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Enumerating Molecules: Why 

 

Enumerating molecules is a mind-boggling problem that has fascinated chemists and 

mathematicians alike for more than a century. Taking the definition from various dictionaries, to 

enumerate means (1) “to name things separately, one by one”, and (2) “to determine the number 

of, to count.” Interestingly enough, both definitions have been taken when enumerating 

molecules. Historically, the latter definition was first used, and mathematical solutions were 

devised to count molecules. Some of the solutions developed were not only valuable to chemists 

but to mathematicians as well. Indeed, as we shall see in this chapter, while trying to solve the 

problem of counting the isomers of paraffin structures1 or counting substituted aromatic 

compounds,2 important concepts in graph theory and combinatorics were developed. The terms 

graph and tree were even coined in a chemistry context.3 

About four decades ago, with the advance of computer science, researchers started to 

look at the former definition of enumeration, and devised computer codes to explicitly list 

molecules. Again while studying this challenging problem, important concepts in computer 

science were developed. Artificial intelligence textbooks4 generally quote DENDRAL, a code to 

enumerate molecules, as the first expert system. 

Historically, molecular enumeration has brought a fertile ground of research between 

chemistry, mathematics, and computer science. Still today new concepts and techniques are 

being developed at the interstice of these fields.5  
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Enumerating molecules is not only an interesting academic exercise but has practical 

applications as well. The foremost application of enumeration is structure elucidation. Ideally, 

the wishful bench chemist collects experimental data (NMR, MS, IR,…) for an unknown 

compound, the data is fed to a code, and the resulting unique structure is given back. Although 

such a streamlined picture is not yet fully automated, and may never be, there are commercial 

codes that can, for instance, list all structures matching a given molecular formula, an IR 

spectrum, or an NMR spectrum. Another important application is in molecular design.  Here the 

problem is to design compounds (drugs, for example) that optimize some physical, chemical, or 

biological property or activity. Although not as prolific as structure elucidation, molecular design 

has introduced some novel stochastic solutions to molecular enumeration.  Finally, with the 

advent of combinatorial chemistry, molecular enumeration takes a central role as it allows 

computational chemists to construct virtual libraries, test hypotheses, and provide guidance to 

design optimal combinatorial experiments. 

Our primary goal in this chapter is to explain how molecules are enumerated. This is the 

objective of the first section. We start with the problem of counting molecules, then describe 

how molecules are explicitly enumerated, and finish with a review of stochastic techniques to 

sample molecules. Our discussion is directed toward structure elucidation and molecular design.  

However, these applications use nearly all aspects of counting, enumerating, and sampling.  Prior 

to understanding how molecules can be elucidated and designed, important theoretical concepts 

and interesting results relevant to chemistry have to first be assimilated.  

The purpose of the second section of this chapter is to review the practical applications of 

molecular enumeration and to give the reader interested in any of these applications pointers to 

relevant codes and techniques. In particular, the numbers of isomers for specific molecular series 
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are given, popular structure elucidation codes are reviewed, computed-aided structure elucidation 

successes are surveyed, and the connections between structure enumeration and combinatorial 

library design are established. The field of molecular design using inverse quantitative structure 

activity relationship is also reviewed. We conclude the chapter outlining future research 

directions. 

Before we start, we want to point out that this chapter is limited to structural (i.e., 2D) 

enumeration and does not cover conformational (i.e., 3D) enumeration. This latter topic has 

already been discussed in the book series for small and medium-sized molecules6 and peptides.7 

 

Enumerating Molecules: How 

 

The term enumerating has been used in the literature for both listing molecules one by 

one and determining the number of molecules corresponding to a given set of constraints. In this 

chapter, we use the term counting for the latter case, and we utilize the term enumerating only 

when molecules are explicitly listed. Starting with some elementary definitions from graph 

theory, we then describe how molecules are counted, enumerated, and finally stochastically 

sampled. The counting, enumerating, and sampling subsections can be read separately. While 

counting is mostly solved through mathematical treatments, enumerating and sampling are 

essentially algorithmic problems. In each of the following subsections, theoretical results are first 

explained and illustrated with examples relevant to chemistry. Second, chemical applications are 

surveyed. To illustrate the problem being studied, a question is attached to each subsection. The 

answers of the questions can be found in the text. 
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From Graph Theory to Chemistry 

 

We provide here elementary definitions later used to count, enumerate and sample 

molecules. Rather than a formal mathematical presentation, examples and illustrations are given.  

A simple graph G is defined as an ordered pair G = (V(G),E(G)), where V = V(G) is a 

nonempty set of elements called vertices, and E = E(G) is a set of unordered pairs of distinct 

element of V called edges. In most cases of chemical interest the sets V and E are finite. An 

example of a simple graph is given in Figure 1.(a). Of course, there is a relationship between 

graphs and chemical structures.  Sylvester3 proposed the term graph in 1878 on the basis of the 

structural formulae of molecules. Figure 1.(a) can, for instance, be viewed as a representation of 

cyclohexane. But there are molecules that do not fit the simple graph picture. A multigraph is a 

graph where the edge set is not necessarily composed of distinct pair of vertices, in other words, 

multiple edges are allowed in a multigraph. A multigraph is without a loop when vertices are not 

allowed to be paired with themselves.  Figure 1.(b) is a representation of benzene. In a simple 

graph or a multigraph, the degree of a vertex is the number of edges attached to it, and the 

multiplicity of an edge is the number of times that edge occur in the graph. In Figure 1 graph (a) 

contains vertices of degree 1 and 4, and all edges have multiplicity 1; in multigraph (b) the 

vertices have degrees 1 and 4 and the edges have multiplicities 1 and 2. The degree sequence of 

a graph or a multigraph is the sequence of numbers of vertices having a given degree starting 

with degree 0 and ending with the maximum degree for all vertices. Graph (a) in Figure 1 has no 

vertices of degree 0, 12 vertices of degree 1, no vertices of degree 2 and degree 3, and 6 vertices 

of degree 4, the degree sequence is (0,12,0,0,6). Graph (b) has the degree sequence (0,6,0,0,6).  
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Figure 1. (a) Simple graph, (b) multigraph, and (c) molecular graph 

 

While Figure 1.(b) could correspond uniquely to benzene, one cannot distinguish 1,2-

dichlorobenzene from 1,4-dichlorobenzene using this representation.  To make the distinction 

between the two compounds one has to attach to each vertex, a label, or color, that is unique to 

each element of the periodic table (for instance, the atomic symbol). Finally, in a molecular 

structure atoms are always connected through some bonds, in other words, a molecular structure 

is in one piece. A molecular graph is thus defined as a connected multigraph with vertices 

colored by the atomic symbols of the periodic table. We use the term color instead of label since, 

as we shall see next, labeled graphs have a specific definition in graph theory. Figure 1.(c) is the 

molecular graph of 1,2-dichlorobenzene. Clearly, in a molecular graph, each vertex is an atom 

and each edge is a bond. The terms atom valence replace the terms vertex degree, and bond 

order replace edge multiplicity. Note that with the exception of rare gases, a molecular graph 

comprises more than one atom. Because molecular graphs are connected, their valence sequences 

start with valence 1 and usually end with valences 4 or 5 for most organic compounds. The 

valence sequence of benzene is (6,0,0,6).  

Now that we have defined molecular graphs, we need to find an appropriate 

representation for computer manipulation and storage. Assuming our molecular graph G has n 
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atoms, we first start to label each atom with numbers 1 through n.  We then create a vector of n 

entries where each entry i, 1 ≤ i ≤ n, is the symbol of atom i. We also create an nxn matrix called 

the adjacency matrix, where each entry i,j, 1 ≤ i,j ≤ n is set to the order of the bond between atom 

i and atom j. The maximum bond order is 3, and the order is set to 0 when the two atoms are not 

bonded. Examples of adjacency matrices are given in Figure 2. Note that the diagonals of the 

adjacency matrices are filled with 0s, as atoms are not bonded to themselves. Adjacency matrices 

are symmetric matrices, since when atom i is bonded to j, atom j is also bonded to i. A 

convenient way to store adjacency matrices into a compact code was introduced by Kudo and 

Sasaki.8  This code, called the connectivity stack, is obtained by reading the upper triangle of the 

adjacency matrix row by row from left to right. Examples of connectivity stacks are given in 

Figure 2. Connectivity stacks can be compared. Let A = a1a2… ai ... and B = b1b2…bi … be two 

connectivity stacks where ai and bi take the values 0,1, 2, or 3.  We then write A ≥ B  if there is 

an index i such that ai ≥ bi , ai-1 = bi-1,…, a1 = b1. Taking the example of Figure 2 the 

connectivity stack of graph G2 is greater than the connectivity stack of graph G1.  

Cl7
Cl8

Cl4
Cl6

      1  2  3  4  5  6  7  8

1    0  2  0  0  0  1  1  0
2    2  0  1  0  0  0  0  1
3    0  1  0  2  0  0  0  0
4    0  0  2  0  1  0  0  0
5    0  0  0  1  0  2  0  0
6    1  0  0  0  2  0  0  0
7    1  0  0  0  0  0  0  0
8    0  1  0  0  0  0  0  0

2000110 100001 20000 200 00 0 

      1  2  3  4  5  6  7  8

1    0  2  1  1  0  0  0  0  
2    2  0  0  0  1  1  0  0
3    1  0  0  0  0  0  2  0
4    1  0  0  0  0  0  0  0
5    0  1  0  0  0  0  0  2
6    0  1  0  0  0  0  0  0
7    0  0  2  0  0  0  0  1
8    0  0  0  0  2  0  1  0

2110000 001100 00020 0000 002 00 1

G1 G2

C6

C5
C4

C3

C2

C1

C3

C7
C8

C5

C2

C1

 

Figure 2. Two hydrogen-suppressed molecular graphs with corresponding adjacency matrices and connectivity 

stacks. 
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In order to code a molecular graph we have to label all the atoms of our graph, and 

transform the graph into what is called in graph theory a labeled graph, i.e., a graph for which 

each vertex has a distinct label. This, of course, does not mean that there is a one-to-one 

correspondence between molecules and labeled graphs, as the two different labeled graphs 

shown in Figure 2 correspond to the same molecule. There are some instances however, where 

graphs used in chemistry can be appropriately represented by labeled graphs. For instance, in 

linear reaction networks and protein and gene networks all vertices have a unique label (e.g., a 

compound name).  Another example is combinatorial libraries obtained by attaching reactants to 

a scaffold having no symmetry. In this case, the reactants have a unique name, and the reacting 

sites on the scaffold being different, can be labeled uniquely. In general, molecules should not be 

considered as labeled graphs, and as we shall see in this chapter, the techniques used to count, 

enumerate, and sample molecules are all derived from combinatorial results obtained with 

unlabeled graphs. 

While molecules are not appropriately represented by labeled graphs, they are stored and 

manipulated (by computers) as such. We thus need to find a way to detect when two labeled 

representations correspond to the same molecular structures. Two labeled representations 

correspond to the same (unlabeled) graph if a one-to-one mapping between the two sets of labels 

can be found to also map the edges of the graphs. This mapping is called isomorphism. Formally, 

two labeled graphs G1 = (V1,E1) and G2 = (V2,E2) are isomorphic if a one to one mapping π from 

V1 to V2 can be found such that π (E1) = E2.  Note that with molecular graphs one has to restrict 

the mapping π between atoms having the same atomic symbol. Using the notation (i j) to specify 

that atom i from graph G1 is mapped to atom j in graph G2, the isomorphism (1 1)(2 2)(3 5)(4 
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8)(5 7)(6 3)(7 4)(8 6) maps graph G1 to graph G2 in Figure 2. Note that (1 2)(2 1)(3 3)(4 7)(5 

8)(6 5)(7 6)(8 4) is also an isomorphism from G1 to G2.  

 Because several labelings of the same molecular graph can occur, it is important to 

distinguish one of them. We shall call this labeling the canonical one. There are several ways of 

obtaining a canonical labeling. The one we chose in this chapter is the one leading to the 

maximal connectivity stack. Taking all the possible 8! = 40320 possible labeling of the graphs in 

Figure 2, one can verify (with the help of a computer code) that there is no other labeling of the 

vertices having a connectivity stack greater than the one of graph G2. Of course there are better 

ways of canonizing a connectivity stack than checking all the possible labelings.  Algorithms 

capable of doing this can be found in the literature9 but reviewing them is not the purpose of this 

chapter. The computational complexity of canonizing a general graph is unknown, i.e., no fast 

algorithm has yet been found. However, it has been shown that molecular graphs can 

theoretically be canonized efficiently.9 Furthermore some rather fast graph canonizers such as 

Brendan McKay’s code Nauty10 can easily be adapted to canonize molecular graphs.  

 From the definition of isomorphism given earlier, two atoms x1 of graph G1 and x2 of 

graph G2 are isomorphic if an isomorphism can be found matching x1 to x2 and matching the 

bonds of G1 to those of G2.  For instance in Figure 2 atom 4 in G1 is isomorphic to atom 8 in G2. 

Now, if G1 = G2, we say that the two atoms are equivalent and instead of isomorphism we use 

the term automorphism. Taking again the example of graph G1 in Figure 2, and taking again the 

notation (i j) to specify that atom i is mapped to atom j, the mapping (1 1)(2 2)(3 6)(4 5)(5 4)(6 

3)(7 7)(8 8) of the vertices of G1 leads to a graph identical to G1. That mapping, also called a 

permutation, is an automorphism. The permutation notation can be simplified noting that when (i 
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j) occurs (j i) also occurs, and writing (i) instead of (i i).  Thus, the permutation (1 1)(2 2)(3 6)(4 

5)(5 4)(6 3)(7 7)(8 8) reduces to (1)(2)(36)(4 5)(7)(8).  

 Several isomorphisms may exist between two graphs (cf. G1 and G2 in Figure 2).  

Similarly, a given graph may have several automorphisms. The automorphism group of a graph 

is the set of all of its automorphisms. The automorphism group of the hydrogen suppressed 

molecular graph of benzene is given in Figure 3. This group is the dihedral D6h group.  
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Figure 3. List of all (12) automorphisms for hydrogen suppressed benzene. In the permutation notation (1 2) reads 

“1 goes to 2 and 2 goes to 1”, (1 3 5) reads “1 goes to 3, 3 goes to 5, and 5 goes to 1.” 

 

Because two atoms are equivalent if they can be mapped by an automorphism, one can 

partition the atoms into equivalent classes using the automorphism group of a graph. In graph 

theory, the atom equivalent classes are named the orbits of the automorphism group. Chemically, 

atoms that belong to the same equivalent class are symmetrical, and among other properties have 
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the same chemical shift in NMR spectra. There are many algorithms in the chemistry literature to 

compute the atom equivalent classes of molecular graphs.9 

Another term we use in this chapter is the subgraph of a graph.  A subgraph of a graph is 

obtained by selecting any subset of vertices of the graph, and selecting any subset of edges of the 

graph that are attached to the selected vertices. In chemistry, subgraphs are molecular fragments. 

As depicted in Figure 4, the fragments of a molecular graph may or may not overlap. 
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Figure 4. Fragments of a molecular graph G. F1 and F2 are non overlapping fragments, F3 overlap with both F1 and 

F2. 

 

We finish this subsection with a few additional definitions. A molecular graph is a tree if 

it does not contain cycles. Multiple bonds are allowed in molecular trees, and alkanes and 

alkenes are examples of molecular trees. A rooted tree is a tree where one vertex (the root) is 

distinguished from the others. Isotopically mono-labeled alkanes are a rooted tree. Of course not 

all molecules are trees, but all molecules are bonded valence graphs. Bonded valence graphs are 

graphs for which the degree of any vertex is below some threshold. For most organic molecules 

the maximum valence of any atom is 4 (sometimes 5), and for any molecule the number of bonds 

attached to any atom is always limited due to the three dimensional space limitations surrounding 
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an atom. Thus, molecular graphs are bonded valence graphs. This is an important property 

because bonded valence graphs can usually be treated more easily than general graphs. For 

instance, isomorphism can be solved efficiently for that class of graph.11 The term efficient has a 

specific meaning here. An algorithm is said to be efficient if the time taken and the space 

allocated to complete the job is a polynomial of the size of the problem. With a molecular graph 

the size of the problem is usually the number of atoms. An example of an efficient algorithm is 

Kudo-Sasaki’s quadratic O(n2) time and space algorithm that computes the connectivity stack 

from an adjacency matrix.8 Problems that cannot be solved by a polynomial time and space 

algorithm are said to be intractable. Searching all the occurrences of a fragment (subgraph) in a 

molecular graph is an intractable problem.12 

 

Counting Structures: How many isomers has decane? 

 

Counting labeled and unlabeled graphs 

 

In this subsection, we briefly summarize results relevant to labeled graphs.  We then 

survey the work on counting series by Cayley, Pólya, Harary, and Read. Particular attention is 

given to Pólya’s work since it has lead to many applications in chemistry. 

While labeled graphs are not the appropriate objects to describe molecular graphs, we 

recall that combinatorial libraries, protein and gene networks, and linear reaction networks can 

be represented by labeled graphs. Furthermore, some of the results given below will later be used 

to count unlabeled graphs and molecular graphs.  
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Since the objects we are interested in this chapter are connected, let Ck be the number of 

connected labeled graphs of k vertices. There are kCk rooted connected labeled graphs since there 
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Interestingly enough, investigations related to counting unlabeled graphs started with the 

pragmatic problem of calculating the number of paraffin structures. Cayley was the first to 

propose a solution,1 and doing so he introduced the notion of trees.13 Applications of Cayley’s 

counting formula are tedious and prone to errors. Cayley himself made several errors in his 
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work, some of which were later corrected by Herrmann.14  Almost 75 years after Cayley’s initial 

work, Henze and Blair15 proposed a recursive formula much easier to apply than the Cayley 

formulation. The next significant advance came with the work of Pólya16 and his famous 

theorem. Most of today’s counting techniques are making use of Pólya’s theory and we shall first 

describe the theory prior to using it to count objects relevant to chemistry. 

