rd p"’.‘pe?f presents an ega”?p'e I(();Amvierser—]%SAR Graph canonization, along with graph isomorphism, and
analysis using signatures to_design -1 Inhibitory automorphism partitioning are problems that have been

peptides. ’A}S (;jgscfnbedtln our1f|rit pa;t))er, aLOm'C S|grt1atutre§ extensively studied both in computer science and computa-
are computed in five steps. (1) A subgraph is constructe tional chemistry. While none of these problems has been

containing all atoms and bonds that are at a distance NOgp, 0 to be intractable (NP-complete), no polynomial time

(E;hreatert_than t?(tehggn%ture r;]e|ght|frt())rrl1 E;“.a probed_attl)m, d(z)general solutions are known. Yet these problems are tractable
& veruces of the subgraph are fabeled in canonical oreer, g can pe solved efficiently for several restricted classes

.(3) a tree spanning all the e_dges of the canonical subgraphof graphs, to one of which molecular graphs belong. In 1998
is constructed, (4) all canonical labels that appear only one

) . . ! .~ one of us showed how to transform molecular graphs into
time are removed, and (5) the signature is written by reading simple bounded valence graphs, class of graphs where
the tree in a depth-first order. We proved in that paper

” S - isomorphism and canonization have theoretically been shown
(proposition 1) that atomic signatures can be stored in

| ial i ¢ lecul h d to be solvable in polynomial timeEven though bounded
fho ynotmlalll sgace (meta:j or mlo ecu .arl tgrap s) an _t_can valence graphs can potentially be canonized efficiently, no
eoretically be computed in polynomia lme'(prop03| lon practical algorithm based on the above results has ever been
7). The most computationally intensive step in computing

. _ N ) published, and computational chemists have continued
the signature is the canonization step. In our first paper we developing heuristics to canonize molectfiés
c " — (925) 2041279, fa (925) 2043020 Along these lines, the recent IUPAC project IChl is aimed
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" Computational Biology Department, Sandia National Laboratories. To canonize a molecular graph, one has to find a unique
y ’_:ny_ritogga’\rlihy '\E/I)epaftmem' Sandia National Laboratories, and the representation that is independent of the initial labeling of

Maroroy OFTewW b exICo. the atoms. Relabeling the atoms in order to minimize or
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Figure 1. Atomic signature: (a) Schlegel diagram of a cage comprising 16 atoms; (b) signature tree of atom 1; (c) DAG representation
of the signature tree of atom 1; (d) initial invariants.

matrix of a graph are examples of canonization. While a The root of the tree is atom itself. The first layer of the
canonization algorithm can be any procedure producing atree is composed of the neighborsxpfthe second layer is
unique code representing a graph, it is convenient to generatecomposed of the neighbors of the vertices of the first layer
a code from which adjacency matrices can easily be except atonx. The construction proceeds one layer at a time
reconstructed. until no more layers can be added, that is until all the bonds
The paper is set up as follows. The first section presentsof G have been considered. Assuming the tree has been
the data structure used by the canonization algorithm. Theconstructed up to layet, layer | + 1 is constructed
second section describes the canonization algorithm. In theconsidering each vertexof layer|. Let z be a neighbor of
third section the correctness of the algorithm is informally Yy in G. Vertexz and edgey,4 are added to layer + 1 if
demonstrated. Finally, the performance of the algorithm is the edgesy[,4 or [z,)] are not already present in the previous

compared with that of Nauty in the last section. layers of the tree. To each vertex added to the tree, one
associates an atom type and the initial label or number of
SIGNATURE DATA STRUCTURE the corresponding atom. Note that a given atom nunzber

may appear several times in the tree (such as atom number

As already stated, our proposed algorithm canonizes a3 in Figure 1b) since it can be the neighbor of several atoms
signature and canonizes a molecular graph when the signatur@resent in the previous layer. It is important to note that when
height is greater than the diameter of the graph. In the an atom appears several times at a given layer, the subtree
remainder of the paper we will consider all signatures to be rooted at this atom will appear the same number of times
of heights greater than the diameters of the graphs to be(such as the subtree attached to atom 3 in Figure 1b). When
canonized. a subtree appears several times at a given layer, it is not

