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We present a new algorithm to canonize molecular graphs using the signature molecular descriptor introduced
in the previous papers of this series. While developed specifically for molecular structures, the algorithm
can be used for any graph and is not limited to acyclic graphs, planar graphs, bounded valence, or bounded
genus graphs, for which polynomial time algorithms exist. The algorithm is tested with benzenoid
hydrocarbons and a database of 126 705 organic compounds. The algorithm’s performances are compared
against Brendan Mc Kay’s Nauty algorithm, which is believed to be the fastest graph canonization algorithm
for general graphs, with five series of graphs each comprising up to 30 000 vertices: 2D meshes
(pericondensed benzenoids), 3D cages (fullerenes and nanotubes), 3D meshes (crystal lattices), 4D cages,
and power law graphs (protein and gene networks). The algorithm can be downloaded as an open source
code at http://www.cs.sandia.gov/∼jfaulon/QSAR.

INTRODUCTION

The molecular descriptor we callsignatureis based on
extended valence sequences. An extended valence sequence,
or molecular signature, is a vector of occurrence numbers
of extended valences, or atomic signatures. The extended
valence of an atom is a canonical representation of the
topological environment of the considered atom up to a
predefined height. The first paper1 of the series investigates
the use of the signature in quantitative structure-activity
relationship (QSAR) and quantitative structure-property
relationship (QSPR) analyses, the second paper2 proposes
an algorithm for enumerating molecules from signatures, and
the third paper3 presents an example of inverse-QSAR
analysis using signatures to design ICAM-1 inhibitory
peptides. As described in our first paper, atomic signatures
are computed in five steps. (1) A subgraph is constructed
containing all atoms and bonds that are at a distance no
greater than the signature height from the probed atom, (2)
the vertices of the subgraph are labeled in canonical order,
(3) a tree spanning all the edges of the canonical subgraph
is constructed, (4) all canonical labels that appear only one
time are removed, and (5) the signature is written by reading
the tree in a depth-first order. We proved in that paper
(proposition 1) that atomic signatures can be stored in
polynomial space (linear for molecular graphs) and can
theoretically be computed in polynomial time (proposition
7). The most computationally intensive step in computing
the signature is the canonization step. In our first paper we

used Brendan McKay’s Nauty algorithm,4,5 which is believed
to be the fastest graph canonization algorithm. In the current
paper we propose a novel canonization algorithm de facto
replacing steps 2-4 of the above procedure.

Beyond canonizing signatures, our proposed algorithm can
also be used to canonize molecular graphs. According to
proposition 4 of our first paper, for any given molecule and
any given height greater than the diameter of the molecule,
one can reconstruct in linear time the entire molecular graph
from any of its atomic signatures. Thus, any algorithm
canonizing a signature will also canonize a molecular graph
as long as the signature’s height is greater than the diameter
of the graph.

Graph canonization, along with graph isomorphism, and
automorphism partitioning are problems that have been
extensively studied both in computer science and computa-
tional chemistry. While none of these problems has been
shown to be intractable (NP-complete), no polynomial time
general solutions are known. Yet these problems are tractable
and can be solved efficiently for several restricted classes
of graphs, to one of which molecular graphs belong. In 1998
one of us showed how to transform molecular graphs into
simple bounded valence graphs,6 a class of graphs where
isomorphism and canonization have theoretically been shown
to be solvable in polynomial time.7 Even though bounded
valence graphs can potentially be canonized efficiently, no
practical algorithm based on the above results has ever been
published, and computational chemists have continued
developing heuristics to canonize molecules.6,8

Along these lines, the recent IUPAC project IChI is aimed
at producing a canonizer available to every chemist.9

To canonize a molecular graph, one has to find a unique
representation that is independent of the initial labeling of
the atoms. Relabeling the atoms in order to minimize or
maximize the bond list or the upper triangle of the adjacency
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matrix of a graph are examples of canonization. While a
canonization algorithm can be any procedure producing a
unique code representing a graph, it is convenient to generate
a code from which adjacency matrices can easily be
reconstructed.

The paper is set up as follows. The first section presents
the data structure used by the canonization algorithm. The
second section describes the canonization algorithm. In the
third section the correctness of the algorithm is informally
demonstrated. Finally, the performance of the algorithm is
compared with that of Nauty in the last section.