 

Pólya Theory of Counting. In 1935, Pólya proposed a counting theory that is probably the 

most powerful counting technique available to chemists. In fact, in his original paper Pólya 

already illustrated his theory by counting the number of structural isomers when hydrogen atoms 

in benzene are successively substituted with monovalent atoms or groups.16 The theory relies on 

the concept of the cycle index, Z(A), where A is a permutation group with object set X = 

{1,2,…,n}, and Z stands for the German word Zyklenzeiger (meaning cycle index). Applied to a 

graph, X is the set of vertices, and A is the automorphism group of the graph as defined in 

subsection “From Graph Theory to Chemistry”. Keeping in mind that the automorphism group of 

a graph takes into account the permutations, or symmetry operations, namely the proper rotation 

axes of the structure, the cycle index of a given permutation, α, is obtained by decomposing 

α into disjoint cycles, formally,  

∏
=

=
n

k

j
kn

kssssZ
1

)(
21 ),...,,;( αα         [3] 

where sk is a variable representing cycles of length k, and jk(α) is the number of cycles sk 

in α. To illustrate cycle decomposition, let α = σv
(1) be the reflection of benzene perpendicular to 

the axis going through atoms 1 and 4. As depicted in Figure 3, α = (1) (4) (2 6) (3 5), is 

composed of 2 cycles of length 1: (1) and (4), and 2 cycles of length 2: (2 6) and (3 5). Its cycle 
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index is: Z(α) = s1
2 s2

2. The cycle index of an automorphism group A is simply obtained by 

summing the cycle decompositions for all the permutations in the group and dividing by the size 

of the group: 
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From Figure 3 and Table 1 it is easy to verify that the cycle index of benzene is: 
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Table 1. Cycle index for benzene. Automorphism permutations are listed in Figure 3. 

Symmetry 
operation 

permutation Cycle index 

E (1)(2)(3)(4)(5)(6) s1
6 

C6
- (1 2 3 4 5 6) s6

1 

C6
+ (6 5 4 3 2 1) s6

1 

C3
- (1 3 5)(2 4 6) s3

2 

C3
+ (5 3 1)(6 4 2) s3
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C2 (1 4)(2 5)(3 6) s2
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σv
(3) (2)(5)(1 3)(2 4) s1
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σv
(4) (1 6)(2 5)(3 4) s2

3 

σv
(5) (1 2)(3 6)(4 5) s2

3 

σv
(6) (1 4)(2 3)(5 6) s2

3 

 

 

To introduce Pólya’s theorem we take the example of counting the numbers of isomers 

obtained when substituting hydrogen atoms in benzene with chlorine atoms. Pólya’s theorem 

applied to this problem states that the number of isomers, when k hydrogen atoms are substituted 

by k chlorine atoms, is the coefficient Ck of the generating function, C(x), obtained by 

substituting in the cycle index each variable sk by (1+xk). While the proof of this can be found in 

Pólya’s paper,16 or more recent sources such as the book of Harary and Palmer, 17 intuitively the 
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substitution comes from the fact that each hydrogen atom can either be replaced, or not, by a 

chlorine atom. These 2 possibilities (0 or 1) are expressed by the function x0+x1 = 1+x, which 

Pólya calls the figure generating function. Now, observing that there are more ways of coloring 

an object with no symmetry than ways of coloring an object where all vertices are symmetrical, 

one realizes that the automorphism group of the studied object has to play a role in counting the 

number of configurations. The exact relationship between the number of configurations and the 

automorphism group is given by Pólya’s theorem. 

 

Theorem (Pólya). The configuration generating function, or counting series, C(x), is 

obtained by substituting the figure generating function, c(x), in the cycle index, by replacing 

every occurrence of sk in the cycle index by c(xk). Thus: 

),...)(),(),(;()( 32 xcxcxcAZxC =        [6] 

A corollary of Pólya’s theorem it that the total number of configurations, N, obtained after 

coloring an object with permutation group A with n colors is obtained by replacing every 

occurrence of sk in the cycle index of A by n. Formally, 
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where |o(α)| is the number of orbits of the permutation α.  For a graph, |o(α)|, is the number of 

vertex equivalent classes induced by α. 

 

As an illustration, the generating function c(x) = 1+x substituted in the benzene cycle 

index of eq. 5 gives the counting series: 

C(x) = 1/12 [(1+x)6 + 4(1+x2)3+2(1+x6)+2(1+x)2(1+x2)2]  
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= 1 + x + 3x2 + 3x3 + 3x4 + x5 + x6       [8] 

and the total number of configurations is 1/12 [(2)6 + 4(2)3+2(2)+2(2)2(2)2] = 13. The 

coefficients of eq. 8 represent the number of isomers of benzene (1), chlorobenzene (1), 

dichlorobenzene (3), trichlorobenzene (3), etc.., up to hexachlorobenzene (1). The various 

structural isomers counted in eq. 8 are listed in Figure 5. 
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Figure 5. Count of k-chloro-benzene isomers using Pólya’s theorem. 

 

 

Counting molecules  

 

While we have already seen examples on how Pólya’s theorem can be used to enumerate 

chemical compounds, we consider this idea in greater detail in this subsection. The most general 

problem of this kind is to determine the number of isomers given a molecular formula. While 

this problem can be solved using explicit enumeration techniques (cf. “Enumerating Structures” 

subsection), currently there are no counting series that provides the number of isomers of a given 
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molecular formula. However, if we lower our expectations and confine our attention to some 

restricted class of compounds, a mathematical treatment of the problem then becomes possible.  

The most straightforward use of Pólya’s theorem is with substituted or labeled 

hydrocarbons. Indeed, we have already seen that the count of structural isomers obtained after 

substituting hydrogen atoms in benzene with chlorine atoms is derived directly by plugging the 

figure generating function c(x) = 1+x, into the cycle index of benzene. In Table 2 the same 

exercise is carried out for other benzenoid hydrocarbons, and the number of isomers obtained 

after substituting k hydrogen atoms is the xk coefficient of the corresponding counting series. 

This type of calculation can also be performed to count substituted fullerenes,18-20 polyhedral 

cages,20 and substituted cycloalkanes.21 A general approach to counting substituted isomers 

based on their symmetries can be found in Baraldi and Vanossi.22 

 

Table 2. Cycle indices and counting series for some substituted benzenoids and hydrocarbons cages 

Benzenoids and 
Cages 

Symmetry 
group 

Cycle index Counting series 

Benzene D6h 
1/12 (s1

6 + 4s2
3 + 2s3

2 + 2s6
1 + 3s1

2s2
2) 1 + x + 3x2 + 3x3 + 3x4 + x5 + x6 

Naphthalene D2h 
1/4 (s1

8 + 3s2
4) 1 + 2x + 10x2 + 14x3 + 22x4 + 14x5 + 

10x6 + 2x7 + x8 
Anthracene D2h 

1/12 (s1
10 + s1

2 s2
4 + 2s2

5 ) 1 + 3x + 15x2 + 32x3 + 60x4 + 66x5 + 
60x6 + 32x7 + 15x8 + 3x9 + x10 

Phenanthrene C2v 
1/2 (s1

10 + s2
5) 1 + 5x + 25x2 + 60x3 + 110x4 + 126x5 + 

110x6 + 60x7 + 25x8 + 5x9 + x10 
Tetracene D2h 

1/4 (s1
12 + 2s2

6) 1 + 3x + 21x2 + 55x3 + 135x4 + 198x5 + 
236x6 + 198x7 + 125x8 + 55x9 + 21x10 + 
3x11 + x12 

Triphenylene D3h 
1/6 (s1

2 + 2s2
6 + 2s3

4) 1 + 2x + 14x2 + 38x3 + 90x4 + 132x5 + 
166x6 + 132x7 + 90x8 + 38x9 + 14x10 + 
2x11 + x12 

C60 Ih 
1/120 (24s10

6 +20 s6
10 +24 s5

12 +20 s3
20 

+16 s2
30 +15 s1

4 s2
28 +s1

60) 
1 + x + 23x2 + 303x3 + 4190x4 + 
45718x5 + 418 470x6 + 3 220 218x7 + 
21 330 558 x8  + 123 204 921x9 + 628 
330 629x10 +… 
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Another direct application of Pólya’s theorem is to compute the sizes of combinatorial 

libraries that can be generated from a scaffold and a set of reactants. We recall that the total 

number of configurations obtained after coloring an object with k colors is obtained by 

substituting k in the cycle index of the object. Library sizes are computed by taking the scaffold 

as the object and the reactant as the colors. As an example, consider the following reaction 

scheme: 

OCl

O

Cl

Cl

O

NH3

OH

R

O

ON

O

N

N

O

R

R

R

COOH

HOOC

COOH

+  3

 

There are three reacting sites on the benzene ring, the cycle index of benzene reduced to these 

three sites is 1/6(s1
3+3s1s2+2s3) (cf. Figure 3 for a list of the permutations involved).  According 

to eq. 7, attaching n different R reactants to tri-acidcloride will result in a library of size 

1/6(n
3+3n2+2n). Now, n = 2 different reactants will give 4 compounds, and if the reactants are all 

the possible (n = 20) amino acids, the library will be composed of 1540 compounds. Scaffolds in 

library design often have no symmetry, and if such a scaffold is composed of r reacting site, its 

cycle index is s1
r. The size of a library composed of n reactants for a scaffold with no symmetry 

and r reacting sites is nr. 

A bit more challenging is the use of Pólya’s theorem to count alkyl groups. An alkyl 

group has the formula –CnH2n+1, and contains one free bond or bonding site. An alkyl group is a 

rooted tree because the carbon atom carrying the bonding site can be distinguished from the 

other. Let An(x) be the counting series for alkyl groups having n atoms. The remarkable idea in 
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counting alkyl groups using Polya’s theorem is to use a figure generating function that is the 

counting series itself. It is thus a recursive process where the number of alkyl group of n atoms is 

counted from the number of alkyl groups of n-1 atoms. To apply Pólya’s theorem we must first 

determine the group of permutations attached to atom number n. The permutations attached to 

any carbon atom in an alkyl chain are listed in Figure 6. 
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Figure 6. Permutation group and cycle index for carbon atoms in alkyl groups. 

 

Clearly, all alkyl groups attached to a carbon atom are interchangeable. The permutation 

group is called the symmetric group S3 with cycle index 1/6 (s1
3 + 3s1s2 + 2s3). Substituting An-1(x) 

into the cycle index of S3 gives a counting series representing the number of ways of attaching 

three alkyl groups to an additional atom. Multiplying the resulting series by x, that is, adding the 

additional atom number n, leads to the following counting series for alkyl groups. Starting with 

A0(x) = 1: 

)](2)()(3)([
6

1
1)( 3

1
2

11
3

1 xAxAxAxAxxA nnnnn −−−− +++=     [9] 
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The 1 on the right-hand side must be added to ensure that the term A0 corresponding to a 

hydrogen is properly counted. In the above expression the coefficient of An(x) has to be 

computed only up to xn. To avoid this restriction, it is customary to write eq. 9 up to n = ∞: 

)](2)()(3)([
6

1
1)( 323

0

xAxAxAxAxxAxA
n

n
n +++== ∑

∞

=

    [10] 

 

The basic operations in the above expression are summations and products of 

polynomials and a scalar multiplication. For polynomials of order n, summations and scalar 

multiplications are performed using no more than n integer arithmetic operations, while 

polynomial products necessitates at most O(n2) integer operations. The total cost of computing 

the counting series is therefore O(n3). The first elements of the series are A(x) = 1 + x + x2 + 2x3 

+ 4x4 + 8x5 + 17x6 + 39x7 + 89x8 + 211x9 + 507x10 +… 

 

The number of isomers of acyclic compounds 

The coefficients A0, A1,…, An of eq. 10 can be used to evaluate the number of isomers for 

several families of acyclic compounds comprising up to n carbon atoms. Computationally, all 

these numbers can be obtained by summations, products, and scalar multiplications of the 

polynomial A(x). The results that follow have been derived by Read.23 

 

Primary alcohols. The primary alcohols are of the form R-CH2-OH where R is an alkyl 

group with n-1 carbons atoms. To maintain the correct number of carbon atoms, the counting 

series for primary alcohols becomes:   

xA(x)           [11] 
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Secondary alcohols. The secondary alcohols are of the form R1-CH(R2)-OH, where R1 

and R2 are alkyl groups. To count these isomers we apply Pólya’s theorem with the figure 

counting series A(x)-1 because R1 and R2 are not hydrogen atoms. The permutation group is the 

symmetric group S2 because R1 and R2 are interchangeable, and the counting series for secondary 

alcohols is: 

xZ(S2; A(x)-1) = 1/2x[A2(x)-2A(x)+A(x2)]      [12] 

 

Tertiary alcohols. The formula for a tertiary alcohol is OH-C(R1)(R2)(R3). The counting 

series is obtained using the same arguments as for secondary alcohols but with the permutation 

group S3 instead of S2: 

xZ(S3; A(x)-1) = 1/6x[A3(x)-3A2(x)+3A(x)A(x2)-3A(x2)+2A(x3)]   [13] 

 

Aldehydes and ketones. These compounds have the form R1-C=O-R2, where R1 and R2 

are alkyl groups and, possibly, hydrogen atoms. Since hydrogen atoms are included, the counting 

series is: 

xZ(S2; A(x)) = 1/2x[A2(x)+A(x2)]       [14] 

 

Alkynes. The formula for acetylene compounds takes the form R1-C≡C-R2 and because 

there are two additional carbon atoms when no terminal hydrogens exists, the counting series is: 

xZ(S2; A(x)) = 1/2x2[A2(x)+A(x2)]       [15] 
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Esters. The general ester formula is R1-C=O-OR2, with R1 and R2 being alkyl groups. R1 

can be a hydrogen atom but not R2 otherwise the compound would be an acid. Consequently, the 

counting series are A(x) for R1 and A(x)-1 for R2. One more carbon must be added in the ester 

formula. The final counting series becomes: 

xA(x)[A(x)-1]          [16] 

 

Isotopically labeled alkanes. This is the class of alkanes where one carbon atom has been 

labeled with, for instance, a C-13 isotope. The general formula for these compounds is 

C(R1)(R2)(R3)(R4), where C is the labeled carbon atom and Ri, i=1,…,4 are alkyl groups whose 

counting series is A(x). Since all alkyl groups can be exchanged with one another around the 

labeled carbon atom, the permutation group is the symmetric group S4 with cycle index 

1/24(s1
4+6s1

2s2+3s2
2+8s1s3+6s4) and the counting series for labeled alkanes is: 

)](6)()(8)(3)()(6)([
24

1

))(;()(

4322224

4
1
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=    [17] 

 

We now turn our attention to a class of compounds that is not of primary importance in 

chemistry but the results are used later to derive the counting series for alkanes. These structures 

are of the type R1-R2 where R1 and R2 are non hydrogen alkyl groups with counting series A(x)-

1. The permutation group is S2 and the counting series is: 

]1)()1)([(
2

1
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2
1
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n

n
n    [18] 
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Alkanes. One may think that counting alkanes would be less difficult than counting 

alcohols, ketones, esters, and other substituted or labeled structures especially since these 

compounds are all derived from alkanes, but this is not the case. Actually, Cayley, Henze and 

Blair, and even Pólya had a great deal of difficulty finding the alkane counting series. Their 

solutions are rather complex involving tree centers and bicenters. For instance, in the case of 

Cayley the solution for alkanes was developed in 1875,1 18 years after finding the counting 

series for rooted trees.13 It was only in 1948 that a simple formula for unlabeled trees was found 

by Otter.24 The solution we review next was first given by Read.23 and is an application of 

Otter’s formula to alkanes.  

Let us first consider an arbitrary unlabeled alkane. We want to find p*, the number of 

different atom-labeled alkanes obtained after labeling all the carbon atoms one after another. 

Two carbon atoms once labeled will produced the same labeled structure if they are symmetrical. 

Thus, p* is the number of equivalent classes among atoms, formally the number of orbits in the 

automorphism group as defined in the subsection “From Graph Theory to Chemistry”. Using the 

same arguments, we find that q*, the number of bond-labeled alkanes, is the number of bond’s 

equivalent classes. Otter24 and also Harary and Norman17 have shown that for any unlabeled tree,  

p* - q* + s = 1, where s = 1 if the tree has a symmetric bond (e.g., a bond between two identical 

subtrees) and s = 0 otherwise. Now, if we sum the previous equation over all alkanes having n 

carbon atoms, we obtain Pn – Qn + Σ s = an, where Pn = Σ p* and Qn = Σ q* and an is the number 

of alkanes having n carbon atoms. Clearly Pn is the number of atom-labeled alkanes having n 

carbon atoms and is thus the nth coefficient of the counting series in eq. 17. Similarly, Qn is the 

nth coefficient in eq. 18.  In order to compute an we have to evaluate s. As already mentioned, s 

=1 for those alkanes having a bond splitting the structure into two identical alkyl groups. These 
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alkanes must therefore have an even number n of carbon atoms and their count is simply equal to 

the number An/2 of alkyl groups having n/2 carbon atoms. The number of alkanes having n 

carbon atoms is thus an = Pn - Qn + An/2, with An/2 = 0 when n is odd. The corresponding counting 

series is obtained by multiplying an by xn and summing starting with n = 1: 

]1)()1)([(
2

1
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The first elements of the series are A(x) = 1 + x + x2 + x3 + 2x4 + 3x5 + 5x6 + 9x7 + 18x8 + 35x9 + 

75x10 +…, and to answer the subsection’s question, there are 75 structural isomers for decane. 