Let G be a molecular graph and Igtbe an atom ofG. necessary to duplicate its data structure; instead the data
We use the terminology atoms and bonds when referring to structure is stored only once, and references to the stored
the initial molecular graph, and the terms vertices and edgessubtree are added as many times as there are duplicates. As
to describe signatures. As illustrated in Figure 1a,bxfer illustrated in Figure 1c, using references instead of duplicated
1, the signature ox is a tree spanning all the bonds Gf subtrees results in a final representation known as a rooted
We use the term tree here in a somewhat loose manner aslirected acyclic graph (rooted-DAG). A DAG must not
several vertices in the tree may correspond to the same atomcontain cycles when following the directions of the edges.
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Table 1. Canonized Molecular Signatures for Familiar Hydrocarbons

name atoms bonds coldrsstrings canonical molecular signatttre

hexane 6 5 0 1 2.0[c_J(le_]lc_]([c_I([c_I([c_1))
2.0[c_]([c_]([c_J([c_Inlec_I([c_D)
2.0[c_]([c_1([c_(lc_I([c_I([c_Dn))

benzene 6 6 0 1 6.0[cp]([epl([ep](lep, LIcpl([epl(iep,1]))

naphthalene 10 11 1 2 4.0[cp](epl([epl(lep](epl(ep, 1))Iep. 2] ([epl(lep, 1IN))[epl([cpl([ep,2]))
4.0[cp]([ep]([ep](lep, 1) (epl([ep]([ep]([cp. 2D)ep](lep. LT cpl([cep.2])))
2.0[cp]([epl([ep)(ep, 1) Iep]([ep)(lep, 21)Iepl([cpl(cep.2]) [ep)((ep,1])

pyrene 16 19 1 2 2.0[cp]([ep]([cpl([ep.2][cpl([ep.3])(ep](lep, ][ep)(lep.3)Iep](lep](cp. 4D cpl([cp. 1)) cp]
([ep]([ep,4D)lep](lep.2]))
2.0[cp]([epl(ep]([ep,2]([ep]([ep, ]([cpl([ep.3])lep.41([cp] (fep.3DN)ep](lepl((ep.1])))
lepl([ep]([ep.2][ep](epI([cp.4D))))
4.0[cp]([epl([ep](lep, 1) epl([ep](fep. 2] ([ep](lep.3DNIepI([epl((ep. 2] lep]([ep.4llcp]([cp.3])
[ep]([ep, 1][ep]([cp.4D))))
4.0[ep]([epl([epl(ep, 1([ep)(ep, 2](ep.3D)(ep](lepl([ep. 2DN)epl([ep](cpl([ep.4])) cp]
([cp, 1][ep]([cp.4][cp](ep.3]))))
4.0[cep]([epl([ep](ep, 1([ep)(lep, 2D [ep]([epl([ep](lep.3]([ep]([cp. D)) cpl([cp. L [cp]
([cp,3][ep]([ep.2][cpI(cp.41)))

coronene 24 30 1 2 6.0[cp]([ep]([epl(ep. 2] ([ep](iep.3)Iep]([cpl((ep.4l([cpl(lep.S)N)ep]((cpl([cp.4llcp]
&Cp,g}%;)li;])([cp,1][CIO,7]))[CID]([Cp.5][Cp]([Cp,ll))))[CP]([Cp,2][Cp]([Cp,6][Cp]([CP,3][C|0]
cp,
6.0[cp]([cp]([ep]([ep.2]([ep]([cp. 1][ep. 3])[ep]([cp.4][cpI([ cp. 1)) ep](lcp.S]lepl(lep.41))lcp]
([epl([ep. 2][ep]([ep.6][ cp]([cp.3D)Icpl(lep, 71lep]([cp.6]))ep](lep]((ep, 7DIcpl([c p.5]))
12.0[cp]([epl([ep](Tep, L]([ep](lep,2](lep]([ep, 3]lep.4]))lep, Sl([cpl(icp.41)iep]([cpl(ep,S]))))
[ep]([ep]([ep]([ep,6]([c pl([ep. 7DM)Iep]([ep, L]icpl([ep.6llcpl((cp. 2] cp]([cp, 7]icp] ([cp,3])))N)))