SIGNATURE DATA STRUCTURE

As already stated, our proposed algorithm canonizes a
signature and canonizes a molecular graph when the signature
height is greater than the diameter of the graph. In the
remainder of the paper we will consider all signatures to be
of heights greater than the diameters of the graphs to be
canonized.

Let G be a molecular graph and letx be an atom ofG.
We use the terminology atoms and bonds when referring to
the initial molecular graph, and the terms vertices and edges
to describe signatures. As illustrated in Figure 1a,b, forx )
1, the signature ofx is a tree spanning all the bonds ofG.
We use the term tree here in a somewhat loose manner as
several vertices in the tree may correspond to the same atom.

The root of the tree is atomx itself. The first layer of the
tree is composed of the neighbors ofx; the second layer is
composed of the neighbors of the vertices of the first layer
except atomx. The construction proceeds one layer at a time
until no more layers can be added, that is until all the bonds
of G have been considered. Assuming the tree has been
constructed up to layerl, layer l + 1 is constructed
considering each vertexy of layer l. Let z be a neighbor of
y in G. Vertex z and edge [y,z] are added to layerl + 1 if
the edges [y,z] or [z,y] are not already present in the previous
layers of the tree. To each vertex added to the tree, one
associates an atom type and the initial label or number of
the corresponding atom. Note that a given atom numberz
may appear several times in the tree (such as atom number
3 in Figure 1b) since it can be the neighbor of several atoms
present in the previous layer. It is important to note that when
an atom appears several times at a given layer, the subtree
rooted at this atom will appear the same number of times
(such as the subtree attached to atom 3 in Figure 1b). When
a subtree appears several times at a given layer, it is not
necessary to duplicate its data structure; instead the data
structure is stored only once, and references to the stored
subtree are added as many times as there are duplicates. As
illustrated in Figure 1c, using references instead of duplicated
subtrees results in a final representation known as a rooted
directed acyclic graph (rooted-DAG). A DAG must not
contain cycles when following the directions of the edges.

Figure 1. Atomic signature: (a) Schlegel diagram of a cage comprising 16 atoms; (b) signature tree of atom 1; (c) DAG representation
of the signature tree of atom 1; (d) initial invariants.
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A rooted-DAG representation of a signature tree comprises
no more edges than twice the number of bonds of the initial
graph. Indeed, as illustrated in Figure 1c with bonds [7,6]
and [6,7] in the same layer, a bond may appear twice
depending on the direction it is crossed. Consequently, while
a signature tree may comprise numbers of vertices and edges
that may be exponentially larger than the numbers of atoms
and bonds, its rooted-DAG representation has a size linearly
proportional to the number of bonds of the molecular graph.

THE SIGNATURE CANONIZATION ALGORITHM

The algorithm described in this section computes and
canonizes the signature of a given atom in a molecular graph.
The algorithm is repeated for all atoms, and the resulting
atomic signatures are compiled into a molecular signature.
A canonical representation of the molecular signature is
obtained in a postprocess by sorting the atomic signatures
in decreasing lexicographic order (cf. examples in Table 1).
As mentioned earlier, the molecular graph can be recon-
structed from any of its atomic signatures. Consequently, as
far as graph canonization is concerned, there is no need to
keep all atomic signatures, and the lexicographically largest
atomic signature (i.e., the first one in the list) suffices to
represent the graph in a unique manner. Yet, to find the
largest atomic signature, one has to compute and canonize

the signatures for all atoms of the graph. We next explain
how atomic signatures are canonized; the reader should keep
in mind that the process described below is repeated for all
atoms.

The approach we have taken to canonize atomic signatures
is based on the classical Hopcroft and Tarjan’s rooted-tree
canonization algorithm.10 Assuming we want to canonize a
rooted tree, we first assign to each vertex of the tree an initial
invariant. In our case, the initial vertex invariant is an integer
based on the atom type corresponding to the vertex. Next,
the vertices are sorted according to their invariants layer by
layer starting with those farthest away from the root. After
the vertices at layerl are ordered, each vertex in layer
l - 1 is given a new invariant, computed from its initial
invariant and the sorted list of the invariants of its neighbors
in layer l. Vertices in layerl - 1 are sorted according to the
new invariants. The process is repeated until the root is
reached. Using this simple procedure, the edges of each
vertex of the tree are ordered in a unique manner based on
the vertex invariants. The rooted tree obtained following the
edge ordering is canonical.