Using eq. 19, the number of alkane isomers up to 25 carbon atoms are given in Table 4 in the 

“Chemical Information” subsection appearing later in the chapter. Note that a(x) can be 

evaluated computationally, using the product, sum, and scalar multiplication operator on the 

polynomial A(x) representing the alkyl group counting series. Considering the computational cost 

to evaluate A(x), alkanes up to n carbon atoms can be counted using no more than n3 elementary 

arithmetic operations. 

 

Hydroxyl ethers. In a recent development, Wang, Li and Wang25 proposed a counting 

series for compounds of the form CiH 2i+2Oj. This is a first step toward a general counting series 

for molecular formulae. Their technique uses Pólya’s cycle index and two generating functions 

for alkyl groups R(I) where the root is a carbon atom, and alkoxyl groups R(II) are rooted on an 

oxygen atom.  
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The number of stereoisomers of acyclic compounds 

 Stereoisomers of acyclic compounds are derived the same way as structural isomers, but 

the permutation group used in Pólya’s cycle index is no longer the symmetric group S3. While 

with structural isomers the three alkyl groups attached to any carbon atom are interchangeable, 

with stereoisomers, the alkyl groups can be arranged in two distinct enantiomeric forms, rectus 

(R) and sinister (S). Consequently, in the permutation group attached to carbon atoms, all 

permutations mapping an R form onto an S form must be discarded. The remaining permutations 

are listed in Figure 7, and the permutation group is the cyclic group C3 with cycle index Z(C3) = 

1/3 [s1
3+2s3].  
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Figure 7. Permutation group and cycle index for stereo carbon atoms in alkyl groups. All permutations 

maintain the R or S stereocenter. 

 



27 

Now that we have determined the permutation group we can count stereoisomers using 

the formulae obtained with structural isomers but by replacing the group S3 by C3. For instance, 

from eq. 10, the counting series for alkyl groups becomes: 

A’(x) = 1 + x Z(C3;A’(x)) = 1 + 1/3x[A’3(x)+2A’(x3)]     [20] 

 

The counting series for functionalized stereoalkanes are summarized in the following table. All 

the results have been derived by Read.23 The first elements of the counting series for 

stereoalkanes are a’(x) = 1 + x + x2 + x3 + 2x4 + 3x5 + 5x6 + 11x7 + 24x8 + 55x9 + 136x10 +…, and 

decane thus has 136 stereoisomers. 

 

Table 3. Counting series for the stereoisomers of functionalized alkanes 

compound formula Counting series 
alkyl groups -R A’(x) = 1 + 1/3x[A’3(x)+2A’(x3)] 
Primary alcohols R-CH2-OH xA’(x) 

Secondary alcohols R1-CH(R2)-OH x[A’(x)-1]2
 

Tertiary alcohols HO-C(R1)(R2)(R3) 
1/3x{ [A’(x)-1]3+2[A’(x3)-1] } 

Aldehydes, ketones R1-C=O-R2 
1/2 x[A’2(x)+A’(x2)] 

Alkynes R1-C≡C-R2 
1/2 x

2[A’2(x)+A’(x2)] 

Esters R1-C=O-OR2 A’(x)[A’ (x)-1] 

Stereoalkanes CnH2n+2 
1/12x[A’4(x)+3A’2(x2)+8A’(x)A’(x3)] 
-1/2[(A’(x)-1)2-A’(x2)+1] 

 

All the isomer counts we have given so far are derived from Pólya’s theorem and the 

alkyl group counting series. Our intention was to illustrate the power of Pólya’s counting theory 

and also to make things easier to follow since all formulae are derived using the same technique. 

The reader interested in further details on the applications of Pólya’s theory to chiral and achiral 

compounds and to reaction processes is referred to the book of Fujita.26 It is also worth noticing 

that Pólya’s theory has also been applied to count staggered conformers of alkanes and 

monocyclic cycloalkanes.27 Staggered conformers of alkanes are represented by systems which 
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can be embedded in the diamond lattice.  Beyond Pólya, few other methods have been proposed 

in the literature to count acyclic hydrocarbons. In particular, in a series of papers, Yeh gives 

counting series for alkanes,28 polyenoids,29 alkenes30 and structures excluding steric strain31, 32 

based on Cayley’s counting series. Bytautas and Klein33 have more recently derived a new 

alkane counting series using graph’s diameter instead of Otter’s formula.  

 

The number of benzenoids and polyhex hydrocarbons 

This particular class of hydrocarbons has lead to numerous investigations and probably 

deserves an entire chapter to be properly reviewed. Here we summarize only the major findings 

related to counting.  The reader further interested by polyhexes and benzenoids can consult the 

books of Gutman and Cyvin 34-37 as well as the books of Dias.38, 39 These books, as well as that 

by Trinajsticc,40 provide valuable information regarding the counting and enumeration of Kekulé 

structures and the conjugated-circuit model, neither of which is reviewed here due to space 

limitations. 

As illustrated in Figure 8, a polyhex is a connected system of congruent regular hexagons 

such that two hexagons either share exactly one edge or are disjoint. Among polyhex 

hydrocarbons are helicenes such as heptahelicene, which are non planar, and coronoids, such as 

cyclodecakisbenzene, which are systems with holes. The most heavily studied class of polyhexes 

has been, by far, benzenoid hydrocarbons, which are planar and simply connected.  In other 

words, benzenoid hydrocarbons are condensed polycyclic unsaturated fully conjugated 

hydrocarbons composed of six-membered rings. The class of benzenoid hydrocarbon is further 

divided into two subsets: catacondensed and pericondensed. Catacondensed benzenoids, such as 

phenanthrene, are systems where all carbon atoms are lying on the perimeter of the structure. 
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Pericondensed benzenoid are structure having ni ≠ 0 internal atoms, e.g. atoms that do not belong 

to the perimeter. Phenalene (ni = 1) and pyrene (ni = 2) are examples of pericondensed 

benzenoids. Finally, all polyhexes are either Kekuléan (cf. pyrene) or non-Kekuléan (cf. 

phenalene) depending on whether or not they possess Kekulé structures. While we are discussing 

nomenclature it is worth outlining the distinctions between benzenoid hydrocarbons and 

polycyclic aromatic hydrocarbons (PAHs). PAHs possess features that are not shared with 

benzenoid hydrocarbons; they may contain rings with sizes different from six, they may also 

comprise sp3 carbons atoms, and side groups.  

 

phenanthrene pyrene

heptahelicene cyclodecakisbenzene

phenalene

 

Figure 8. Some polyhex hydrocarbons. 

 

There are essentially two types of approaches to count polyhexes. One is to make use of a 

counting series and Pólya’s theorem while the other is an algorithmic approach based on explicit 

enumeration. The algorithmic approach is reviewed in the “Enumerating Structures” subsection 

as counting is performed through enumeration and each solution is actually generated. It is 

nonetheless worth mentioning that the algorithmic approach can be used to count planar 
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benzenoid systems while the former approach cannot, as helicenes are included in the counting 

series. Additionally, there are further limitations with counting series. Polyhex hydrocarbons that 

cannot be represented by tree-like structures, such as, for instance pericondensed benzenoids 

with many internal atoms cannot be counted. 

The first serious attempts to count polyhexes are due to Balaban and Harary41 and Harary 

and Read.42 While Balaban and Harary proposed a nomenclature and simple counting formulae 

for some benzenoid systems, Harary and Read derived the first counting series for catacondensed 

polyhexes. The catacondensed systems counted by Harary and Read include helicenes. These are 

also named catafusenes and, strictly speaking, are not benzenoids since they can be non-planar.  

To count catafusenes like with alkyl groups and alkanes, we first derive a counting 

formula for bond-rooted catafusenes. A bond-rooted catafusene is a catafusene where one 

periferal bond (the root) has been labeled.  We can distinguish two kinds of bond-rooted 

catafusenes according to whether one or two hexagons are attached to the hexagon containing the 

root bond (cf. Figure 9). Note that these are the only possibilities if perifusenes are to be avoided. 

We call them S-catafusenes and D-catafusenes, respectively.  

 

(a) (b)  

Figure 9. Bond-rooted catafusenes. (a) S-catafusene.  Only one hexagon adjoins the hexagon with the root 

bond (thick line). (b) D-catafusene.  Two hexagons adjoin the hexagon with the root bond. 
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Let Sn and Dn denote the numbers of S-catafusenes and D-catafusenes having n hexagons, 

and let Un = Sn + Dn be the total of bond-rooted catafusenes with n hexagons. From Figure 9 it is 

easy to be convinced that: 
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U(x) = S(x)+D(x)+x         [22] 

The x on the right hand side come from the fact that U1 = 1 while S1 = D1 = 0. Substituting eq. 21 

into eq. 22, we derive the counting series for bond-rooted catafusenes hydrocarbons: 

U(x) = 3xU(x)+xU2(x)+x        [23] 

 

We now wish to count catafusenes in which one hexagon (the root) has been 

distinguished from the other. Such a rooted catafusene is obtained by taking the root hexagon 

and attaching one, two, or three of its bonds to a bond-rooted catafusene. As depicted in Figure 

10, there are four ways this can be done.  
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(i) (ii)

(iii) (iv)  

Figure 10. The four types of rooted catafusenes. The root hexagon is the shaded one. (i) only one bond-
rooted catafusene is attached, (ii) two bond-rooted catafusenes are attached in “meta” position, (iii) two bond-rooted 
catafusenes are attached in “para” position, (iv) three bond-rooted catafusenes are attached. 

 

Using the four cases depicted in Figure 10, the number of rooted catafusene of type (i) 

having n+1 hexagons is the number Un of bond-rooted catafusenes, and the counting series for 

type (i) rooted catafusenes is xU(x). Note that in order to count the root hexagon in the counting 

series one has to multiply U(x) by x. To count rooted catafusenes of type (ii) comprising n+1 

hexagons, we have to choose two bond-rooted catafusenes having, respectively, k and n-k 

hexagons. This procedure is similar to the calculation of Dn+1 in eq. 21. Thus, the counting series 

for rooted catafusenes of type (ii) is: xU2(x). With the rooted catafusenes of type (iii) we have the 

possibility of building catafusenes, which are invariant under a rotation of 180o
, such as in Figure 

10 (iii). The permutation group attached to the root hexagon in case (iii) is the symmetric group 

S2, and applying Pólya’s theorem one finds the counting series for type (iii) rooted catafusenes to 

be: xZ(S2,U(x)) = x/2[U2(x)+U(x2)]. Finally, to count rooted catafusenes of type (iv) one first 

observes that this time we have a possibility of symmetry under rotations of 120o.  The 

permutation group is therefore the cyclic group C3 (already encountered in when counting 

stereoisomers). Using Pólya’s theorem, the counting series for type (iv) rooted catafusenes is: 
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xZ(C3,U(x)) = x/3[U3(x)+2U(x3)]. Summing all the terms corresponding to cases (i) through (iv), 

the counting series for rooted catafusenes becomes: 
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The derivation of the counting series for unlabeled catafusenes can be found in Harary 

and Read.42 Their solution makes use of Otter’s formula24 the same way the counting series for 

alkanes was derived using counting series for labeled alkanes and alkyl group. The counting 

series for unlabeled catafusenes is: 
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So far we have regarded a catafusene and its mirror image as distinct, provided that the 

catafusene has no symmetry that would allow it to be rotated into its mirror image. The counting 

series in eq. 25 was corrected by Harary and Read42 to count only once catafusenes and their 

mirror images. The series is: 
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The first terms of this counting series are: h(x) = x + x2 + 2x3 + 5x4 + 12x5 + 37x6 + 123x7 + 446x8 

+ 1689x9 + 6693x10+… 

 

Other counting series have been developed, expanding on the initial work of Harary, 

Balaban, and Read. Harary-Read numbers have been classified and deconvoluted according to 
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symmetries.43, 44  Counting series have been developed for Fluorantenoids and Fluorenoids,45 

annelated catafusenes,45 catacondensed monohiptafusenes,45 and catacondensed octagonal 

systems.45 Cyvin et al. have developed a combinatorial summation method that does not invoke 

counting series and explicit reference to Pólya’s theorem. The method has been used to count 

perifusenes with one46 and two internal vertices.47 

Finally, we should mention the work on conjugated polyene hydrocarbons, which are not 

polyhexes, but have been counted45 using a treatment similar to the one we just described for 

catafusene.  The counting series for polyene hydrocarbons is: 
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where U(x) is the number of bond-rooted polyenes with a counting series similar to eq. 23: 

U(x) = 2xU(x)+xU2(x)+x        [28] 

 

The number of molecular cages (fullerenes and nanotubes) 

To the best of our knowledge, isomers for fullerenes, nanotubes, spheroalkanes, and other 

molecular cages have so far been counted only through explicit enumeration (cf. “Enumerating 

Structures” subsection). In other words, we are not aware of any formula, counting series, or 

applications of Pólya’s theorem from which one could compute the number of isomers for these 

compounds. In fact, molecular cages present a challenge for Pólya’s theory of counting. Looking 

back, all compounds we have treated so far are either acyclic or have acyclic representations (cf. 

Balaban and Haray’s paper41 to see how catafusenes can be represented by trees). While a 

solution to enumerate general graphs, including cyclic graphs, using Pólya’s theorem appeared in 

1955,17 difficulties arise with the class locally restricted graphs.23 A locally restricted graph is a 
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graph where the degrees of its vertices are predefined.  Molecular cages are regular graphs where 

all atoms have the same degree (for instance three for fullerenes), they thus belong the class of 

locally restricted graphs. 

 

In conclusion, we have seen how Pólya’s theory of counting is a powerful and efficient 

tool to count chemical objects. All the counting series derived in this review can be computed 

using no more than O(n3) elementary arithmetic operations for compounds comprising up to n 

carbon atoms or n hexagons. Yet, there are difficulties deriving counting series for locally 

restricted graphs, especially if these graphs cannot be represented by trees. A substantial number 

of chemical compounds unfortunately belong to that difficult class of graphs. Each atom in a 

molecular graph has a specific degree given by the valence of the atom. Thus, molecules are 

always locally restricted graphs, and unless they have acyclic representations, molecules cannot 

easily be dealt using counting series. To overcome these difficulties an alternative is to use the 

explicit enumerations. We review this next. 
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Enumerating Structures: Are there any isomers of decane having 

seven methyl groups? 

 

Enumerating labeled and unlabeled graphs 

 

We begin with the enumeration of labeled graphs because, as with counting, they are 

easier to deal with. The algorithm we outline next for enumerating labeled graphs will later be 

used and modified to enumerate unlabeled graphs.  

Our goal here is to enumerate all possible graphs that can be constructed with a set of 

vertices labeled 1 though n. The algorithm given in Scheme I is recursive. At each step of the 

recursion we augment the graph by one edge. We start with a graph containing no edges; this is 

our first labeled graph. Next, we add one edge between any pair of vertices [i,j], 1 ≤ i ≤ n, j > i. 

Clearly there are n(n-1)/2 of such edges. Each of n(n-1)/2 possibilities is a different labeled graph 

containing one edge. For each of these graphs a second edge is then added in all possible ways. 

To avoid generating the same labeled graph, the second edge [k,l] must be lexicographically 

greater than the first, i.e., [k,l] > [i,j] (k > i or k = i and l > j). To be convinced the requirement is 

necessary, consider the graphs U1 and V1 having, respectively, [1,2] and [3,4] as the first edge. 

Without lexicographic ordering one can add edge [3,4] to U1 and edge [1,2] to V1. The two 

resulting graphs are identical, both being composed of edges [1,2] and [3,4]. Now, the 

lexicographic requirement is sufficient since the edges of any labeled graph can be sorted 

lexicographically. The process of adding edges is repeated until no more can be added, i.e., edge 

[n-1,n] already belongs to the graph. Running the algorithm given in Scheme I without 
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constraints, we generate 2/)1( −= nnm  labeled (n,1)-graphs having n vertices and one edge, and 







2

m
 (n,2)-graphs having two edges, which is the number of ways of selecting two edges in a set 

of m edges. In general, the algorithm produces 





q

m
 (n,q)-graphs with q edges. Summing all the 

contributions the total number of labeled graphs is 2m in agreement with eq. 1.  

 

Scheme I: Label-Enumeration(G) 
1.   IF graph G is completed 
2.      PRINT G 
3.   ELSE 
4.      FOR all edge e lexicographically greater than the edges of G DO 
5.          IF constraints are not violated for the graph G U e 
6.             Label-Enumeration(G U e) 
7.          FI 
8.      DONE 
9.   FI 
 
 

The algorithm given in Scheme I can also be run using constraints (cf. step 5) such as 

degree sequence, specific ranges for the number of edges, number of connected components, and 

cycle sizes. Additionally, some edges between specific labels may be forbidden, and the presence 

or absence of specific subgraphs may also be imposed. The above algorithm has actually been 

used to count and enumerate gene regulatory networks matching gene expression profiles (i.e., 

mRNA concentrations).48 The algorithm was run with two constraints: a list of forbidden edges 

compiled from the expression profiles, and a maximum degree (2 and 3). Scheme I can also be 

used to generate combinatorial libraries when the scaffold has no symmetry. In such a case, the 

number of edges is at most the number of reacting sites on the scaffold and the only edges 

authorized are between scaffold and reactants. 