fullerene C60 60 90 1 2 60.0[cp]([cp]([cp]([cp,2]([cp)([ep. 3][cp.41([cp]([cp.S]lep.6])))epl(ep. 71([ep]((cp.8](cp. 9]
([ep]([ep, 10][ep, L1])))[ep.3]([ep]([cp. 9[cp. 6] ([cp, 11]([ep. 12]([ep, 13]))))))cpl([cp, 14][cp]
([ep, 7][ep]([cp, 15][cp,8]([cp]([cp, 16][cp, 10]([cp, 17]([cp, 13D)))))))(ep)((cpl([cp, 18]([cp]
([cp,19][cp,20]([cp]([cp,21][cp,22]))))lep]([ep,23]([cpl([cp.24][cp.25]([cp]([cp,26] [cp,27]))))
[ep,19]([ep]([ep, 25][cp,22])([cp,27]([cp, 1]([cp, 13])M))Iep, 141 ([ep)([cp,23][cp, 15]([cp,24]
([cp,16]([cp.26](lcp, L7D)MIcpl([ep](cp, 18][cp]([cp.28][cp]([ep,20][cp]([cp,29][cp,21]
([ep]([ep, 1][ep,30DMM)Icpl(ep.2](cp, 28]([cp]([cp,4llcp,29]([cp,5]([cp,30]([ep, 121)))))

a Maximum number of colors used to canonize signature strings and maximum number of signature strings generated for each atom. The number
of colors is the number of times the varialolén the canonized-signature scheme is incremented (line 12). The number of strings is the number of
times the canonized-signature algorithm executes line 6. The strings reported in column 6 are the canonical ones (the lexicographically largest
ones).”’ The canonical molecular signature is compiled after calculating the canonical signature string of each atom. All atomic signatures are
sorted in decreasing lexicographic order (according to the C language function strcmp). The number preceding each atomic signature is the number
of the atom having that signature. Hydrogen atoms have been removed for all compounds; atom type c_ stands for aliphatic carbon, and atom type
cp for aromatic carbon.

A rooted-DAG representation of a signature tree comprisesthe signatures for all atoms of the graph. We next explain
no more edges than twice the number of bonds of the initial how atomic signatures are canonized; the reader should keep
graph. Indeed, as illustrated in Figure 1c with bonds [7,6] in mind that the process described below is repeated for all
and [6,7] in the same layer, a bond may appear twice atoms.

depending on the direction i't is crossed. Conse_quently, while  The approach we have taken to canonize atomic signatures
a signature tree may comprise numbers of vertices and edgegs pased on the classical Hopcroft and Tarjan’s rooted-tree
that may be exponentially larger than the numbers of atoms canonization algorithr®® Assuming we want to canonize a
and bonds, its rooted-DAG representation has a size linearlyrgoteq tree, we first assign to each vertex of the tree an initial
proportional to the number of bonds of the molecular graph. jnyariant. In our case, the initial vertex invariant is an integer
based on the atom type corresponding to the vertex. Next,
THE SIGNATURE CANONIZATION ALGORITHM the vertices are sorted according to their invariants layer by
The algorithm described in this section computes and layer sta}rting with those farthest away from the ro_ot. After
canonizes the signature of a given atom in a molecular graph the Vertices at layef are ordered, each vertex in layer
The algorithm is repeated for all atoms, and the resulting | — 1 iS given a new invariant, computed from its initial
atomic signatures are compiled into a molecular signature. !nvanant and '_[he s_orted list of the invariants of |t§ neighbors
A canonical representation of the molecular signature is in layerl. Vertices in layet — 1 are sorted according to the
obtained in a postprocess by sorting the atomic signaturesN€W invariants. The process is repeated until the root is
in decreasing lexicographic order (cf. examples in Table 1). 'éached. Using this simple procedure, the edges of each
As mentioned earlier, the molecular graph can be recon- Vertex of the tree are ordered in a unique manner based on
structed from any of its atomic signatures. Consequently, asthe vertexinvariants. The rooted tree obtained following the
far as graph canonization is concerned, there is no need tg®dge ordering is canonical.
keep all atomic signatures, and the lexicographically largest We now describe in some detail how the above algorithm
atomic signature (i.e., the first one in the list) suffices to has been implemented to canonize a signature tree het
represent the graph in a uniqgue manner. Yet, to find the an atom of a molecular gragh. The signature tred,(x), is
largest atomic signature, one has to compute and canonizeepresented by a DAG rooted &t To each atons, one
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Figure 2. Vertex and atom invariants.: (a) signature tree of atom 1 in Figure 1; (b) same signature tree with initial invariants from Figure
1d; (c) vertex invariants after running Hopcreffarjan algorithm from the leaves to the root; (d) vertex invariants after running Hopcroft