We now describe in some detail how the above algorithm
has been implemented to canonize a signature tree. Letx be
an atom of a molecular graphG. The signature tree,T(x), is
represented by a DAG rooted atx. To each atoma, one

Table 1. Canonized Molecular Signatures for Familiar Hydrocarbons

name atoms bonds colorsa stringsa canonical molecular signatureb

hexane 6 5 0 1 2.0[c_]([c_][c_]([c_]([c_]([c_]))))
2.0[c_]([c_]([c_]([c_]))[c_]([c_]))
2.0[c_]([c_]([c_]([c_]([c_]([c_])))))

benzene 6 6 0 1 6.0[cp]([cp]([cp]([cp,1]))[cp]([cp]([cp,1])))
naphthalene 10 11 1 2 4.0[cp]([cp]([cp]([cp]([cp]([cp,1]))[cp,2]([cp]([cp,1]))))[cp]([cp]([cp,2])))

4.0[cp]([cp]([cp]([cp,1]))[cp]([cp]([cp]([cp,2]))[cp]([cp,1][ cp]([cp,2]))))
2.0[cp]([cp]([cp]([cp,1]))[cp]([cp]([cp,2]))[cp]([cp]([cp,2]) [cp]([cp,1])))

pyrene 16 19 1 2 2.0[cp]([cp]([cp]([cp,2][cp]([cp,3]))[cp]([cp,1][cp]([cp,3])))[cp]([cp]([cp,4])[cp]([cp,1]))[cp]
([cp]([cp,4])[cp]([cp,2])))

2.0[cp]([cp]([cp]([cp,2]([cp]([cp,1]([cp]([cp,3]))[cp,4]([cp] ([cp,3]))))[cp]([cp]([cp,1]))))
[cp]([cp]([cp,2][cp]([cp]([cp,4])))))

4.0[cp]([cp]([cp]([cp,1]))[cp]([cp]([cp,2]([cp]([cp,3]))))[cp]([cp]([cp,2][cp]([cp,4][cp]([cp,3])))
[cp]([cp,1][cp]([cp,4]))))

4.0[cp]([cp]([cp]([cp,1]([cp]([cp,2][cp,3]))[cp]([cp]([cp,2]))))[cp]([cp]([cp]([cp,4]))[cp]
([cp,1][cp]([cp,4][cp]([cp,3])))))

4.0[cp]([cp]([cp]([cp,1]([cp]([cp,2]))))[cp]([cp]([cp]([cp,3]([cp]([cp,4]))))[cp]([cp,1][cp]
([cp,3][cp]([cp,2][cp]([cp,4]))))))

coronene 24 30 1 2 6.0[cp]([cp]([cp]([cp,2]([cp]([cp,3]))))[cp]([cp]([cp,4]([cp]([cp,5]))))[cp]([cp]([cp,4][cp]
([cp,6]([cp]([cp,1][cp,7]))[cp]([cp,5][cp]([cp,1]))))[cp]([cp,2][cp]([cp,6][cp]([cp,3][cp]
([cp,7]))))))

6.0[cp]([cp]([cp]([cp,2]([cp]([cp,1][cp,3]))[cp]([cp,4][cp]([ cp,1])))[cp]([cp,5][cp]([cp,4])))[cp]
([cp]([cp,2][cp]([cp,6][ cp]([cp,3])))[cp]([cp,7][cp]([cp,6])))[cp]([cp]([cp,7])[cp]([c p,5])))

12.0[cp]([cp]([cp]([cp,1]([cp]([cp,2]([cp]([cp,3][cp,4]))[cp, 5]([cp]([cp,4]))))[cp]([cp]([cp,5]))))
[cp]([cp]([cp]([cp,6]([c p]([cp,7]))))[cp]([cp,1][cp]([cp,6][cp]([cp,2][cp]([cp,7][cp] ([cp,3])))))))