38 

In order to use Scheme I to enumerate unlabeled graphs one needs to remove duplicates, 

i.e., isomorphic graphs. Of course, this can be done after generating all labeled graphs with n 

vertices, but this becomes quite lengthy (i.e., 2n(n-1)/2) even for modest n. A better strategy is to 

build unlabeled (n,q)-graphs from unlabeled (n,q-1)-graphs. This can be carried out by 

augmenting all unlabeled (n,q-1)-graphs by one edge. But again, one has to remove duplicates. 

Observing that n(n-1)/2-(q-1) edges can augment any unlabeled (n,q-1)-graph, and letting Nn,q-1 

be the number of (n,q-1)-graphs, one has to test isomorphism between [n(n-1)/2-(q-1) ]2Nn,q-1
2 

pairs of graphs. The problem is that Nn,q scales exponentially with n and q.49 The ideal solution 

would be to augment each unlabeled (n,q-1)-graph by one edge without having to be concerned 

with isomorphism. Fortunately this is possible as Read50 has shown that the canonical 

representation of any (n,q)-graph is an augmentation of the canonical representation of exactly 

one (n,q-1) graph. Recall from the subsection “From Graph Theory to Chemistry” that the 

canonical representation of a graph is a unique ordering of its vertices, such as the one for 

instance that maximizes its connectivity stack. Using Read’s results, Scheme I can easily be 

modified to produced unlabeled graphs. The modified algorithm in given in Scheme II and is 

named orderly generation. 

 

Scheme II: Orderly-Generation-Read-Faradzev(G) 
1.   IF graph G is completed 
2.      PRINT G 
3.   ELSE 
4.       FOR all edge e lexicographically greater than the edges of G DO 
5.          IF constraints are not violated for the graph G U e 
6.          AND CANON(G U e) = G U e  
7.              Orderly-Generation-Read-Faradzev(G U e) 
8.          FI 
9.      DONE 
10.  FI 
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The orderly algorithm is to enumeration what Pólya’s theorem is to counting. Orderly 

generation is generally attributed to Read,50 although Faradzev51 independently published an 

orderly technique. Both Read and Faradzev use the fact that a graph is legitimate if it is identical 

to its canonical representation (cf. step 6, CANON(G U e) = G U e). To this end, an artificial 

ordering must be imposed on the set of graphs that are generated such that a canonical 

representative always contains a subgraph that is also canonical. A more general orderly 

algorithm proposed by McKay52 does not require artificial ordering of graphs and is thus 

independent of the way the canonical code is constructed. The only requirement is that the 

canonization procedure induces an ordering of the edges of the graph being canonized. An 

example of McKay algorithm is given in Scheme III.  This algorithm produces all canonical edge 

augmentations of a given graph G having q-1 edges (steps 4-9), resulting in a set S of labeled 

graphs G’ with q edges. Identical graphs are removed from the set S (step 10). Then, in steps 11-

16, for every (n,q)-graph G’ in S, the algorithm explicitly searches the (n,q-1)-graph it came 

from. In other words the algorithm searches the parent of every child produced. The parent is 

obtained removing the last edge e’ in CANON(G’) (step 12).  If the parent (e.g., graph G’-e’) is 

the one that was just augmented (i.e, graph G) then the child is legitimate (step 13), and the 

algorithm in recursively run with G’ (step 14), otherwise, graph G’ is ignored. 

 
Scheme III: Orderly-Generation-McKay(G) 
1.   IF graph G is completed 
2.      PRINT G 
3.   ELSE 
4.       S = ø 
5.       FOR all edges e not already in G DO 
6.           IF constraints are not violated for the graph G’ = G U e 
7.              S = S U G’ 
8.        FI 
9.       DONE 
10.    Remove duplicates from the set S 
11.      FOR all graph G’ of S DO 
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12.             let e’ be the last edge of CANON(G’) 
13.             IF CANON(G’-e’) = CANON(G) 
14.                Orderly-Generation-McKay(G’) 
15.             FI 
16.      DONE 
17.  FI 

 

One issue we have not yet addressed with orderly generation is computational 

complexity. While orderly generation is certainly faster than labeled enumeration followed by a 

removal of the duplicated structures, is it the optimum solution? First we have to ask what 

optimum means when dealing with enumeration. We certainly cannot hope for a polynomial time 

algorithm since the number of solutions may be exponentially large, and it already takes an 

exponential time just to write the solutions. The best we can hope for is an algorithm that runs in 

polynomial time per output. Such an algorithm indeed exists at least theoretically, as was shown 

by Goldberg.53 Precisely Goldberg proved that an orderly algorithm can be designed to generate 

all graphs of n vertices adding one vertex at a time (not an edge) such that the time delay 

between two outputs is polynomial. In the proof, Goldberg uses the fact that there are always 

more graphs of n vertices than n-1 vertices, and that canonization can be performed in 

polynomial time for more than half of the graphs of n vertices. This implies that the enumeration 

tree always grows, that is, to every n-1 vertex graph corresponds at least one n vertex graph. 

Unfortunately, that proof cannot be used directly when growing graphs by adding edges, because 

the number of (n,q)-graphs is not necessarily greater than the number of (n,q-1)-graphs. For 

example, there is only one (n,n(n-1)/2)-graph, which is the complete graph (each vertex is 

connected to all others).  There is also one (n,n(n-1)/2-1)-graph, a complete graph without one 

edge. However, there are several ways of removing a second edge and, thus, there is more than 

one (n,n(n-1)/2-2)-graph. Goldberg’s result is thus not directly applicable to Schemes II or III. 

More generally, there is no guarantee that locally restricted graphs, such as molecular graphs 
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restricted by valence sequences, can be constructed in an iterative process such that the number 

of graphs at a given iteration is always greater than the number of graphs of the previous 

iteration. While the theoretical complexity of enumerating molecular graphs is still an open 

problem, in practice as we shall see next, there exist fast algorithms to enumerate molecules. 

As far as general graphs are concerned, some codes are available for their enumeration. 

In particular, two codes to enumerate small graphs and bipartite graphs can be downloaded along 

with Nauty, a graph canonizer we mentioned earlier.10 

 

Enumerating Molecules 

 

Enumerating molecules is not only the main subject of this chapter but it has also been a 

prolific field of research for decades. Rather than reviewing every single approach that has so far 

been taken, we have chosen to present examples of orderly generation. Our reasons are many. 

First, as discussed earlier, orderly generation is the most elegant technique to enumerate graphs. 

Second, no other technique has had as many applications in chemistry than orderly generation.  

Finally, focusing on one technique will help the reader understand how molecules are 

enumerated. As we shall see in all the subsections that follow, the main problem in applying 

orderly generation to a specific class of molecules is to find the appropriate canonical code. That 

is, a code that uniquely represents the class of molecules one wants to enumerate, and a code that 

is easily computable, ideally, in polynomial time. 
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Acyclic molecular graph enumeration 

As with counting, it is simpler to enumerate acyclic structures than cyclic ones. For this 

reason the field of molecular structure enumeration started with acyclic hydrocarbons with an 

algorithm published by Nobel Laureate J. Lederberg.54 The algorithm was later integrated into a 

code named DENDRAL and was used to enumerate the isomers for a variety of acyclic 

compounds containing C, H, O, and N atoms.55 Much could be said about the DENDRAL 

project which is described in many computer science textbooks as the first expert system. The 

reader further interested by DENDRAL is referred to the books by Lindsay et al. and Gray,56, 57  

where the history of the project is reviewed. A decade after the initial DENDRAL effort, a 

powerful approach appeared based on the n-tuple code developed by Knop et al.58 We present 

this technique in the context of an orderly algorithm. 

The n-tuple code is a set of non-negative integers smaller than n, the number of atoms of 

an acyclic molecular structure. Each number in the n-tuple represents the degree of an atom in 

the structure or in one of its substructures. To compute the n-tuple of a structure one first chooses 

a starting atom (a root) as illustrated in Figure 11.(a).  For the purpose of this example any atom 

will do, but as we shall see later the root atom must be the atom with the highest degree if one is 

to construct a canonical represent of the n-tuple.  The first element of the tuple is k, the degree of 

the root. Next, the root and the all bonds attached to it are removed from the structure, thus 

creating k disconnected substructures. The process is repeated for each of the k substructures 

where the new roots are the atoms that were bonded to the initial root. The process stops when 

all atoms have been removed.   
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Figure 11. Some n-tuple codes for 2,2,3-trimethylhexane. Successive roots are indicated with a ‘*’ symbol. (a) The 

code is 311003000. (b) The code is 421100000, this code is canonical. 

 

Looking at Figure 11(a) it is obvious the n-tuple code is nothing else but a list of atom 

degrees obtained by reading the structure in a depth-first order. All degrees are reduced by one 

except for the initial root. Now, for any given rooted structure, a canonical n-tuple (cf. Figure 

11(b)) is computed using the above procedure, but at each step the tuples associated with the 

substructures are sorted and read in decreasing lexicographic order. Finally, to compute a 

canonical n-tuple for an unrooted structure, one computes the canonical n-tuples for all the 

structures rooted at atoms with the highest degree while keeping the lexicographically maximal 

tuple as the canonical represent for the structure. Note that there is no need to compute n-tuples 

rooted on atoms with degrees smaller than the maximum one, as these rooted structures produce 

lexicographically smaller n-tuples. The code corresponding to Figure 11(b) is the canonical n-

tuple of 2,2,3,trimethylhexane since there is only one quaternary carbon is the structure. As 
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shown by Hopcroft and Tarjan59 the above canonization procedure can be implemented with an 

O(n) time complexity. Finally it is worth mentioning that modifications of the n-tuple code have 

been proposed to take into account atom and bond types.60  Instead of just writing the degree of 

the atoms in the n-tuple, one also includes atom types and bond orders.  

Now that we have a code to canonize acyclic structures, an orderly algorithm can be 

used. Next, we illustrate the use of the n-tuple code to enumerate alkanes up to n carbon atoms 

using a McKay type orderly generation (Scheme III). For simplicity all hydrogen atoms are 

ignored, and carbon atoms may thus have a number of bonds ranging between 1 and 4. As 

depicted in Figure 12, the initial graph contains one atom and no bond, so its canonical n-tuple is 

(0). 
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Figure 12. The three pentane isomers obtained with McKay’s orderly algorithm and the n-tuple code. Hydrogen 

atoms are not represented. All atoms are carbons and can have up to four bonds. Parent-child and child-parent 

relationships are indicated with arrows. Canonical n-tuples are written in parentheses. At each layer, a bond and a 

new atom are added. The added atom is represented by a solid node. The last bond/atom in the canonical n-tuple is 

represented by a dashed line, and is underlined in the canonical n-tuple. A graph is rejected when its legitimate 

parent is not the graph it came from. This case arises when the added bond/atom is not the last digit of the canonical 

n-tuple (the dashed line is not linked to the solid node). 

 

Following Scheme III, we first verify that the construction process is completed for 

structure G (step 1). In the present case, one must check that the required number of atoms n is 

met and that the number of bonds attached to every atom ranges between 1 and 4. If structure G 
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passes the completion test it is printed (step 2), otherwise one augments G in all possible ways by 

adding a bond e and a new atom (step 5). Augmentations violating the maximum valence 

requirement are rejected (step 6). For all other G U e structures, a canonical n-tuple G’ is 

constructed, and G’ is added to the set of n-tuples S (step 7). Duplicated n-tuples are removed 

(step 10). For each resulting n-tuple G’ in S, McKay’s algorithm removes the last edge of G’ 

(step 12), which in the present case is the last digit of the n-tuple. If the resulting n-tuple equals 

the n-tuple of the initial graph G (step 13) then G’ is a legitimate child of G, and the process 

repeats itself with G’ (step 14), otherwise G’ is an illegitimate child and is ignored. 

The application of Scheme III to generate alkane structures up to pentane is illustrated in 

Figure 12, where examples of legitimate and illegitimate parent-child relationships are depicted. 

Of course Figure 12 could be expanded up to decane, and one could then answer the subsection 

question “Are there any isomers of decane having seven methyl groups?”. As we shall see later, 

there are more efficient ways to enumerate all decane isomers having seven methyl groups. 

The n-tuple technique has lead to numerous implementations and extensions. In particular 

Contras et al. extended the n-tuple enumeration algorithm in a series of papers to acyclic 

compounds with heteroelements and multiple bonds,60 cyclic structures,61 mixed compounds,62 

acyclic stereoisomers,63  and unsaturated stereoisomers.64, 65  One should also mention the tree 

enumeration technique proposed by Lukovits.66 Instead of an n-tuple Lukovits uses a compressed 

adjacency matrix (CAM). The CAM is a vector where each element ei represents a column i of 

the adjacency matrix (aij). The value of element ei is the row number j < i for which a bond 

appears, i.e., aij > 1. Lukovits proposes a set of rules to generate all trees having a maximal 

CAM.67 The technique may not be as efficient as the n-tuple code as during the construction 

process many structures do not meet the rules and are thus rejected. 
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Benzenoids and polyhex hydrocarbons enumeration 

The reader is referred to the “Number of benzenoids and polyhex hydrocarbons” 

subsection for the definition and classification of benzenoids and polyhex hydrocarbons, as well 

as for additional references for this class of compounds, which is only partially reviewed due to 

space limitations. Let us recall that the direct counting approach has difficulties with molecules 

that cannot be represented by tree-like structures, such as pericondensed polyhexes. Furthermore, 

the counting approach is unable to separate non-planar polyhexes (helicenes) from planar 

benzenoids. Consequently, for benzenoids and polyhexes, enumeration is not only a valuable 

tool that provides a concise description of the structures being enumerated, but enumeration is 

also used to compute isomer numbers that cannot be derived otherwise.  

The first algorithm to enumerate polyhexes was proposed by Balasubramanian et al. 68 

The enumeration of planar simply connected polyhexes to h = 10 hexagons,69 h = 11,70 and h = 

1271 used this algorithm. The next advance in polyhex enumeration came from a code based on 

the dual graph associated with every polyhex.72 This code allowed enumeration of all polyhexes 

for h = 13,73 h = 14,74 h = 15,72 and h = 16.75 The next progress was made by Tosic et al.76 who 

proposed a lattice based approach using a "cage" within which the polyhexes are placed. This 

method led to enumeration of all polyhexes with h = 17.76 Three years later Caporossi and 

Hansen77 developed a McKay type orderly algorithm and enumerated polyhexes up to h = 21 and 

h = 24.78 Finally, in 2002 another lattice based method was proposed and polyhexes were 

enumerated up to h = 35.79 Next, we briefly describe the orderly generation and the lattice 

enumeration approaches. 
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Orderly generation of polyhexes. As usual with orderly generation algorithms, polyhexes 

comprising h hexagons are constructed from polyhexes having h-1 hexagons. To avoid 

repetitions, each polyhex with h hexagons is generated from one and only one parent, i.e., a 

polyhex with h-1 hexagons. As we have already seen with alkanes in Figure 12, once a structure 

is generated from a potential parent, its canonical code must be scanned to verify if the parent is 

legitimate. In order to apply Scheme III to polyhexes we only have to find the appropriate 

canonical code. One possible code used for this purpose is the Boundary Edges Code (BEC).77 

This code is outlined next and illustrated in Figure 13.  
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A      5351      1535

B      3515      5153

C      5153      3515

D      1535      5351

+

-

 

Figure 13. BEC code. Canonical codes are underlined. Starting at vertex A and turning clockwise, one first 

encounters 1 edge from the center face, then, one finds 5 edges belonging to the right face, next are the 3 edges from 

the center face, and finally 5 edges belonging to the left face. Turning clockwise, the BEC code starting at A is 1535. 

 

Beginning at any external vertex of degree three, which thus belongs to only two 

hexagons, follow the boundary of the polyhex noting by a digit the number of edges on the 

boundary for each successive hexagon. The procedure is repeated clockwise and 

counterclockwise, the canonical code is the lexicographically maximum code. In Figure 13, one 

observes that the code is unique but may be obtained in several ways in case of symmetry of the 

polyhex. The high efficiency of the BEC code is due to an alternative way to check whether a 
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polyhex must be considered or not as being legitimate. To this end, Caporossi and Hansen77 

established the following rule: a polyhex is legitimate if and only if the first digit of its BEC code 

corresponds to the last added hexagon. This simple rule induces the enumeration tree illustrated 

in Figure 14 up to h = 4. Note that the cost of determining whether or not a polyhex is legitimate 

equals the cost of computing the BEC code, O(h2). Caporossi and Hansen77 assessed the 

computational time per output of their algorithm and it appears to increase quadratically with the 

system size.  