Tarjan algorithm from the root to the leaves; (e) vertex invariants after running Hopdraiffan algorithm for the second time, from the

leaves to the root; and (f) vertex invariants after running Hoperdérjan algorithm for the second time, from the root to the leaves. The
algorithm stops as invariants are the same as in the previous run. (g) The corresponding atom vectors and atom invariants. The root is
located at layer O.

associates an atom type, a color, ca@rénd an invariant,  the number of parents, and the string is converted into an
inv(a). Colors and invariants are integers no greater than integer following lexicographic ordering. The integer is not
the total number of atoms. To each vertexn T(x) one greater tham since there are no more thamlifferent strings.
associates a corresponding atom, atgmiq graphG and Examples of initial invariants are given in Figure 1d.
an invariant, invg). Since the signature tree is represented  After initialization, the first step of the algorithm is to
by a rooted-DAG, for each vertex of any laylerone can  compute the invariants of the verticesTi(x) from the atom
access its parents in layer— 1 and its children in layer  invariants The vertex invariants are computed twice, first
I+ 1. reading the tree layer by layer from the leaves to the root
Prior to running the algorithm, all the invariants and colors and then from the root to the leaves. Unlike the classical
are initialized. The initial color is O for all atoms. The initial Hopcroft-Tarjan algorithm, the tree must also be read from
invariant of any atorma is computed from the atom type of the root to the leaves because in signature trees, some vertices
a and the number of parengshas inT(x). More precisely, may have more than one parent; thus, the invariants for these
a string of characters is compiled from the atom type and vertices may be different, depending on the invariants of their
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parents. We first examine the case where the tree is readmvarlant(a?om}(lT(x) .G) .
Input T(x) the signature-tree of atom x
from the leaves to the root. Starting at the last layer, to each=" ", \c1ccular graph

vertex we associate a pair of numbers composed of the coloroutput : Updated atoms invariants
and the invariant of the corresponding atom. Duplicated pairs

are removed, and all nonidentical pairs are sorted in ;: repeaillivariant—vertex(T(x) ,child)
decreasing order. The vertex invariant becomes the order of3~ ;E‘r’aziin\tle‘r’iz:zf(z)fgfjnt)

the pair in the sorted list. Going to the layer above, to each 5j let 1 be the layer of v

vertex one assigns a vector of pairs composed of the colors. Vi (atom(v)) (1) = inv(v)

and the invariant of the corresponding atom and the pairs ;- gggiv Y

for the children of the vertex. Duplicated vectors are s. For all atoms a of G do

removed, the remaining vectors are sorted in decreasmglo- List-Vipy = List-Via U Vine(a)

order, and the vertex invariant becomes the order of the 13" Sorc List-v,. in decreasing order
vertex in the sorted list. Note that these vertex invariants 13. for all atom a of G

range from 1 tan since there are no more tharvertices in W e via) = oxder of Viw(a) dn LiSt-Viw

a layer. The above procedure is repeated until the root iS1s. until the number of invariant values remain constant
reached. The algorithm is then run from the root to the leaves,

but this time, for any vertex, the vector invariant is composed exist, those with the maximum number of atoms are selected,
of the color and invariant of the corresponding atom and and if several orbits have the same number of atoms, one
the invariants of the parents of the vertex. The algorithm is takes the one with the minimum invariant. For instance,
given next and illustrated in Figure 2& according to Figure 2g, orbifsl4,1%, {13,16,{10,8, and
{6,12 all contain two atoms having more than one parent.
Orbit{14,15 is chosen in Figure 3, since it has the minimum

invariant-vertex (T (x),relative)
Input: T(x) the signature-tree of atom x

relative is a parent or child relationship invariant. If no orbit can be found or the selected orbit
Output: Updated vertices invariants contains only one atom, then the process ends and the
1. List-Viy = o signature is printed (steps—). When an orbit is found
2. for all layers 1 of T(x) containing more than one atom, all the atoms of the orbits
. o e ton T T v (atom(v) ) are colored one after another with the current color (steps
{inv(w) s.t. w is a relative of v} 10—14). In Figure 4, atoms 14 and 15 are colored one at a
5 List-Viny = List-Viny U Viay (V) time with color 1. In both cases the algorithm stops after
o e List-ve, in decreasing order the next iteration since each atom becomes singularized in
8. for all vertices v of layer 1 its own orbit. The current color starts at 1 and is incremented
i done inv(v) = order of Vin(v) in List-Viw by 1 each time the algorithm calls itself (step 12). Note that
11. done each time an atom is colored, at the next iteration the atom

will be alone in its orbit. Since there are no more than
Once invariants have been computed for all vertices, eachatoms to be colored, the algorithm cannot call itself more
atom invariant is compiled from the invariant of all the thann times.
vertices corresponding to the atom. Precisely, for each atom,
an invariant vector is first initialized to zero, and then for casonize-signature (T(x),6,c,Suu)