fullerene C60 60 90 1 2 60.0[cp]([cp]([cp]([cp,2]([cp]([cp,3][cp,4]([cp]([cp,5][cp,6]))))[cp]([cp,7]([cp]([cp,8][cp,9]
([cp]([cp,10][cp,11]))))[cp,3]([cp]([cp,9][cp,6]([cp,11]([cp,12]([cp,13])))))))[cp]([cp,14][cp]
([cp,7][cp]([cp,15][cp,8]([cp]([cp,16][cp,10]([cp,17]([cp,13]))))))))[cp]([cp]([cp,18]([cp]
([cp,19][cp,20]([cp]([cp,21][cp,22]))))[cp]([cp,23]([cp]([cp,24][cp,25]([cp]([cp,26] [cp,27]))))
[cp,19]([cp]([cp,25][cp,22]([cp,27]([cp,1]([cp,13])))))))[cp,14]([cp]([cp,23][cp,15]([cp,24]
([cp,16]([cp,26]([cp,17])))))))[cp]([cp]([cp,18][cp]([cp,28][cp]([cp,20][cp]([cp,29][cp,21]
([cp]([cp,1][cp,30]))))))[cp]([cp,2][cp,28]([cp]([cp,4][cp,29]([cp,5]([cp,30]([cp,12]))))))))

a Maximum number of colors used to canonize signature strings and maximum number of signature strings generated for each atom. The number
of colors is the number of times the variablec in the canonized-signature scheme is incremented (line 12). The number of strings is the number of
times the canonized-signature algorithm executes line 6. The strings reported in column 6 are the canonical ones (the lexicographically largest
ones).b The canonical molecular signature is compiled after calculating the canonical signature string of each atom. All atomic signatures are
sorted in decreasing lexicographic order (according to the C language function strcmp). The number preceding each atomic signature is the number
of the atom having that signature. Hydrogen atoms have been removed for all compounds; atom type c_ stands for aliphatic carbon, and atom type
cp for aromatic carbon.
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associates an atom type, a color, color(a), and an invariant,
inv(a). Colors and invariants are integers no greater thann,
the total number of atoms. To each vertexV in T(x) one
associates a corresponding atom, atom(V), in graphG and
an invariant, inv(V). Since the signature tree is represented
by a rooted-DAG, for each vertex of any layerl, one can
access its parents in layerl - 1 and its children in layer
l + 1.

Prior to running the algorithm, all the invariants and colors
are initialized. The initial color is 0 for all atoms. The initial
invariant of any atoma is computed from the atom type of
a and the number of parentsa has inT(x). More precisely,
a string of characters is compiled from the atom type and

the number of parents, and the string is converted into an
integer following lexicographic ordering. The integer is not
greater thann since there are no more thann different strings.
Examples of initial invariants are given in Figure 1d.

After initialization, the first step of the algorithm is to
compute the invariants of the vertices inT(x) from the atom
invariants. The vertex invariants are computed twice, first
reading the tree layer by layer from the leaves to the root
and then from the root to the leaves. Unlike the classical
Hopcroft-Tarjan algorithm, the tree must also be read from
the root to the leaves because in signature trees, some vertices
may have more than one parent; thus, the invariants for these
vertices may be different, depending on the invariants of their

Figure 2. Vertex and atom invariants.: (a) signature tree of atom 1 in Figure 1; (b) same signature tree with initial invariants from Figure
1d; (c) vertex invariants after running Hopcroft-Tarjan algorithm from the leaves to the root; (d) vertex invariants after running Hopcroft-
Tarjan algorithm from the root to the leaves; (e) vertex invariants after running Hopcroft-Tarjan algorithm for the second time, from the
leaves to the root; and (f) vertex invariants after running Hopcroft-Tarjan algorithm for the second time, from the root to the leaves. The
algorithm stops as invariants are the same as in the previous run. (g) The corresponding atom vectors and atom invariants. The root is
located at layer 0.
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parents. We first examine the case where the tree is read
from the leaves to the root. Starting at the last layer, to each
vertex we associate a pair of numbers composed of the color
and the invariant of the corresponding atom. Duplicated pairs
are removed, and all nonidentical pairs are sorted in
decreasing order. The vertex invariant becomes the order of
the pair in the sorted list. Going to the layer above, to each
vertex one assigns a vector of pairs composed of the color
and the invariant of the corresponding atom and the pairs
for the children of the vertex. Duplicated vectors are
removed, the remaining vectors are sorted in decreasing
order, and the vertex invariant becomes the order of the
vertex in the sorted list. Note that these vertex invariants
range from 1 ton since there are no more thann vertices in
a layer. The above procedure is repeated until the root is
reached. The algorithm is then run from the root to the leaves,
but this time, for any vertex, the vector invariant is composed
of the color and invariant of the corresponding atom and
the invariants of the parents of the vertex. The algorithm is
given next and illustrated in Figure 2a-f.