6

5351 5252 444

533511 531531 515151 522522 532521 52441 4343

55

  

 

Figure 14. The 7 polyhexes with 4 hexagons obtained with orderly generation and BEC code. At each layer, the last 

added hexagon (dashed lines) corresponds to the first digit in the BEC code.  
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Lattice enumeration of benzenoids. Lattice enumeration techniques make use of the fact 

that there are only eight symmetry groups associated with benzenoids.35  These are (1) Cs
 for 

benzenoids of h hexagons with no rotational or reflection symmetry, (2) C2v
 for those with one 

axis of reflection symmetry, (3) C2h  for those invariant with respect to rotations through π, (4) 

D2h for those with two axes of reflection symmetry and invariant with respect to rotations 

through π, (5) C3h for those invariant with respect to rotations through 2 /3, (6) D3h for those 

with three axes of reflection symmetry and invariant with respect to rotations through 2 /3, (7) 

C6h for those invariant with respect to rotations through /3, and finally, (8) D6h for those with 

six axes of reflection symmetry and invariant with respect to rotations through /3. In terms of 

these, the number of benzenoids bh comprising h hexagons may be written as: 
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where, for instance, Cs
(h) is the number of benzenoids of h hexagons with symmetry Cs. Now, let 

Bh be the number of fixed hexagonal systems. Fixed hexagonal systems are simply all the 

possible benzenoids one can construct on a hexagonal lattice disregarding rotational and 

reflection symmetries. From the above definitions of symmetry groups it is easy to verify that: 
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Eliminating Cs
(h) we arrive at: 
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The lattice enumeration technique consists of generating and counting all the hexagonal 

systems that appear on the right-hand side of eq. 31 to evaluate bh. Let us start with Bh, the 
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number of fixed hexagonal systems of size of h. Generating fixed polygonal systems on lattices 

can be solved by enumerating self avoiding polygons on lattices. This problem has been studied 

in the physics literature and will not be reviewed here. The reader interested by this particular 

problem is referred to the work of Enting and Guttmann.80 To enumerate benzenoids, Vöge et 

al.79 use the Enting and Guttmann technique, while Tosic et al.76 use an original algorithm based 

on a brute force approach enumerating all fixed hexagonal systems on a lattice.   

Once Bh has been computed, the other terms of eq. 31 are derived as follows. We first 

consider the elements of C2v
(h). Each element of C2v

(h) can be decomposed into two identical h/2 

hexagonal systems, joined together at the symmetry axis. Thus, the elements of C2v
(h) can be 

generated from the elements of Bh/2. Similar arguments apply to the elements of C2h
(h). From the 

definitions of the symmetry groups given previously, it is easy to verify that the elements of 

D2h
(h) can be generated from the fixed hexagonal systems of Bh/4, the elements of C3h

(h) from Bh/3, 

the elements of D3h
(h) and C6h

(h) from Bh/6, and the elements of D6h
(h) from Bh/12. Thus, all 

elements in eq. 31 can be computed from Bh. In other words, benzenoids can be counted and 

enumerated from the enumeration of fixed hexagonal systems.  

Results obtained using this approach as well as the orderly generation technique have 

been compiled in Table 7 in the “Chemical Information” subsection appearing later in the 

chapter. 

 

 Molecular cages enumeration (fullerenes and nanotubes) 

Fullerenes, nanotubes, spheroalkanes, and other molecular cages belong to the class of 

regular graphs. A regular graph is a graph where all the vertices have the same degree. Among 
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the class of regular graphs of interest in chemistry are (k,g)-cages where all the atoms have the 

same valence k and all rings are at least of size g. We first review the literature for regular graphs 

and cages, and then describe algorithms specifically designed for fullerenes. 

 

Regular graphs and cages. Enumerating regular graphs is one of the oldest problem in 

combinatorics. In the 19th century Jan de Vries81 enumerated all the 3-regular graphs, also named 

cubic graphs, up to 10 vertices. The first computational approach is due to Balaban,82 who in 

1966 enumerated all cubic regular graphs up to 10, and later 12 vertices.82 In 1976, Bussemaker 

et al.83 computed all cubic graphs up to 14 vertices. About the same period Faradzev51 worked 

out the case for 18 vertices when he suggested the general orderly algorithm presented in 

Scheme II. In 1986, McKay and Royle settled the case for 20 vertices84 while in 1996 

Brinkmann85 enumerated all 24 vertices cubic graphs, and (3,8) cages up to 40 vertices. Finally 

in 1999, based of the Brinkmann technique, Meringer enumerated all k-regular graphs up to k = 6 

and a number of vertices ranging between 15 and 24. 86 Meringer’s orderly algorithm is an 

integral part of the latest version of the MOLGEN isomer generator.87 Next, we describe this 

algorithm, which a classical example of the Read-Faradzev orderly generation. 

Meringer’s algorithm generates all k-regular graphs of n vertices. The process starts with 

an initial graph, G, composed of n vertices labeled 1 through n and no edges. Meringer’s 

algorithm is recursive, thus, following scheme II, in steps (1) and (2) the graph is printed if it is 

fully constructed. That is, if all the n vertices have k neighbors. When the graph is not fully 

constructed, in step (4) all edges, e, are enumerated only when they are lexicographically greater 

than the edges built so far. In steps (5) and (6) the algorithm checks if the graph G U e obtained 

for each enumerated edge, e, is identical to its canonical representation, i.e., G U e = CAN(G u 
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e). When the graph is canonical and the additional constraints of step (5) are verified the same 

process is repeated; the algorithm backtracks otherwise. The main constraint in step (5) is 

regularity. All vertices must have at most k neighbors and supplementary constraints such as 

connectivity and minimum cycle size (girth) may also be added. According to its author, the 

most time consuming part of the algorithm is the canonization step. To reduce the number of 

times graphs are canonized, not all possible edges are enumerated in step (4), but only the edges 

attached to the lexicographically smallest vertex having less than k neighbors.  

Fullerenes and nanotubes. A fullerene is a spherically shaped carbon molecule composed 

exclusively of five and six membered rings. In the language of graph theory, a fullerene is a 3-

regular spherical map having pentagonal and hexagonal faces only. Furthermore, by definition 

any fullerene Cn, n ≥ 20, has exactly twelve pentagons and n/2-10 hexagons. Because of these 

restrictions, the polyhexes, benzenoids, and regular cages generators presented earlier cannot 

directly be used here. For instance, the BEC canonical code cannot be applied because fullerenes 

do not have edges on their boundaries. The early algorithms that enumerate fullerenes88-90 do not 

make use of orderly generation. Yet, there are no reasons why orderly generation could not 

potentially be applied, provided that a canonical code exists to uniquely identify fullerenes. Next 

we describe the spiral canonical code for fullerenes,91-93 we then propose a sketch of a Read-

Faradzev orderly generation taken from the algorithms of Fowler and Manolopoulos,93 and 

Brinkmann.85 

The spiral canonical code for a C24 fullerene is illustrated in Figure 15. Starting at one 

face, chose a first neighboring face and an orientation (clockwise or counterclockwise). Visit all 

faces of the fullerene by recursively choosing a new face as the next one to be visited. The next 

face must not have already been visited, and must be adjacent to the last face visited. 
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Additionally, the next face is the first one encountered running around the last face in a 

clockwise (counterclockwise) direction from the intersection with the next to last face. The code 

is simply the sequence of face sizes in the order they are visited. The process is repeated 

choosing all faces one after another as the starting one, choosing all possible first neighbors, and 

choosing the two possible directions. The lexicographically minimum code is the canonical one. 

The major pitfall of the spiral code is that not all fullerenes admit ring spirals,91 however, this 

problem can be overcome by identifying the edges adjacent to consecutive faces and adding 

these identifiers to the spiral code.92  

 

 

Figure 15. Spiral codes for C24. (a) Starting at a hexagonal face the code is 65555555555556 = 65126. (b) Starting at 

a pentagonal face the code is 55555655655555 = 55652655. Code (b) is canonical. 

 

Now that we have a way to canonize fullerenes, we construct fullerenes adding 

pentagonal or hexagonal faces one at a time starting with a pentagonal face, otherwise the final 

spiral codes would not be canonical. In other words, n digits spirals (i.e., n faces fullerenes) are 

constructed from n-1 digits spirals (i.e., n-1 faces fullerenes) by appending to the code either a 

(a) (b)
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‘5’ or a ‘6’. Let sn-1 be a n-1 digits spiral code, the child sn = sn-15 (sn-16) is legitimate if the 

canonical spiral code of that child is indeed sn-15 (sn-16), if not the child is rejected. It is important 

to realize some spiral codes do not lead to final fullerenes at all. For instance, starting with 

eleven 5’s in the code, i.e., eleven pentagonal faces, we can see that this code cannot lead to a 

fullerene unless we have no hexagon and the structure to be constructed is C20. Consequently, the 

orderly generation applied to fullerene creates unproductive branches in the enumeration tree.  

Faster than the algorithm described above is the technique proposed by Brinkmann, Dress 

et al.94-96 Instead of building fullerenes from the ground up, this algorithm generates structures 

by gluing together “benzenoid” patches composed of five and six membered rings. This 

approach was taken because fullerenes can be decomposed into either two or three patches 

following a Petrie path. Petrie paths are constructed as follows: start at any edge e1 in the 

fullerene and with a scissor cut that edge. Next cut edge e2 on the right side of e1, cut edge e3 on 

the left side of the e2, and repeat the process turning alternatively right and left until you reach an 

edge ek that has already been cut. If ek = e1, you have separated the fullerene in two patches. 

Now, if ek ≠ e1, the fullerene is also separated in two parts, but the job is not completed because 

one part is partially cut, i.e., the part containing edges e1,e2,…,ek-1. Take that part and start again 

at e1 but now cut in the opposite direction; you will eventually split the part into two patches, and 

create a total of three patches. Because any fullerenes can be decomposed into at most three 

patches, from a given number h of hexagons, all fullerenes can be constructed by attaching in all 

possible ways a catalogue of all patches composed of at most h hexagons and twelve pentagons. 

Results obtained using this algorithm can be found in Table 8 in the “Chemical Information” 

subsection appearing later in the chapter. 
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Prior to closing this subsection we should also mention a simple algorithm that 

enumerates the isomers of a toroidal polyhex.97 Toroidal polyhexes are fullerenes embedded on 

the surface of a torus. The word fullerene is not quite appropriate here since the authors 

enumerate only structures having six membered rings (not five). This limitation greatly reduces 

the number of solutions. The number of isomers is found to increase at only a modest rate that 

does not exceed 30% of the number of atoms. 

 

General structural isomer enumeration 

By general structural isomer enumeration we mean the enumeration of all the molecular 

graphs corresponding to a molecular formula. We do not include here solutions that construct 

molecular structures from additional constraints, such as the presence or the absence of 

substructural fragments. Enumeration with constraints is reviewed in the next subsection.  

Techniques to enumerate molecules (including cyclic ones) from a molecular formula 

appeared in the 1970s. The first algorithm to do so, CONGEN,98 was a product of the 

DENDRAL project. The solution consisted of decomposing the molecular formula into cyclic 

substructures, which were combined by bridges to get molecules. The cyclic substructures were 

built from a database of 3,000 elementary cycles. A second approach, simpler in principle, has 

been the technique chosen by the researchers involved in the CHEMICS project.99 In this 

approach only canonical structures are generated. However, orderly generation was not applied 

in the earlier version of CHEMICS.  Instead, all labeled structures were generated and non-

canonical ones were rejected. A similar approach was also taken by the authors who developed 

the ASSEMBLE generator,100 although this code was designed to combine fragments.  Since the 
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above initial developments, CONGEN, CHEMICS, and ASSEMBLE have lead to numerous 

improvements, most of which involve enumeration with constraints.  

Another development to enumerate isomers has been a method based on an atom’s 

equivalent classes. In this method pioneered by Bangov,101 and generalized by Faulon,102 the 

atoms corresponding to the molecular formula are partitioned into equivalent classes. Next, a 

class of atom is selected and all the atoms of the class are saturated; that is, bonds are added until 

each selected atom has a number of bond equals to its valence. Atom saturation is performed in 

all possible ways and to avoid generating isomorphic structures, non-canonical graphs are 

rejected. For each resulting graph, equivalent classes are computed again, a new unsaturated 

class is chosen, and the process is repeated until all atoms are saturated. It is worth noting that 

with the equivalent-classes technique, one can chose the atoms to be saturated. Thus, one can 

drive the process to first build tree-like structures, choosing classes of atoms that do not create 

cycles when being saturated, and then create cycles adding bonds to the unsaturated atoms of the 

trees. The advantage of building tree-like structures first is that one can canonize them efficiently 

using, for instance, the n-tuple code mentioned earlier.  For acyclic isomers the equivalent-

classes algorithm is efficient since canonization can be performed in linear time. However, for all 

other compounds, the cost of canonization has to be factored in. 

The next approach to enumerate isomer is orderly generation. One of the first algorithms 

is due to Kvasnicka and Pospichal.103 Their orderly technique is based on Faradzev’s algorithm. 

The proposed solution constructs all molecular graphs of maximum valence matching given 

numbers of atoms and bonds. The technique was soon modified to enumerate all molecular 

graphs matching a prescribed valence sequence.104 Faradzev’s orderly generation was also used 
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in developing the SMOG program that enumerates compounds from molecular formulae using 

fragments.105, 106  The isomer generator MOLGEN87, 107, 108 is also based on orderly generation. 

The latest development with isomer enumeration is the method of homomorphisms 

proposed by Grüner et al.87 Interestingly, the homomorphism method is a systematization of the 

early solution developed within the DENDRAL project. The homomorphism method has been 

implemented in the latest version of MOLGEN.98 The enumeration relies on a strategy of 

determining how all molecular graphs with a given valence sequence, can be built up recursively 

from regular graphs. Grüner et al. observe that any molecular graph G can be decomposed into 

two subgraphs:  T, a subgraph comprising all atoms of a fixed valence, for instance the largest 

valence, and H, a subgraph composed of the remaining atoms. Attached to the two subgraphs an 

incidence structure, I, is constructed such that each column corresponds to an atom t of T, each 

row to an atom h of H and noting a bond connecting two atoms t and h by the entry 1 in the 

corresponding place of I. The authors then prove that all possible valence sequences for T and H 

and all possible numbers of entries 1 in each row and each column of I can be determined 

directly from the valence sequence of G. The above decomposition of the valence sequence is 

repeated recursively until all resulting valence sequences correspond to regular graphs. The 

strategy obviously reduces the construction problem of molecular graphs with prescribe valence 

sequences to that of regular graphs and the problem of pasting the subgraphs T and H together. 

Regular graphs are constructed using Meringer’s algorithm86 presented earlier, and all possible 

ways of pasting T and H are enumerated using an orderly algorithm. According to the authors the 

resulting algorithm is very fast as it has been able to determine up to 1030 molecular graphs 

(without actually constructing them) corresponding to valence sequences up to 50 atoms. 
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Molecular graph enumeration with constraints 

Molecular structure enumeration subjected to constraints has practical application in 

structure elucidation and molecular design. Many codes have been developed to address these 

two applications, most of them can be found in the section entitled “Enumerating Molecules: 

What are the uses”. For structure elucidation, the constraints are generally composed of 

fragments that must be present and/or absent in the final solutions. With molecular design, the 

goal is to generate all the structures matching a specified property or activity. This problem, also 

named inverse imaging, is generally solved in a two steps procedure. First, from the target 

property or activity a molecular descriptor is computed.  This is usually done thought a 

quantitative-structure activity relationship where the molecular descriptors are fragments, or 

topological indices. In a second step, all structures matching the descriptor value are enumerated. 

We next present the methods that have been developed for structure elucidation and molecular 

design purposes. 

Enumerating structures using molecular fragments. We first consider the simple case 

where the molecular fragments do not overlap. Each fragment must be unsaturated and, thus, 

contain some free bonds or bonding sites. Then, the problem consists of connecting the bonding 

sites together in all possible ways. This process can be solved by generating all possible labeled 

graphs where the vertices are bonding sites. Duplicates can be eliminated in a post-process,109 or 

non-canonical graphs can be rejected as they are generated such as in ASSEMBLE110 and 

CHEMICS.111 Another solution is to use the equivalent-classes algorithm, where the equivalent 

classes are computed only for the unsaturated atoms and of course only these atoms are 
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saturated.102 Orderly generation can and has been used to enumerate structures from 

fragments.105, 112 During the orderly process the search for canonical structures is performed 

without permuting the elements of the adjacency matrices that corresponds to the fragments. Any 

of the aforementioned algorithms can be used to answer the subsection question, “are there any 

isomers of decane having exactly seven methyl groups?” All solutions (if any) must contain 

seven methyl groups.  Since the final structure has the molecular formula C10H22, the additional 

fragments are 3 carbon atoms and one hydrogen atom. The above 11 fragments were given as 

input to the equivalent-classes algorithm the code returned two solutions: (2,2,3,4,4)-

pentamethyl-pentane and (2,2,3,3,4)-pentamethyl-pentane. 

In most structure elucidation instances fragments unfortunately do overlap. For instance, 

consider the fragments provided by 13C NMR spectra. To each 13C NMR peak there is a 

corresponding fragment (the environment of a 13C carbon atom) and two neighboring atoms in 

the probed structure have corresponding overlapping fragments. The problem of overlapping 

fragments can be addressed with manual intervention as in GENOA113 another product of the 

DENDRAL project. At first the code’s user selects one fragment as a core. The user then chooses 

a second fragment and the code generates all possible ways of breaking those two fragments into 

non-overlapping, ever smaller fragments. The process is repeated until all fragments have been 

decomposed into non-overlapping ones. Final structures are then generated assembling the non-

overlapping fragments using a technique similar to those we just presented.  