Input: T(x) the signature-tree of atom x

each vertex corresponding to the atom, the invariant of the G a molecular graph

vertex is assigned to tHecoordinate of the vector whele  oucput: 6. o soronical string (initialized to empty string)

is the layer the vertex occurs. Once invariant Vectors are ;. .. ariant-acon(z(x) o)

computed for all atoms, duplicated vectors are removed, the3: gireieien e tiene ot 0 laco orbice secentis o el overiante

vectors are sorted in decreasing order, and the atom invariant — invariant value such that all the atoms of O have at least two

1] . . parents.
becomes the order of the atom’s vector in the sorted list. 4. it [o] < 2 then
. - 5. color all uncolored atoms having two parents
The above process is repeated until the number of atom according to their invariant
invariants remains constant. Note that at each iteration, the;: £~ Ering ®jepature sfring (root(T60), 160 2)
number of invariants increases. Indeed, atom invariants are?- _ return S

fi

computed from vertex invariants, which in turn are computed 12: for all aton a in O do

from the atom invariants from the previous iteration. Because 12. s, = canonize-signature (T(x) ,G,c+1, S

the number of invariants is at most the number of atoms, 1i. aone™ o~ = °

the process cannot repeat itself more thratimes. The 15 FEEUTD Sux

invariant-atom algorithm is given next and illustrated in

Figure 2g. As described in our first papérsignature strings are
The canonization algorithm illustrated in Figure 3 first printed by reading the signature tree in a depth-first order.

computes the invariants for all atoms running the invariant- Prior to printing signature strings, the children of all vertices

atom algorithm (step 1). Then in step 2, the atoms are are sorted according to their invariants taken in decreasing

partitioned into orbits such that all the atoms in a given orbit order. To avoid printing several times duplicated subtrees,

have the same invariant. In the next step (3) one searchesany subtree is printed only the first time it is read. This

for an orbit containing atoms having at least two parents in operation necessitates maintaining a list of printed edges.

T(x). Note that these atoms have different invariants than The algorithm is given next and depicted in Figure 4, where

atoms having only one parent, since the initial atom invariants atom 14 has been colored. The same signature string is

embrace the number of parents. When several such orbitsobtained when coloring atom 15.
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© (d

Figure 3. Signature-canonization algorithm: (&) signature tree of atom 1 in Figure 1, where atom 14 is colored; (b) same signature tree
with initial invariants of Figure 2d; (c) vertex invariants after running the invariant-atom algorithm, where atom 14 is colored (note that
every orbit contains only one atom and the canonization algorithm stops after coloring atom 14); (d) vertex invariants after running the
invariant-atom algorithm where atom 15 is colored. The canonization algorithm stops after coloring atom 15.

print-signature-string(v,T(x),E)

Input: v a vertex of T(x)
T(x) the signature-tree of atom x
E a set of edges

Output: a string of characters

all possible colors are tested, all signature trees isomorphic
to the initial one are generated and the coloring maximizing
the signature string is kept as the canonical one. Thus, when
using a brute-force algorithm, if two atoms have the same
canonized signature string, they are automorphic. The latter

print [ X X . X

print atom-type (atom(v)) statement is true with every algorithm generating—( 1)!

if (color(atom(v)) # 0) print *,’ color(atom(v)) colorings. Assume the signature canonization algorithm given
print ] in the previous section is run with a graph such that all atoms,
if child(v) = @ return

W 30 Ul WM

BB
N RO -

sort child(v) according to their invariants
print ("
for all child w of v in decreasing order do
if [v,w] is not already in E then
E=E U [v,w]
print-signature-string(w,T(x),E)

except the root, belong to the same orbit and have more than
one parent. While such a case may not exist, one can easily
construct graphs (cages for instance) with orbits comprising
a number of atoms proportional to the molecular graph size;
in such a case is smaller than the number of atoms but is

fi nonetheless polynomially proportional to the graph size. In
e gi‘it 0o the worst-case scenario, the first color will be assigned to
15. return n — 1 atoms one after another. Once a color has been given