Once invariants have been computed for all vertices, each
atom invariant is compiled from the invariant of all the
vertices corresponding to the atom. Precisely, for each atom,
an invariant vector is first initialized to zero, and then for
each vertex corresponding to the atom, the invariant of the
vertex is assigned to thel-coordinate of the vector wherel
is the layer the vertex occurs. Once invariant vectors are
computed for all atoms, duplicated vectors are removed, the
vectors are sorted in decreasing order, and the atom invariant
becomes the order of the atom’s vector in the sorted list.
The above process is repeated until the number of atom
invariants remains constant. Note that at each iteration, the
number of invariants increases. Indeed, atom invariants are
computed from vertex invariants, which in turn are computed
from the atom invariants from the previous iteration. Because
the number of invariants is at most the number of atoms,
the process cannot repeat itself more thann times. The
invariant-atom algorithm is given next and illustrated in
Figure 2g.

The canonization algorithm illustrated in Figure 3 first
computes the invariants for all atoms running the invariant-
atom algorithm (step 1). Then in step 2, the atoms are
partitioned into orbits such that all the atoms in a given orbit
have the same invariant. In the next step (3) one searches
for an orbit containing atoms having at least two parents in
T(x). Note that these atoms have different invariants than
atoms having only one parent, since the initial atom invariants
embrace the number of parents. When several such orbits

exist, those with the maximum number of atoms are selected,
and if several orbits have the same number of atoms, one
takes the one with the minimum invariant. For instance,
according to Figure 2g, orbits{14,15}, {13,16}, {10,8}, and
{6,12} all contain two atoms having more than one parent.
Orbit {14,15} is chosen in Figure 3, since it has the minimum
invariant. If no orbit can be found or the selected orbit
contains only one atom, then the process ends and the
signature is printed (steps 4-9). When an orbit is found
containing more than one atom, all the atoms of the orbits
are colored one after another with the current color (steps
10-14). In Figure 4, atoms 14 and 15 are colored one at a
time with color 1. In both cases the algorithm stops after
the next iteration since each atom becomes singularized in
its own orbit. The current color starts at 1 and is incremented
by 1 each time the algorithm calls itself (step 12). Note that
each time an atom is colored, at the next iteration the atom
will be alone in its orbit. Since there are no more thann
atoms to be colored, the algorithm cannot call itself more
thann times.

As described in our first paper,1 signature strings are
printed by reading the signature tree in a depth-first order.
Prior to printing signature strings, the children of all vertices
are sorted according to their invariants taken in decreasing
order. To avoid printing several times duplicated subtrees,
any subtree is printed only the first time it is read. This
operation necessitates maintaining a list of printed edges.
The algorithm is given next and depicted in Figure 4, where
atom 14 has been colored. The same signature string is
obtained when coloring atom 15.
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CORRECTNESS OF THE ALGORITHM

The canonization algorithm is deterministic and is inde-
pendent of the initial labeling of the atoms of the graph. In
fact, the initial labels are never used by any of the
canonization subroutines. Consequently, in any given graph,
two automorphic atoms will produce the same canonized
signature string. We also need to show that when two atoms
have the same canonized signature, they necessarily are
automorphic. In a typical brute-force canonization algorithm
color 1 is assigned to all the atoms of the graph one after
another. For each resulting coloring, color 2 is assigned to
the remainingn - 1 uncolored atoms, color 3 is assigned to
n - 2 atoms, and so on, resulting in a total ofn! different
colorings. Applied to a signature tree, a brute-force algorithm
would generate at most (n - 1)! colorings since the root of
the tree does not have to be colored. Because for every atom