More systematic is the approach taken with the EPIOS code.114, 115 A large database of 

assigned 13C NMR spectra is the source of a library of carbon-centered fragments to which are 

assigned chemical shifts and signal multiplicities. Using the experimental spectrum, fragments 

are extracted from the database and the construction proceeds by attaching carbon atoms only if 
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their fragments overlap. Partially assembled structures with chemical shift deviations that exceed 

a preset threshold are discarded. Once the structures are fully assembled, a spectrum prediction 

code is run and the predicted spectrum is checked against the experimental one. Structure 

assembly using overlapping information is also the method implemented in the SpecSolv 

system.116 

Another method dealing with overlapping fragments was devised using the so called 

signature equation.9 The signature of an atom is a fragment comprising all atoms and bonds that 

are at a specified distance h from the probed atom. The fragment is written as a tree with a height 

equal to the specified distance, the tree is canonized, and the signature is written reading the tree 

in a depth first order. Examples of signatures of various heights are given in Figure 16.  

C

O

H H HH

C H H

 

Figure 16. The figure depicts the fragment centered on the carbon atom attached to the alcohol group in ethanol. The 
height-0 signature of this carbon atom is 0σ(C) = C, the height 1 signature is 1σ(C) = C(COHH), and the height 2 is 
2σ(C) = C(C(HHH)O(H)HH). The height 1 signature of ethanol is obtained summing the height 1 signatures for all 
atoms, 1σ(ethanol) = C(COHH) + C(CHHH) + O(CH) + 5H(C) + H(O). The height 1 signature of the bond C–O is 
the difference between the signature of ethanol and the signature of the structure where the bond has been removed, 
1σ(C–O) = C(COHH) + O(CH) - C(CHH) - O(H).  
 

 The signature of a molecule or a molecular fragment is simply the sum of all its atomic 

signatures. The signature of a bond is the difference between the signature of the structure 

containing the bond and the signature of the structure where the bond has been removed. Now, 

assuming we know the signature up to a certain height of a yet unresolved compound and 

assuming we also know that the compound contains a number of fragments that may or not 

overlap, the purpose of the signature equation is to compute lists of non overlapping fragments 
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matching the signature of the unresolved compound. Simply stated, fragments and signatures are 

related by the expression: signature of the fragments + signature of the interfragment bonds = 

signature of the unknown compound. Formally, lists of non-overlapping fragments are computed 

solving the equation with unknowns xi and yj: 

)compoundunknown () bond()fragment ( σσσ h

j

h
j

i

h
i jyix =+ ∑∑    [32] 

The variables xi and yj are, respectively, the number of fragments i present in the final structure, 

and number of interfragment bonds j. The signature equation (eq. 32) is an integer equation and 

can be solved using integer linear programming (ILP) tools.117 Note however, that in general ILP 

problems are intractable.12 Each solution of eq. 32 is a list of non-overlapping fragments and 

interfragment bonds. To enumerate the final structures each list of fragments and interfragment 

bonds is fed to an isomer generator working with non-overlapping fragments. In the structure 

elucidation instances where the signature equation was used118 elemental analysis, NMR and 

functional group analysis provided the height 0, 1 and 2 signatures of the unknown compounds, 

and fragments were derived from chemical degradation and pyrolysis. 

An elegant approach dealing with overlapping fragments is the structure reduction 

method proposed by Christie and Munk.119 In contrast with all enumeration algorithms we have 

presented so far, this method begins with a hyperstructure containing of all possible bonds 

between unsaturated atoms. The algorithm removes inconsistent bonds until valences of atoms 

are respected. This results in a more efficient way to deal with overlapping fragments since all 

the fragments are contained (i.e., are subgraphs) in the hyperstructures, and as bond deletion 

occurs, the resulting graphs are kept if they still contain the fragments and are rejected otherwise. 

While it is not clear from reading the original paper on structure reduction how duplicated 

structures are removed, orderly generation can certainly be used to avoid the production of 
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duplicates. Checking that fragments occur in a given structure requires running a subgraph 

isomorphism routine. As already stated, general subgraph isomorphism is an intractable 

problem.12 In a recent development the structure reduction method was coupled with a 

convergent structure generation technique.120, 121 In this technique instead of having a list 

overlapping fragments, a network of substructures is first constructed. Substructures are linked in 

this network when they overlap, and alternative neighborhoods are indicated when overlapping is 

ambiguous. The initial structure is a hyperstructure composed of all possible bonds between 

atoms. The reduction method is used to determine all possible ways in which the substructures of 

the network can be mapped to the actual atoms of the structure being constructed.  

Enumerating structures using molecular descriptors. Enumerating molecules matching 

molecular descriptors or topological descriptors is a long-standing problem. Surprisingly, there 

are not many reports in the literature providing answers to the question. Most of the proposed 

techniques are stochastic in nature and are reviewed in the “Sampling structures” subsection.  In 

a series of five papers Kier, Hall, and co-workers122-126 reconstruct molecular structures from the 

count of paths up to length l = 3. Their technique essentially computes all the possible valence 

sequences matching the count of paths up to length l = 2. Then, for each valence sequence, all 

the molecular structures are generated using a classical isomer generator (cf. General structural 

isomer enumeration subsection), and the graphs that do not match the path length l = 3 count are 

rejected. Skvortsova et al.127 use a similar technique but from the count of paths they derive a 

bond sequence in addition to the valence sequence. A bond sequence counts the number of bonds 

between each distinct pair of atom valences. The two sequences are then fed to an isomer 

generator that produces all the structures matching the sequences. Regrettably, the authors do not 

provide details on how the isomer generator deals with the bond sequence. Another approach to 
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enumerate molecular graphs matching a given signature has appeared recently.128 As defined 

earlier the signature is the collection of all atoms environments in a molecule (cf. Figure 16). 

Like other fragmental molecular descriptors, it has been shown that signature works well in 

quantitative-structure activity relationships.129 The input information to the algorithm is a 

signature. To each atomic signature one associates an atom in the initial graph. At first, the graph 

is composed of isolated atoms without any bond. The construction proceeds by adding bonds one 

at a time using the equivalent-classes technique (cf. General structural isomer enumeration 

subsection). Orderly generation can also be used to enumerate structure matching signatures. 

During the generation process, bonds are created only if the signatures of the bonded atoms are 

compatible, and the resulting graph is canonical. This algorithm is capable of enumerating 

molecular structures up to 50 non-hydrogen atoms on a time scale of few CPU seconds.128 

 

Stereoisomer enumeration 

Few approaches have been reported to enumerate stereoisomers.63, 64, 130-134 We describe 

here the technique proposed by Nourse.130 This method has been developed within the 

CONGEN131 structure generator, but is also the method used by MOLGEN.108 Nourse’s 

technique computes all stereoisomers of a given structural isomer. Thus, to enumerate the 

stereoisomers of a given molecular formula one first generates all structural isomers using the 

techniques presented earlier. Then, for each structure, one applies Nourse’s algorithm. There are 

essentially three steps in this algorithm. (1) All potential stereocenters are determined for the 

given structural isomer. (2) A permutation group called the configuration group is constructed 

from the automorphism group of the structure (cf. definition in “From Graph Theory to 

Chemistry” subsection). (3) The permutations of the configuration group are applied to all 
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possible orientations of the stereocenters, and orientations found identical under the permutations 

are removed. The number of stereoisomers is the number of remaining orientations.  

A stereocenter is defined to be any trivalent or tetravalent atom with at most one 

hydrogen which is not part of an aromatic system or cumulenes with H2-ends, and not triple 

bonded. A stereocenter has two possible orientations induced by the labels of the neighboring 

atoms. These labels are simply the atom numbers defined by the generator that was used to 

produce the structural isomer and these numbers remain unchanged during stereoisomer 

enumeration.  Because the orientation is defined by an arbitrary labeling, the notation +,- is used 

instead of the R,S nomenclature. However R,S notations can be restored in a post process.131 Let 

R1 < R2 < R3 < R4 be four atom labels attached a given stereocenter, the two possible 

orientations are: 

R4 R3

R2

R1

R4 R2

R3

R1

+ _
 

For a structure comprising n stereocenters, each having two possible orientations, there are 2n 

potential stereoisomers. Taking the example of tartaric acid of Figure 17.(a), this structure has 

two stereocenters (C1 and C2). The potential stereoisomers are [++], [+-], [-+], and [--].Some of 

these stereoisomers are identical due to the symmetry of the structure. Using the labels of Figure 

17.(a), there are only two permutations in the automorphism group preserving the structure of 

tartaric acid: (1)(2)(3)(4)(5)(6)(7)(8) and (12)(36)(47)(58). In this case the configuration group is 

simply the set of permutations of the automorphism group restricted to the stereocenters: (1)(2) 

and (12). To compute the exact number of stereoisomers one applies the configuration group to 

all potential stereoisomers, and removes all equivalent orientations. The application of the 
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configuration group on the four possible stereosiomers of tartaric acid is given in Figure 17(b). 

The three resulting stereoisomers are depicted in Figure 17(c). 

 

C1

C2

C3OOH

C7OOH

H5HO4

O7HH8

                 (1)(2)        (12)              stereoisomer

[++]           [++]            [++]              d  
[+ -]           [+ -]            [- +]              meso 
[- +]           [- +]            [+ -]              meso  
[-  -]           [-  -]            [-  -]              l  

COOH

COOH

HOH

OHH

COOH

COOH

HOH

HOH

COOH

COOH

OHH

HOH

mesod l

(a) (b)

(c)  

Figure 17. The stereoisomers of tartaric acid. (a). Tartaric acid structural isomer with atom labels 1 through 8 (only 
atoms attached to stereocenters are labeled). (b) Application of the configuration group {(1)(2), (12)} on the four 
possible stereoisomers. The second and third stereoisomers are identical. (c) The three resulting stereoisomers, a 
meso form and a dl pair. 
 

 From the tartaric acid example it may seem that the configuration group is no different 

than the automorphism group restricted to the stereocenters. However, there are more 

complicated cases where permutations can change the orientations of stereocenters even when 

the stereocenters are not permutated. As an example consider the permutation (1)(24)(3) acting 

on the labels of 1,2,3,4-tetrachlorocyclobutane. Stereocenter C1 is attached to C2, C4, a chlorine 

atom, Cl, and a hydrogen atom, H. The permutation (1)(24)(3) change this order to C4,C2, Cl, 
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and H, consequently, the orientation of C1 is reversed by (1)(24)(3). The same observation can be 

made for C3. To indicate that the orientations of C1 and C3 are reversed by the permutation 

(1)(24)(3), Nourse uses the notation (1’)(24)(3’). Application of (1’)(24)(3’) on the stereoisomer 

[++++] gives the correct configuration [-++-], which differs from [++++], the configuration 

given by (1)(24)(3). Finally, a stereoisomer induced by double bonds can also be enumerated 

using Nourse’s technique. When double bonds are involved, a special configuration group is 

computed. This group is the product of the atom automorphism groups and bond automorphism 

groups. A simpler solution was latter suggested by Wieland et al.135and consists of converting 

double bonds into single bonds with fictitious bivalent nodes: 

X

X  

 

 Expanding on Nourse’s technique, Wieland133 proposed an enumeration algorithm of 

stereoisomers where the valence of the stereocenters can be larger than four.  

 

 To conclude this subsection on enumeration, it seems that enumerating structural 

isomers is no longer a technical challenge. The reader not convinced of this can access the web 

page of the journal MATCH,136 enter any molecular formula, and visualize the list of 

corresponding isomers. The algorithm used to produce this list is MOLGEN. While not every 

compound family can be counted, as far as isomer enumeration is concerned up to 50 non 

hydrogen atoms, all molecular graphs can be enumerated according the authors of MOLGEN. 

Unfortunately, structural elucidation and molecular design problems do not fit this optimistic 

picture. The pitfall of isomer enumeration is the number of solutions produced. Of course, the 
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number of solutions can be reduced by adding constraints, but, the problem becomes 

computationally harder and most likely intractable, especially when dealing with overlapping 

fragments. The usual way to deal with intractable problems in computer science is to use 

stochastic techniques where solutions are only guaranteed up to some probability. The purpose of 

the next section is to review the stochastic techniques used to sample molecular structures for the 

purpose of structure elucidation and molecular design. 

 

Sampling Structures: What is the decane isomer with the highest 

boiling point?  

 

The premise of the sampling approach is the following question: Is it necessary to 

generate all of the molecular graphs corresponding to a set of constraints in order to design 

compounds having specified activities or properties? As far as structure elucidation is concerned, 

the question is whether or not the concept of a unique chemical graph has a physical or chemical 

significance for complex natural compounds such as lignin, coal, kerogen, or humic substances. 

As far as sampling is concerned, there is no method of choice like there was for counting 

molecules (Polya’s theory) and enumerating structures (orderly generation). The reason perhaps 

is that the field is relatively new. Both in graph theory and computational chemistry, the 

techniques to sample graphs and chemical graphs appeared mostly in the last decade. In the 

subsections that follow we first summarize what can be learned from graph theory about 

sampling graphs and then we review their applications in chemistry. 
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Sampling labeled and unlabeled graphs 

 

Randomly sampling labeled graphs of n vertices and q edges can easily be done selecting 

at random q pairs of vertices in the set of n(n-1)/2 possible pairs. Such a random selection can be 

done with or without replacement depending on whether or not one wishes to create multiple 

edges.  

As we have already seen with counting and enumeration, unlabeled graphs are harder to 

deal with than labeled ones.  Nijenhuis and Wilf137 have shown how to sample unlabeled rooted 

trees. The approach was extended by Wilf138 who gave an algorithm to sample unlabeled 

unrooted trees. The algorithm is based on a counting series for trees.  More complicated is the 

case of cyclic graphs. Dixon and Wilf139 were the first to give an algorithm for sampling 

unlabeled graphs with a specified number n of vertices. First, a permutation, π, of n vertices is 

chosen in the set of all possible permutations, that is, in the symmetric group Sn. As an example, 

assume the selected permutation is π = (135)(246) (cf. C3
- in Figure 3). Next, a graph is 

constructed at random from those graphs that are fixed by π, i.e., graphs like benzene that remain 

unchanged under the action of π. To construct this graph, the permutation π * acting on the edges 

is computed from π, where for any edge [i,j], π *([i,j])=[π (i),π (j)]. Using our benzene example 

we have π * = (12 34 56)(13 35 15)(14 36 25)(16 23 45)(24 46 26). Then, for each cycle of π * 

independently, one chooses with probability ½ whether all or none of the edges of the cycle will 

appear in the graph. Taking our benzene example one may chose edges in cycles (12 34 56) and 
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(16 23 45) to be turned on as in Figure 18(a) or edges in cycles (13 35 15)(14 36 25)(24 46 26) as 

in Figure 18(b). Both of resulting graphs are drawn at random from the set of all possible 

unlabeled graphs of six vertices.  

(a) (b)
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Figure 18. Two unlabeled graphs drawn at random and unchanged under the permutation π = (135)(246). 
 

The Dixon and Wilf technique was later expanded by Wormald140 to sample regular 

graphs with degrees equal or greater than 3, and by Goldberg and Jerrum127 to graphs of 

prescribed degree sequences. The case of degree sequences is of particular interest to chemistry 

and, in fact, in the paper published by Goldberg and Jerrum an extension to sample molecules is 

given.  Their algorithm is a two-step procedure. First, a core structure that does not contain 

vertices of degree one or two, is sampled using a Dixon-Wilf-Wormald’s type algorithm. Then, 

the core is extended adding trees and chains of trees (vertices of degree one or two). 

Interestingly, a parallel can be drawn between Goldberg and Jerrum’s core structures and the 

cyclic substructures of CONGEN,98 or the regular subgraphs of MOLGEN87 (cf. General 

structural isomer enumeration subsection). In all of these approaches, structures are enumerated 

or sampled by first constructing cyclic subgraphs and then either connecting these subgraphs 

together or adding vertices and edges that do not create additional cycles. The main result of 

Goldberg and Jerrum’s paper is that molecules can be sampled in polynomial time. This is quite 

an interesting result considering that the computational complexity of counting and enumerating 

molecules are still open questions.  
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Sampling molecules 

 

As with enumeration, sampling chemical structures is used in structure elucidation and 

molecular design applications. With both applications in mind, three different techniques have 

been developed:  random sampling, Monte-Carlo sampling, and genetic algorithms. 

 

Sampling molecules at random 

The first published sampling technique is a generator that constructs linear polymers at 

random.141 The random construction is repeated until a polymer is found matching a given set of 

physical properties. Note that the method is time consuming since the solutions are not refined as 

the sampling progresses. In the context of drug design, a random sampling technique was 

proposed142 to generate random structures by combining fragments. Specifically, fragments are 

chosen from a database of known drugs with a probability proportional to some statistical 

weight. Bonding sites are picked randomly for the chosen fragments and for the molecule built 

so far, and the two are joined together. Fragments are added in such a manner until the total 

molecular weight exceeds some predefined threshold. The random selection of bonding sites for 

fusion often produces structures that are chemically unstable or unusual. These structures are 

eliminated during a selection process based on topological indices and quantitative structure 

activity relationships. The structures that survive selections are archived in a database of 

compounds to be considered for synthesis. As in the polymer case, this latter approach appears to 
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be time consuming for molecular (drug) design purposes, since the solutions are not improved as 

the algorithm progresses. Additionally, the above techniques may generate duplicated structures 

since they essentially sample labeled graphs. In the context of structure elucidation, a random 

sampling of non-identical molecular graphs was proposed in 1994.118 The method is a 

randomized version of a deterministic structure generation algorithm. Underling all algorithms 

enumerating molecules is a construction tree (cf. examples in Figures 12 and 14) and that method 

selects branches at random instead of exploring all of them. Structures produced by the random 

selection are different if the branches of the construction tree lead to non-identical structures. 