CORRECTNESS OF THE ALGORITHM

to an atom, the atom cannot be colored again since its orbit
contains only one element. However, all other atoms may

The canonization algorithm is deterministic and is inde- Still be in the same orbit, and if such is the case, all the

pendent of the initial labeling of the atoms of the graph. In N — 2 remaining atoms will be colored one after another. In
fact, the initial labels are never used by any of the the nextiteratiom — 3 atoms will be colored, and so on,

canonization subroutines. Consequenﬂy, in any given graphiuntil no more atoms can be colored. With the above scenario

two automorphic atoms will produce the same canonized the algorithm will call itselfn — 1 times and will produce
signature string. We also need to show that when two atoms(n — 1)! colorings. In other words, the algorithm will
have the same canonized signature, they necessarily ar@enerate allr{— 1)! isomorphic representations of the initial
automorphic. In a typical brute-force canonization algorithm signature tree, and thus two atoms having the same canonized
color 1 is assigned to all the atoms of the graph one after signature string are necessarily automorphic. The only
another. For each resulting coloring, color 2 is assigned to difference between our algorithm and a brute-force algorithm
the remainingn — 1 uncolored atoms, color 3 is assigned to is that when a coloring splits the remaining vertices into

n — 2 atoms, and so on, resulting in a totalrdfdifferent

several orbits, the vertices that belong to different orbits will

colorings. Applied to a signature tree, a brute-force algorithm be colored with different colors. Atoms belong to different

would generate at mosh (— 1)! colorings since the root of

orbits when their corresponding vertices in the signature tree

the tree does not have to be colored. Because for every atormhave different invariants (cf. invariant-atom algorithm in the
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Figure 4. Printing the signature string: (a) signature tree of atom 1 in Figure 1, where atom 14 has been colored; (b) same signature tree
with atom invariants of Figure 3c; (c) signature tree with branches reordered according to atom invariants computed in b; (d) signature tree
where duplicated edges have been removed; (e) signature tree with atom type and colors. Atom 14 is colored 1, all other colors are entered
in the order the atoms appear reading the tree in a depth-first order. Colors are added only to vertices appearing more than one time in the
signature tree given in d. (f) The corresponding signature string reading the tree in a depth-first order.

previous section). Now, according to the Hopcrofarjan phic but are isopectral and have the same Baladbiadex!?
algorithm (cf. invariant-vertex algorithm in the previous The nonisomorphic graphs were found to have different
section), two vertices with different invariants are not signatures. As in Table 1, no more than one color was used
automorphic, and for a given color, the signature string to canonize these graphs.
obtained by coloring the vertex with the smallest invariant
will always be smaller than the string obtained coloring the ALGORITHM PERFORMANCE
other vertex. It is thus unnecessary to color vertices belonging A database of 126 705 compounds was downloaded from
to different orbits with the same color. Finally, atoms that the National Cancer Institute websife.This database
occur only one time in the signature tree do not have to be comprises various organic and organometallic compounds
colored. According to proposition 1 in our first paper, any up to 94 atoms. For each of the compounds the signature
graph can be reconstructed from any of its canonical was computed and compared with the signature obtained after
signature strings after the colors that appear only one timerandomly renumbering the atoms. As expected from the
in the string have been removed. previous section the signatures corresponding to the same
Examples of canonized signature strings along with the compound were found to be identical. The CPU times taken
number of colors used to generate them are given in Tableto compute the molecular signature of each compound of
1 for familiar hydrocarbons. For all the compounds listed in the database are plotted in Figure 5. The entire database was
Table 1 the computations were duplicated with structures processed in 26 min CPU time, with a rate of about 80
having different initial atom labels. The resulting canonized compounds/s. All runs were performed on a SGI/O2 work-
signatures were found to be identical. The same exercise wastation. While the running time increased with the number
carried out for some difficult graphs given in Figures 3 and of atoms, we also observed that highly symmetrical com-
5 of the Rucker et al. papét.These graphs are nonisomor- pounds were slower to process.
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"""""" e cages was chosen because it is a particularly hard class for
: : : : : : our algorithm, as initially all atoms are equivalent (i.e.,
(b) (d) automorphic) and all atoms have six neighbors. The series
of power law graphs was chosen because gene and protein