all possible colors are tested, all signature trees isomorphic
to the initial one are generated and the coloring maximizing
the signature string is kept as the canonical one. Thus, when
using a brute-force algorithm, if two atoms have the same
canonized signature string, they are automorphic. The latter
statement is true with every algorithm generating (n - 1)!
colorings. Assume the signature canonization algorithm given
in the previous section is run with a graph such that all atoms,
except the root, belong to the same orbit and have more than
one parent. While such a case may not exist, one can easily
construct graphs (cages for instance) with orbits comprising
a number of atoms proportional to the molecular graph size;
in such a casen is smaller than the number of atoms but is
nonetheless polynomially proportional to the graph size. In
the worst-case scenario, the first color will be assigned to
n - 1 atoms one after another. Once a color has been given
to an atom, the atom cannot be colored again since its orbit
contains only one element. However, all other atoms may
still be in the same orbit, and if such is the case, all the
n - 2 remaining atoms will be colored one after another. In
the next iterationn - 3 atoms will be colored, and so on,
until no more atoms can be colored. With the above scenario
the algorithm will call itselfn - 1 times and will produce
(n - 1)! colorings. In other words, the algorithm will
generate all (n - 1)! isomorphic representations of the initial
signature tree, and thus two atoms having the same canonized
signature string are necessarily automorphic. The only
difference between our algorithm and a brute-force algorithm
is that when a coloring splits the remaining vertices into
several orbits, the vertices that belong to different orbits will
be colored with different colors. Atoms belong to different
orbits when their corresponding vertices in the signature tree
have different invariants (cf. invariant-atom algorithm in the

Figure 3. Signature-canonization algorithm: (a) signature tree of atom 1 in Figure 1, where atom 14 is colored; (b) same signature tree
with initial invariants of Figure 2d; (c) vertex invariants after running the invariant-atom algorithm, where atom 14 is colored (note that
every orbit contains only one atom and the canonization algorithm stops after coloring atom 14); (d) vertex invariants after running the
invariant-atom algorithm where atom 15 is colored. The canonization algorithm stops after coloring atom 15.
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previous section). Now, according to the Hopcroft-Tarjan
algorithm (cf. invariant-vertex algorithm in the previous
section), two vertices with different invariants are not
automorphic, and for a given color, the signature string
obtained by coloring the vertex with the smallest invariant
will always be smaller than the string obtained coloring the
other vertex. It is thus unnecessary to color vertices belonging
to different orbits with the same color. Finally, atoms that
occur only one time in the signature tree do not have to be
colored. According to proposition 1 in our first paper, any
graph can be reconstructed from any of its canonical
signature strings after the colors that appear only one time
in the string have been removed.

Examples of canonized signature strings along with the
number of colors used to generate them are given in Table
1 for familiar hydrocarbons. For all the compounds listed in
Table 1 the computations were duplicated with structures
having different initial atom labels. The resulting canonized
signatures were found to be identical. The same exercise was
carried out for some difficult graphs given in Figures 3 and
5 of the Rucker et al. paper.11 These graphs are nonisomor-

phic but are isopectral and have the same BalabanJ index.12

The nonisomorphic graphs were found to have different
signatures. As in Table 1, no more than one color was used
to canonize these graphs.

ALGORITHM PERFORMANCE

A database of 126 705 compounds was downloaded from
the National Cancer Institute website.13 This database
comprises various organic and organometallic compounds
up to 94 atoms. For each of the compounds the signature
was computed and compared with the signature obtained after
randomly renumbering the atoms. As expected from the
previous section the signatures corresponding to the same
compound were found to be identical. The CPU times taken
to compute the molecular signature of each compound of
the database are plotted in Figure 5. The entire database was
processed in 26 min CPU time, with a rate of about 80
compounds/s. All runs were performed on a SGI/O2 work-
station. While the running time increased with the number
of atoms, we also observed that highly symmetrical com-
pounds were slower to process.

Figure 4. Printing the signature string: (a) signature tree of atom 1 in Figure 1, where atom 14 has been colored; (b) same signature tree
with atom invariants of Figure 3c; (c) signature tree with branches reordered according to atom invariants computed in b; (d) signature tree
where duplicated edges have been removed; (e) signature tree with atom type and colors. Atom 14 is colored 1; all other colors are entered
in the order the atoms appear reading the tree in a depth-first order. Colors are added only to vertices appearing more than one time in the
signature tree given in d. (f) The corresponding signature string reading the tree in a depth-first order.
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To further assert our algorithm, we compared its perfor-
mances with those of Nauty on five series of graphs, 2D
meshes, 3D cages, 3D meshes, 4D cages, and power law
graphs. All series of graphs contained up to 30 000 atoms.
Figure 6 depicts the general structure of the 2D and 3D
meshes and the 3D cage series. While these series do not
represent chemical compounds, they have the same topologi-
cal characteristics, and the canonization results obtained on
the series should be similar to those obtained on compounds
of the same size. Furthermore, meshes and cages are highly
symmetrical graphs and thus should be difficult for our
algorithm. The series of meshes were chosen since ben-
zenoids and crystal lattices are particular types of 2D and
3D meshes. The series of 3D cage was selected because
fullerenes and nanotubes are 3D cages. The series of 4D

cages was chosen because it is a particularly hard class for
our algorithm, as initially all atoms are equivalent (i.e.,
automorphic) and all atoms have six neighbors. The series
of power law graphs was chosen because gene and protein
networks have recently been found to follow power laws.14,15