Such is the case with the orderly algorithm or the equivalent-classes algorithm the sampling 

technique was based on. Running the algorithm it was observed that large samples of non-

identical structures could be generated quite efficiently. Aside from generating non-identical 

structures at random the above sampling technique also provides an estimate of the number of 

solutions. This number is then used to carry out statistical analysis, for instance mean values and 

standard deviations of some properties calculated using molecular simulations on the sample can 

be extrapolated to the entire population of potential structures.  

 

Monte Carlo sampling of molecules 

Random sampling techniques are appropriate to calculate average properties of 

compounds matching specific constraints, but are rather time consuming when used to search for 

the best compounds matching target properties or experimental data. In such an instance, 

optimization methods such as Monte-Carlo or Genetic Algorithms are best suited. Monte-Carlo 

(MC) and Simulated Annealing (SA) are simple algorithms that were initially designed to 

provide efficient simulations of collections of particles in condensed matter physics.143 In each 
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step of these algorithms, a particle is given a small random displacement, and the resulting 

change, ∆E, in the energy of the system is computed. If ∆E ≤ 0, the displacement is accepted, 

and the new configuration is used as the starting point of the next step. The case ∆E ≥ 0 is treated 

probabilistically: the probability that the configuration is accepted is exp(-∆E/kT), where k is the 

Boltzmann constant and T the temperature. With MC the simulations are carried out at 

equilibrium at a constant temperature T, while with SA the temperature is decreased according to 

a predefined cooling program (annealing schedule). Using a cost function in place of the energy 

and defining configurations by a set of parameters, it is straightforward with the above procedure 

to generate a population of configurations for a given optimization problem. For instance, SA 

techniques have been used to search for the global minimum of energy in conformational 

space.144 For conformational isomers the random displacement of the MC/SA algorithm consists 

of slightly modifying the conformation by either moving atoms or rotating bonds.  

In the structural space, any MC/SA random displacement must consist of changing the 

connectivity between the atoms. A solution to this problem, proposed by Kvasnicka and 

Pospichal,104 and illustrated in Figure 19, is to introduce perturbations in bonding patterns 

starting at a randomly chosen atom. Specifically, assuming an initial structure is constructed, a 

linear code is computed for this structure, and atoms are ordered according to the code. 

Examples of suitable codes are the n-tuple code for acyclic compounds, and the connectivity 

stack. Next, an atom is chosen at random and the code is randomly modified starting at the 

chosen atom. Not every perturbation is a valid one, for instance one needs to check that after a 

perturbation the valences of the atoms and the total number of bonds are maintained.  
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Figure 19. Perturbation of the n-tuple code of a hydrogen suppressed C7H16 isomer. Stating from a randomly 
selected point the code is randomly modified and 2-methyl-hexane is obtained by bond perturbation of 1,2-dimethyl-
pentane. 
 

A disadvantage of the above perturbation technique is that it is difficult to control to what 

extent the structure is changed since bonding pattern changes start at a randomly chosen atom. 

Ideally, in the spirit of the MC algorithm, one would like to keep the random displacement as 

small as possible. To this end, another solution to the random displacement came about 

observing that connectivity between atoms can be changed by deleting bonds, creating bonds, or 

modifying bond order.9 With the convention that a bond is deleted when its order is set to zero 

and a bond is created when its order is switched from zero to a positive value, all changes of 

connectivity can be performed by modifying the bond order. Because all structures must have the 

same total number of bonds, when a bond order is increased, another bond order must be 

decreased. Hence, changing the connectivity implies the selection of at least two bonds, or four 

atoms, x1,y1,x2, and y2. Let a11, a12, a21, and a22 be the order of the bonds [x1,y1], [x1,y2], [x2,y1] 

and [x2,y2] in the initial structure and let b11, b12, b21, and b22 be the order of the same bonds after 

the random displacement occurs. The random displacement is performed by a bond order switch. 

Precisely, a value b11 ≠ a11 is chosen at random verifying: 

b11 ≥ MAX(0,a11-a22,a11+a12-3,a11+a21-3)      [33] 
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b11 ≤ MIN(3,a11+a12,a11+a21,a11-a22+3)      [34] 

The above equations are derived using the fact than bond orders range between 0 and 3.  The 

orders for all other bonds are computed maintaining the valences of the atoms: 

b12 = a11+a12-b11         [35] 

b21 = a11+a21-b11         [36] 

b22 = a22-a11+b11         [37] 

It has been shown that all possible structural isomers of a given molecular formula can be 

reached using the above bond order switch.145 It is also worth noticing that every structure 

produced by the bond order switch is a valid one. Thus, contrary to the bond perturbation 

technique of Figure 19, there is no need to check for structure consistency. The bond order 

switch was used with a SA algorithm to search compounds having the maximum and minimum 

Wiener indices. The correct solutions were found up to 84 carbon atoms. There exist many 

quantitative structure-activity/property relationships between the Wiener index and the boiling 

point of organic compounds.40 These relationships may not be linear but, as a general rule, the 

larger the Wiener number is, the higher the boiling point. Thus, searching for compounds having 

the highest boiling point can be achieved by finding molecular graphs having the maximum 

Wiener index. For dodecane, the maximum Wiener index was found by the above algorithm to 

be W = 286, and the corresponding structure is the linear dodecane isomer. The bond order 

switch was also integrated in the SENECA software and used to elucidate structures as large as 

triterpenes matching experimental 1D and 2D NMR spectra.146 
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Genetic algorithms to sample molecules 

A genetic algorithm (GA) is a method of producing new individual examples from 

combinations of previous individuals, or, parents. The algorithm has the same logical structure as 

inheritance in biological systems. The probability that an individual will be produced and 

participate as a parent in a succeeding generation must be defined by some standard. For 

optimization purposes, the suitability of an offspring is usually assessed using a “fitness” 

function. This is a direct analogy to Darwin’s evolutionary rules of natural selection and survival 

of the fittest.  

The applications of GAs in chemistry have already been reviewed in this series of 

books.144 We focus here on the use of genetic algorithms to sample and search molecular graphs. 

The implementation of a GA usually invokes three data processing steps on the genetic code: 

mutation, crossover (recombination), and selection. The genetic codes suitable for chemical 

graphs are the ones we have already seen with the MC/SA algorithms, the n-tuple code, and the 

connectivity stack. Mutations of the genetic code can be performed the same way random 

displacements are carried out in MC/SA, that is, bond perturbation or bond order switch. Several 

steps are required to crossover genetic codes. First two parents are selected. Next, a crossover 

point is chosen at random, the two codes are spliced into two segments, and the corresponding 

fragments are recombined taking a segment from each code. The crossover operation is 

illustrated in the Figure 20 with the n-tuple code. As with bond perturbations in MC/SA, there is 

no guarantee that a crossover operation will maintain the valences of the atoms. Thus, all 

structures created by crossover must be checked for consistency. This is a disadvantage that GA 

has versus MC/SA when bond order switching is used. An interesting solution to avoid 

consistency check during crossover operation appeared in 1999.147 In this solution a bond is 
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chosen randomly in each parent. The bond is deleted and if the parent is not spliced into two 

pieces, a second bond is then removed in the shortest path linking the two atoms attached to the 

deleted bond. The process of bond deletion is repeated until the parent is cut into two 

disconnected parts. The four resulting pieces (two per parent) are then recombined by saturating 

the atoms where bonds have been deleted.  
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Figure 20. Crossover operation with the n-tuple code.  

 

The last genetic operation is selection. Elements of the population are selected to form 

the next generation using a problem specific fitness function. Taking the simple example of 

searching for the structure having the highest boiling, the fitness function can be for instance the 

Wiener index of the structure. 

The first use of a genetic algorithm to sample molecular structures was in the context of 

the design of polymers with desired properties.148 Later, a paper appeared to construct 

combinatorial libraries149 and targeted libraries150 for drug design purposes. It is worth 

mentioning that these applications are limited to linear genetic codes and are thus unable to 

create individuals by recombining parents in a cyclic manner. A general GA algorithm that 
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includes cyclic recombination was implemented for the purpose of structure elucidation of 

organic compounds from 13C NMR spectra.151 In this GA algorithm mutations are performed 

using bond perturbations as in Figure 19, and crossovers are carried out as in Figure 20. The 

selection operator is a root-mean-square deviation between the experimental chemical shifts and 

the predicted chemical shifts obtained with neural network technology. Structures up to 20 heavy 

atoms have been elucidated using this algorithm.  

 

 

Enumerating Molecules:  What are the uses? 

 

Chemical Information 
 
 

The combination of counting series and enumerating algorithms described previously in 

this chapter has allowed researchers to generate isomer lists for not only popular compounds, but 

for several specific compound classes as well.  In this next section of the chapter, we provide a 

brief review of isomer lists available in the literature as well as tabulate some important and 

popular lists to provide the reader a quick resource for this information. 

Alkanes and alkane-like substances have captured the interest of researchers in isomer 

enumeration for a long time owing to their commercial importance.  For example, Henze and 

Blair published the first isomer enumeration of alkanes in 1931.15  Here we provide, for 

reference, tables that list the number of isomers of alkanes, alkenes, alkynes,152 and stereoalkanes  



79 

(Table 4), ketones and esters (Table 5), and primary, secondary and tertiary alcohols (Table 6) up 

to 25 carbon atoms. 

 

Table 4:  Isomers of Alkanes, Alkenes, Alkynes, and Stereoalkanes 

Carbon 
Atoms 

Alkanes Alkenes Alkynes Stereoalkanes 

1 1     1 
2 1 1 1 1 
3 1 1 1 1 
4 2 3 2 2 
5 3 5 3 3 
6 5 13 7 5 
7 9 27 14 11 
8 18 66 32 24 
9 35 153 72 55 
10 75 377 171 136 
11 159 914 405 345 
12 355 2281 989 900 
13 802 5690 2426 2412 
14 1858 14397 6045 6553 
15 4347 36564 15167 18127 
16 10359 93650 38422 50699 
17 24894 240916 97925 143255 
18 60523 623338 251275 408429 
19 148284 1619346 648061 1173770 
20 366319 4224993 1679869 3396844 
21 910726 11062046 4372872 9892302 
22 2278658 29062341 11428365 28972080 
23 5731580 76581151 29972078 85289390 
24 14490245 202365823 78859809 252260276 
25 36797588 536113477 208094977 749329719 
 

Table 5:  Isomers of Ketones and Esters 

Carbon Atoms Ketone Isomers Ester Isomers 
1 1 0 
2 1 1 
3 2 2 
4 3 4 
5 7 9 
6 14 20 
7 32 45 
8 72 105 
9 171 249 
10 405 599 
11 989 1463 
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12 2426 3614 
13 6045 9016 
14 15167 22695 
15 38422 57564 
16 97925 146985 
17 251275 377555 
18 648061 974924 
19 1679869 2529308 
20 4372872 6589734 
21 11428365 17234114 
22 29972078 45228343 
23 78859809 119069228 
24 208094977 314368027 
25 550603722 832193902 
 

 

Table 6:  Isomers of Alcohols Series 

Carbon Atoms Primary Alcohols Secondary 
Alcohols 

Tertiary 
Alcohols 

1 1 0 0 
2 1 0 0 
3 1 1 0 
4 2 1 1 
5 4 3 1 
6 8 6 3 
7 17 15 7 
8 39 33 17 
9 89 82 40 
10 211 194 102 
11 507 482 249 
12 1238 1188 631 
13 3057 2988 1594 
14 7639 7528 4074 
15 19241 19181 10443 
16 48865 49060 26981 
17 124906 126369 69923 
18 321198 326863 182158 
19 830219 849650 476141 
20 2156010 2216862 1249237 
21 5622109 5806256 3287448 
22 14715813 15256265 8677074 
23 38649152 40210657 22962118 
24 101821927 106273050 60915508 
25 269010485 281593237 161962845 
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While the alkane and alkane-like substances are the most important, no series of 

compounds has received as much interest in generating isomer series as has the polyhexes, with 

much being done on various classes of benzenoids.78, 153-155 For example, isomer series are 

available for benzenoids of a variety of classes, including peri-condensed,156, 157 cata-

condensed,35, 158, essentially disconnected,159 helicenes,158, 160 resonant sextets,161 quinones,162 

coronenes,163, 164 and pyrenes.165   Recently, with the aid of a new lattice enumeration algorithm 

the number of benzenoid hydrocarbons was calculated up to 35 hexagons.79 We provide this 

information in Table 7. 

 

Table 7:  Benzenoids isomers as a function of the number of hexagons 

Hexagons Benzenoids Hexagons Benzenoids 
1  1  18  8553649747  
2  1  19  41892642772  
3  3  20  205714411986  
4  7  21  1012565172403  
5  22  22  4994807695197  
6  81  23  24687124900540  
7  331  24  122238208783203  
8  1435  25  606269126076178  
9  6505  26  3011552839015720  
10  30086  27  14980723113884739  
11  141229  28  74618806326026588  
12  669584  29  372132473810066270  
13  3198256  30  1857997219686165624  
14  15367577  31  9286641168851598974  
15  74207910  32  46463218416521777176  
16  359863778  33  232686119925419595108  
17  1751594643  34  1166321030843201656301  
    35  5851000265625801806530  
 

Another class of polyhexes, which are fullerenes, has also been the subject of much 

interest in the field of isomer generation owing to the impact that this class of compounds has 

made in many areas of science and technology.  While tables exist for the general and isolated-
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pentagon rule fullerenes,166, 167 we provide in Table 8 an isomer list for these classes up to large 

number of vertices, courtesy of the Fullgen code.94, 168  

 

Table 8:  Fullerene isomers as a function of the number of Carbons 

Number of atoms Numbers of 
Fullerenes 

Number of atoms Numbers of 
Fullerenes 

20 1 100 285914 
22 0 102 341658 
24 1 104 419013 
26 1 106 497529 
28 2 108 604217 
30 3 110 713319 
32 6 112 860161 
34 6 114 1008444 
36 15 116 1207119 
38 17 118 1408553 
40 40 120 1674171 
42 45 122 1942929 
44 89 124 2295721 
46 116 126 2650866 
48 199 128 3114236 
50 271 130 3580637 
52 437 132 4182071 
54 580 134 4787715 
56 924 136 5566948 
58 1205 138 6344698 
60 1812 140 7341204 
62 2385 142 8339033 
64 3465 144 9604410 
66 4478 146 10867629 
68 6332 148 12469092 
70 8149 150 14059173 
72 11190 152 16066024 
74 14246 154 18060973 
76 19151 156 20558765 
78 24109 158 23037593 
80 31924 160 26142839 
82 39718 162 29202540 
84 51592 164 33022572 
86 63761 166 36798430 
88 81738 168 41478338 
90 99918 170 46088148 
92 126409 172 51809018 
94 153493 174 55817091 
96 191839 176 64353257 
98 231017   
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While we have provided popular and useful tables in this section for a variety of 

substances, many other isomer tables exist in the literature.  Several of these have been generated 

in an attempt to verify or compare codes that generate isomers.  To best aid the reader, references 

to these listings are provided.  Novak gives a small list of some halogen derivatives of a few 

molecules and ions and their chirality.169  In a series of several papers, Contreras and co-workers 

have isomer tables on dozens of organic compounds, both cyclic and acyclic. Wieland et. al. 

have generated configurational and constitutional isomers for a variety of hydrocarbons up to 10 

carbon atoms.135  Dias provides a constant isomer series for fluorenoid and fluoranthenoid 

hydrocarbons.170 Luinge generated dioxane isomers as well as isomer lists for a variety of CHO 

and CHN compounds.171  CHO, CHON and CON isomer lists were generated by Molodtsov in 

1994. 172  A subclass of indacenoids, namely di-5-catafusenes, were studied by Cyvin et al. and 

isomer lists generated.173  These same authors later provided isomer lists for systems containing 

pentagons and heptagons, with both one pentagon (azulenoids)174 and multiple pentagons.175  

Dolhaine and co workers have provided some tables and formulae for the number of isomers of a 

variety of substituted molecules including benzene, anthracene, and fullerenes.176  Dolhaine and 

Honig have also published a large list of inositol oligomers up to the tetramer with estimates of 

larger isomers for larger oligomers provided.177  Finally, Davidson provides alkyl frequency 

distributions in alkane isomers up to 21 carbon atoms.178 

Before we leave this subsection, it is useful to note that a few studies comparing various 

isomer generation techniques have been published in an attempt to provide both a validation of 

an algorithm against a test case and comparison of a variety of methods in terms of consistency 

and execution time.  Such studies may also contain isomer generation lists of the type mentioned 
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in the previous paragraphs.  To the reader interested in these tests, we provide references.60, 171, 

179-181 

 

 

Structure Elucidation 

 

A very clear and important application of enumerating molecules falls within a larger 

framework of structure elucidation.  In brief, the ultimate goal of structure elucidation is to take 

input information and identify the compound that is consistent with that information.  A more 

pragmatic goal of this endeavor is to generate all candidate molecules consistent with the input 

information. While information before or after the candidate generation is used to focus the 

solution space to a single solution, such an ideal result is not often met and, thus, lists of 

solutions (perhaps ranked) are produced.  The reason for this has to do with many factors 

including the combinatorial explosion of isomers, the quality of the input information, and the 

efficiencies of the algorithms that use this information. A much more detailed assessment of this 

situation is provided elsewhere and the reader is referred to those works.110, 120, 182 

Our goal in this section is to highlight some of the popular codes that can be used to 

perform structural elucidation.  Where applicable, information required on the types of input is 

provided.  We must note that not all structural elucidation codes are equal.  Some are considered 

expert systems containing large databases of initial (stored) information and use complex 

algorithms that attempt to reach the ultimate goal.  Others are more modest isomer generation 

codes with some pre- or post-processing to include experimental information to assist with the 
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arrival of a solution (or solution set) for a particular problem.  Accordingly, we will describe 

some isomer generation codes first and finish with the expert systems. 