Figure 6. Examples of 2D mesh (a), 3D cage (b), 3D mesh (c), networks have recently been found to follow power I&HS.
and 4D cage (d). For 3D cages the bonding sites (dashed lines) ony power law graph is a graph in which the number of vertices

the left side are merged with the right bonding sites, and the top : T . . :
bonding sites are merged with the bottom ones. For 4D cages©f degreekis Ny = Nol/k)”, whereNo is a constant angl is

bonding sites of the left face are merged with those of the right & scaling exponent. We choge= 3, as this exponent has
face, bonding sites of the top face are merged with those of the been found to be between 2 and 3 for gene and protein
bottom face, and bonding sites of the front face are merged with networks. Note that power law graphs are not necessarily
those of the back face. ; ; ;
planar, and the maximum degree of the vertices is not
To further assert our algorithm, we compared its perfor- bounded as with the previous series. In FigureslY we
mances with those of Nauty on five series of graphs, 2D report the CPU times taken to canonize the signature tree of
meshes, 3D cages, 3D meshes, 4D cages, and power lavone selected atom. For 2D and 3D meshes the selected atom
graphs. All series of graphs contained up to 30 000 atoms.was chosen in one of the corners of the mesh. Note that the
Figure 6 depicts the general structure of the 2D and 3D corner atoms have a signature of greater height than the
meshes and the 3D cage series. While these series do nabthers, thus maximizing the computational complexity for
represent chemical compounds, they have the same topologiour algorithm. With 3D and 4D cages all atoms are
cal characteristics, and the canonization results obtained onequivalent, therefore an atom was selected at random. Finally
the series should be similar to those obtained on compoundswith power law graphs the atom with the largest degree was
of the same size. Furthermore, meshes and cages are highlgelected. The CPU times of our algorithm are plotted along
symmetrical graphs and thus should be difficult for our with the times obtained with Nauty, prior to running, Nauty
algorithm. The series of meshes were chosen since ben-atoms were partitioned, the selected atom was inserted into
zenoids and crystal lattices are particular types of 2D and its own orbit, and all other atoms were added to a second
3D meshes. The series of 3D cage was selected becauserbit. Partitioning the atoms is an option offered by Nauty
fullerenes and nanotubes are 3D cages. The series of 4Dthat enabled us to make a fair comparison between the two
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law graphs.

codes as in both cases at the beginning of the process one )
atom was selected as the root of a graph to be canonized.

For all series except power law graphs, exactly one color
was sufficient. Independently of the number of atoms, for
2D meshes 4 signature strings were generated, 6 strings were
constructed for 3D meshes, 8 strings for 3D cages, and 48 0
strings for 4D cages. Power law graphs generally have few

J. Chem. Inf. Comput. Sci., Vol. 44, No. 2, 200485

symmetries, and it is unlikely that these symmetries occur
at the same layers of a signature tree. It is therefore not
surprising to find out that from 1000 to 30 000 atoms no
colors are needed to canonize these graphs. From Figures
7—11 one concludes that Nauty is generally faster than our
algorithm for graphs of small sizes, but, for all series, the
reverse trend is observed as the graph sizes increases.

CONCLUDING REMARKS

While we have shown earlier that our canonization
algorithm might have the worst-case complexity of the brute-
force algorithm, we have yet to find a graph for which the
algorithm runs an exponential number of steps. In fact, in
all tests carried out in the previous section, we find the
number of strings produced to be a constant independent of
the number of atoms. Furthermore, when canonizing atomic
signatures, as the number of atoms increases, we find our
algorithm to be substantially faster than Nauty. The worst-
case scenario that we have identified so far is with projective
planest® where four colors have to be assigned, thus
generating at most @f) signature strings. Graphs derived
from projective planes are not necessarily relevant to
chemistry but are notoriously hard to canonize. They can
efficiently be dealt with in the latest version of Nauty only
after having been preprocessed with a special-purpose
subroutine that partitions the vertices.

The algorithm presented in this paper was coded in
standard C language. The code reads Accelrys’s Cerius2
Polygraf and Insight formats, Tripos’s PDB and PFS
formats!® and MDL’s SDF format® Additionally, the code
can read general graphs in Nauty forrh@he code outputs
a signature file containing the molecular signature using the
notations given in Table 1. An option is also available to
canonically relabel the input format. The code handles
covalently bonded compounds that may be composed of
several connected components. The code does not distinguish
stereoisomers.
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