A power law graph is a graph in which the number of vertices
of degreek is Nk ) N01/k)γ, whereN0 is a constant andγ is
a scaling exponent. We choseγ ) 3, as this exponent has
been found to be between 2 and 3 for gene and protein
networks. Note that power law graphs are not necessarily
planar, and the maximum degree of the vertices is not
bounded as with the previous series. In Figures 7-11 we
report the CPU times taken to canonize the signature tree of
one selected atom. For 2D and 3D meshes the selected atom
was chosen in one of the corners of the mesh. Note that the
corner atoms have a signature of greater height than the
others, thus maximizing the computational complexity for
our algorithm. With 3D and 4D cages all atoms are
equivalent, therefore an atom was selected at random. Finally
with power law graphs the atom with the largest degree was
selected. The CPU times of our algorithm are plotted along
with the times obtained with Nauty, prior to running, Nauty
atoms were partitioned, the selected atom was inserted into
its own orbit, and all other atoms were added to a second
orbit. Partitioning the atoms is an option offered by Nauty
that enabled us to make a fair comparison between the two

Figure 5. CPU times distribution for the National Cancer Institute’s
open database (opennci) of 126 705 organic compounds. Com-
pounds processed in less than 0.02 s CPU time are not shown.

Figure 6. Examples of 2D mesh (a), 3D cage (b), 3D mesh (c),
and 4D cage (d). For 3D cages the bonding sites (dashed lines) on
the left side are merged with the right bonding sites, and the top
bonding sites are merged with the bottom ones. For 4D cages
bonding sites of the left face are merged with those of the right
face, bonding sites of the top face are merged with those of the
bottom face, and bonding sites of the front face are merged with
those of the back face.

Figure 7. Signature and Nauty canonization CPU times for 2D
meshes.

Figure 8. Signature and Nauty canonization CPU times for 3D
meshes.
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codes as in both cases at the beginning of the process one
atom was selected as the root of a graph to be canonized.

For all series except power law graphs, exactly one color
was sufficient. Independently of the number of atoms, for
2D meshes 4 signature strings were generated, 6 strings were
constructed for 3D meshes, 8 strings for 3D cages, and 48
strings for 4D cages. Power law graphs generally have few

symmetries, and it is unlikely that these symmetries occur
at the same layers of a signature tree. It is therefore not
surprising to find out that from 1000 to 30 000 atoms no
colors are needed to canonize these graphs. From Figures
7-11 one concludes that Nauty is generally faster than our
algorithm for graphs of small sizes, but, for all series, the
reverse trend is observed as the graph sizes increases.

CONCLUDING REMARKS

While we have shown earlier that our canonization
algorithm might have the worst-case complexity of the brute-
force algorithm, we have yet to find a graph for which the
algorithm runs an exponential number of steps. In fact, in
all tests carried out in the previous section, we find the
number of strings produced to be a constant independent of
the number of atoms. Furthermore, when canonizing atomic
signatures, as the number of atoms increases, we find our
algorithm to be substantially faster than Nauty. The worst-
case scenario that we have identified so far is with projective
planes,16 where four colors have to be assigned, thus
generating at most O(n4) signature strings. Graphs derived
from projective planes are not necessarily relevant to
chemistry but are notoriously hard to canonize. They can
efficiently be dealt with in the latest version of Nauty only
after having been preprocessed with a special-purpose
subroutine that partitions the vertices.

The algorithm presented in this paper was coded in
standard C language. The code reads Accelrys’s Cerius2
Polygraf and Insight formats,17 Tripos’s PDB and PFS
formats,18 and MDL’s SDF format.19 Additionally, the code
can read general graphs in Nauty format.5 The code outputs
a signature file containing the molecular signature using the
notations given in Table 1. An option is also available to
canonically relabel the input format. The code handles
covalently bonded compounds that may be composed of
several connected components. The code does not distinguish
stereoisomers.
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