A program to enumerate all possible saturated hydrocarbons was introduced in 1991 by 

Hendrickson and Parks.183 This code, called SKEL_GEN, was tested for structures containing up 

to 11 carbon atoms but limited work was extended to larger ringed structures. 

In 1992 Contreras introduced CAMGEC (Computer-Assisted Molecular GEneration and 

Counting),60 which is an exhaustive, selective and non-redundant structural generation C code 

under a Unix platform.  The program requires just a molecular formula as input. No means to 

input other information or for post-processing exists.  Recent improvements to CAMGEC61-65 

have been presented that improve efficiency and allow for stereoisomer generation. 

To aid in the interpretation of infrared spectra, Luinge developed the structure generator 

AEGIS (Algorithm for the Exhaustive Generation of Irredundant Structures).171 While it is 

reportedly simple to use and requires only the molecular formula as input, it is written in the 

PROLOG language that is computationally expensive. 

Though not designed to compete with other isomer generation codes, Barone and co-

workers designed an exhaustive method to generate organic isomers from base 2 and base 4 

numbers called GI (Generation of Isomers).180  They have used GI in an attempt to check the 

consistency between other, much faster, isomer generation codes and have found some 

discrepancies.   

A large, yet exhaustive isomer generation package called ISOGEN184 produces an 

irredundant list of structure isomers consistent with a given empirical formula.  Revisions to this 

code with the same name uses modified algorithms that include evolutionary approaches.185 
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Le Bret put forth a novel approach to the structural elucidation problem by using a 

genetic algorithm to exhaustively generate isomers.  The program, called GalvaStructures,181 

uses the molecular formula as input and can take various spectral information to aid in the 

efficiency of solution.  Though stochastic, the program seems to be consistent with other 

generators, yet it is much slower for large problems. 

The “grandfather” of knowledge-based structural elucidation codes is the DENDRAL 

project at Stanford University.56, 57 DENDRAL (DENDRitic ALgorithm) provided a recipe 

(plan, generation, test) to exhaustively enumerate all isomers given an input set of atoms and 

spectral information.  The generation of structures was performed with CONGEN (CONstrained 

GENerator) and, ultimately, with a more-advanced structure generator called GENOA 

(GENeration with Overlapping Atoms).113 The latter code added some automated features as 

well as a different way to handle overlapping substructural units. 

ASSEMBLE 2.0186 is a structure generator taking molecular formula and fragments as 

input.  On output, candidates can be ranked based on fragment spectra given on input. 

CHEMICS111 is an automated structure elucidation system for organic compounds that 

uses 630 fragments in developing structures.  Spectroscopic data in the form of IR, 1H-NMR and 

13C-NMR as well as bond correlations are used to limit the candidate structures output.  

EPIOS (Elucidation by Progressive Intersection of Ordered Substructures)187 is a code 

that uses a database of 13C NMR spectra and generates candidate structures through overlapping 

fragments. 

The structure generator GEN uses up to 30 fragments (obtained from, say, spectral 

information) as input and can be given various types of constraints during generation such as 

molecular formula, molecular weight, and structural considerations.  The code itself is used in 
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two systems, GENSTR and GENMAS.179 The GENSTR system is used when specific fragments 

can be selected and additional information introduced into the generation process. GENMAS is 

used when only molecular formula is to be input. 

GENM  a program written in both C and Fortran that generates of all nonisomorphic 

molecular graphs given a set of labeled vertices with a specific valence.172  While the code lacks 

post-processing, forbidden and required fragments can be input to the program. 

MOLGEN, developed from MOLGRAPH,107 is a structure elucidation code that has 

made its way into the commercial market and is, perhaps, the most widely-known program of its 

type.108, 188 Upon input of a molecular formula, MOLGEN produces a complete set of 

redundancy-free isomers.  MOLGEN can be used online and provides the user with the number 

and structure of isomers corresponding to a given molecular formula. An online version can be 

found in the MATCH journal webpage.136  

When StrucEluc was first introduced, it used only 1D-NMR data with other information 

for structural elucidation of molecules containing fewer than 25 atoms.  A recent enhancement of 

StrucEluc now uses a variety of 2D NMR data as well as data from IR and mass spectra.189 Such 

improvements have allowed this code to elucidate product molecules containing more than 60 

atoms. This program now forms a suite of programs offered under the name 

ACD/StructureElucidator. 

COCON190 and a web-based version (WebCocon 4J) searches for compounds of known 

molecular formula compatible with 2D NMR data as input.  This code also is able to interpret 

heteronuclear multi-bond correlations as 2, 3 and 4 bond connectivities.  
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SpecSolv116 is a structure elucidation system based on 13C chemical shifts with additional 

options to use NMR information of most any kind to aid in candidate refinement.  Note that 

SpecSolv does not require an initial molecular formula as input.191 

The ESESOC (Expert System for the Elucidation of the Structures of Organic 

Compounds)192, 193 system is used for structural elucidation and presents candidate structures 

consistent with a molecular formula and spectroscopic data.  In addition to being a structure 

generator, the system can extract various information including IR, NMR and COSY as 

constraints. 

Faulon developed a stochastic structure generator, named SIGNATURE,118, 145 and used 

it for a variety of natural compounds structure elucidation problems.  The SENECA structural 

elucidation system146 later incorporated algorithms developed by Faulon with the goal of finding 

the constitution of a molecule given spectroscopic data, most notably NMR. 

Cocoa119 (COnstrained COmbination of Atom-centered fragments) is a structural 

elucidation method, which rather than combining fragments (based on input information) to 

make structures, uses the information to remove fragments.  Such an approach makes the best 

use of all input information. Cocoa was later incorporated into a larger software, SESAMI, that 

includes a spectrum interpreter.194 

The HOUDINI program, part of the SESAMI system, contains elements of both structure 

assembly (ASSSEMBLE) and structure reduction (Cocoa).120 

The CISOC-SES system (Computerized Information System of Organic Chemistry-

Structure Elucidation Subsystem) is another structural elucidation program to generate candidate 

structures given NMR information.195 The algorithms used in this system emphasize the use of 

long-range distance constraints. 
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Elyashberg and co-workers developed a structure elucidation system called X-PERT that 

uses molar mass, IR and NMR spectra in combination with a gradual growth of constraints in 

reaching candidate solutions.196 

 

 

Some structure elucidation success stories. 

 

All of the codes and systems listed above have, at some point, been tested to evaluate 

effectiveness.  Once these approaches are reported in the literature and/or presented at a 

conference, the next step involves adoption of the system for a particular need.  However, those 

who adopt these systems are normally scientists from companies whose work is proprietary.  

Hence, most of the “real world” successes of structure elucidation are not disseminated.  

However, there are cases where difficult structural elucidation problems have been solved and 

published and we provide a few interesting examples here. 

As reported by Munk,110 the earliest example of a real-world structure elucidation 

problem using computational techniques was performed in 1967 to determine the structure of 

antinobolin.  Degradation reactions of antinobolin were performed leading to substructures from 

which an early version of ASSEMBLE generated six viable candidates.  Subsequent 

spectroscopic studies were performed on these six and the correct structure was isolated.  This 

procedure, in total, reportedly took several man-years to complete.  By way of comparison, this 

problem was revisited recently using the SESAMI system with 1D and 2D NMR data derived 

from actinobolin acetate.  SESAMI, in conjunction with some simple experiments and other data, 

resolved the correct structure with the entire process numbering in days as opposed to years. 
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Lignin is an important polymer found in the cell wall of plants and plays a key role in a 

variety of industries including pulp and paper as well as fuel and wood science.  While many 

studies had been performed on lignin, a clear and compelling picture of the structure of this 

polymer corroborating existing experimental information had yet to be determined.  Using the 

SIGNATURE program in conjunction with molecular simulation as well as NMR data and 

known fragments for lignin monomers, Faulon and Hatcher197 concluded that a structure with a 

helical template for lignin was preferred over random structures. Such a conclusion was 

consistent with Raman spectroscopic information. More recent uses of SIGNATURE include the 

design of sample structures for humic substances198 and asphalthenes.199 

In another, recent example, the ACD/Structure Elucidator was used to resolve 2D NMR 

data on a C31 alkaloid that had several ambiguities in connectivity associated with spectral 

overlap.  Twelve candidates were revealed of which eleven were ultimately ruled out for 

violating a variety of constraints. The new compound, named quindolinocrypto-tackieine, was 

thus solved.200 

 

Combinatorial Library Design 
 

 

Methods for synthesizing large combinatorial libraries of organic compounds emerged in 

the mid- 1990s201, 202, 203  This revolutionized drug discovery, as millions of candidate compounds 

could then be synthesized in parallel and evaluated using high throughput screening 

techniques.204, 205  However, given that the number of compounds that could be synthesized 

exceeds 1012 for even a simple combinatorial library scheme based only on commercially 
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available reagents,206 and estimated to be over 1030 in the whole accessible chemical space,207 the 

effectiveness of these early “brute force” experimental approaches were necessarily quite 

limited.  Therefore, along with the development of combinatorial chemistry came a growth in 

virtual chemistry and software tools to sift ‘in silico’ through large numbers of potential 

compounds in combinatorial libraries to select the most promising subset for synthesis and 

experimental testing.  The ability to enumerate molecules is a crucial step in many virtual 

chemistry algorithms for designing combinatorial libraries, which in turn are used to discover 

lead pharmaceutical compounds.   

Many different approaches have been taken to designing these libraries.  Diversity 

approaches208, 209 are used to design general exploratory libraries that maximize chemical 

diversity for initial drug discovery.  Biased approaches are used to design focused libraries when 

there is a priori knowledge of either the structure of the target (structure-based approaches210-215) 

or a small lead compound (similarity approaches216).  Informative design,217 a relatively new 

approach, designs a library that will provide the maximum amount of information from each 

experimental cycle of synthesis and testing.  In addition to examining the potential drug-binding 

properties of the library, most library design efforts try to simultaneously maximize the ADME 

(adsorption, distribution, metabolism and toxicity) properties of the library members, using 

heuristics of “drug-likeness”218-221 as well as other functions such as cost.  The cost functions 

may be implemented as simple post-processing filters or as objective functions to maximize.  

Although library design methods can deal in the chemical space of the reactants, product-based 

design has been shown to be superior, albeit more expensive computationally.222, 223 For a 

complete review of computational techniques applied to combinatorial libraries, see Lewis et 
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al.209  Most of the product-based approaches involve either full or partial enumeration of the 

products of the combinatorial library. 

The basic chemistry for combinatorial synthesis usually involves a core group or 

scaffold, to which a set of reagents or R groups is systematically reacted at each substitution site 

(see Figure 21 for some typical scaffolds). As all combinations of reagents are synthesized, the 

total size of the combinatorial library can be estimated using Pólya’s theorem as given by eq. 7 in 

the “Counting structures” subsection.  For the majority of combinatorial libraries, the scaffold is 

asymmetric and the size of the library is simply the product of the number of possible reagents at 

each substitution site. For example, if a scaffold has three variable positions R1,R2, and R3, each 

with 1000 possible reagents that can react at that site, there are 10003 or 109 possible  compounds 

that could be synthesized.  Because there are often even more than 1000 reagents commercially 

available per reactant site, the numbers are often even greater. 
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Figure 21.  Benzodiazepine scaffold (left) and a statine-base peptomimetic (middle) are typical asymmetric 

scaffolds.   Benzene triacylchloride scaffold (right) is a typical symmetric scaffold. 

 

The first step in constructing a virtual combinatorial library for a given scaffold is to 

identify the pool of reagents available for each substitution site on the scaffold.  This usually 

involves searching substructures in a database of commercially available and in-house 
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compounds for those containing the appropriate reactivity for the synthesis protocol at each 

substitution site.  Filters are used to eliminate reagents with inappropriate chemistries such as 

functional groups predicted to cause side reactions, or those that may interfere with or cause false 

positive tests in the biological assays, or those with insufficient ‘drug-like’ properties.   

Once the reagents are selected the next step is to enumerate product compounds of the 

library. Most enumeration programs take into account only the simple case of an asymmetric 

scaffold, however MOLGEN-COMB224 is specifically designed to handle symmetry.  For the 

asymmetric scaffold case, there exist two basic approaches.  The first is referred to as “fragment 

marking”. Here, the reactant pools are treated with a pre-processing step where they are 

“marked” by removing the reacting functional group in each reagent and replacing it with a free 

valance.  Enumeration consists of systematically placing all the clipped reagents onto the 

scaffold”225, 226 using an algorithm similar to Scheme I given in the “Enumerating structures” 

subsection. A simple version of this approach has been used in the structure-based programs 

CombiDOCK212 and CombiBUILD.211 One problem with this approach is that it cannot handle 

all synthetic reaction types, such as the Diels-Alder reaction, or systems with no clear core 

scaffold such as oligomeric libraries of variable length.227  The second approach is to use a 

‘reaction transform’ to perform the same chemical transformations in silico that are being 

performed chemically. Advantages of this approach are that it can be used on all chemistries, 

does not involve any pre-processing of the reagents, and the transforms can be reused.  It has the 

disadvantage however of being computationally more demanding and thus slower to perform.  

Many programs use the SMARTS molecular query notation from the Daylight toolkit228 to 

design reaction transformation tools,229 an approach that has been incorporated into the ADEPT 

program.227 Commercially available programs that perform computational enumeration include 
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CombiLibMaker in Sybyl122, Analog Builder in Cerius2,123 PRO_SELECT,215 and the QuaSAR-

CombiGen module in MOE.230  

As full enumeration of very large combinatorial libraries is impractical, several methods 

have been developed to avoid explicit enumeration of all library members.  Many diversity- and 

similarity-based design strategies use sampling approaches such as genetic algorithms,149, 231, 232 

simulated annealing,233, 234 and stochastic sampling235 to optimize libraries (see Gillet et al. 236 

for a full review).  Some of these approaches use descriptors that can estimate the properties of 

library members without explicit enumeration of the full library, either by using descriptors that 

can be calculated roughly from the sum of the reactants,206, 225, 226 or by using a neural net to 

estimate properties from a small sampling of enumerated products.229 Combining multiple 

approaches can also reduce the problem to a computationally tractable number of possible 

solutions.  For example, a diversity search can be performed to select a smaller library that can 

then be explicitly enumerated as a starting point for a structure-based library design of a focused 

library.237  Enumeration can also be reduced in structure-based programs, which start with the 

three-dimensional structure of the target, by taking a ‘divide-and-conquer’ strategy.211, 212, 215 In a 

divide-and –conquere scheme the scaffold is first docked to the binding site. The reagents are 

then evaluated individually at each substitution site for predicted binding, thus turning the 

problem from nr enumerations to r x n, where n is number of reagents and r is the number of 

substitution sites.  Only top-scoring reagents are saved for full compound enumeration and 

evaluation.  Virtual libraries designed in this manner have rapidly led to potent lead compounds. 

210, 238 

 

Molecular Design with Inverse-QSAR 
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The forward quantitative structure activity relationship (QSAR) procedure defines an 

equation or a set of equations that relates a variable of interest (dependent variable) in terms of 

independent variables.  The dependent variable is normally an activity/property of interest 

(binding affinity, normal boiling point, IC50, etc.) while the independent variables are related to 

the structure of the substance.  Developping a QSAR for a particular activity/property involves 

training the parameters of the model against a well-defined set of data (training set), with a small 

portion of the data held back for validation of the model (test set).  Once the QSAR is effectively 

trained and validated, one can use this model to predict the activity/property value of a given 

compound by determining the values of its independent variables in a straight-forward manner.  

On the other hand, rather than determining an activity/property value for a particular compound 

from the QSAR, what if one wants to determine a compound from the QSAR given a particular 

activity/property value?  This question is known as the inverse-QSAR problem (I-QSAR) and is 

the subject of this section. 

Anyone reading this chapter has, undoubtedly, solved an inverse-type problem in one 

form or another.  The key to efficient solution lies in the restriction of the solution space.  If 

constraints are composed such that the solution space is limited, a brute-force technique (try all 

candidates) can guarantee a solution.  In the field of molecular design, however, the solution 

space comes from all compounds that can be reasonably made from the various atoms in the 

Periodic Table.  Hence, one needs a way to limit this solution space to arrive at candidate 

solutions efficiently.  We describe some of these techniques below. 

As mentioned earlier, Kier and Hall published a series of papers in the early 1990’s that 

described the inverse QSAR methodology using chi indices. The QSARs they developed had a 
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maximum of four descriptors. Example applications included the inverse design of alkanes from 

molar volume,122 and the identification of isonarcotic agents.239 

Simultaneous with the work from Kier and Hall, Zefirov and co-workers,127 developed a 

similar technique using the count of paths. The QSARs they used were given in terms of three 

Kappa-shape descriptors and they considered three functional groups, namely alkanes, alcohols 

and small oxygen-containing compounds. 

In 2001 Bruggemann et. al.240 demonstrated the use of Hasse diagrams combined with a 

similarity measure in the generation of solutions to the inverse problem involving toxicity of 

algae.  Their method is based in partial ordered sets and does not assume a particular model for 

the QSAR. 

Garg and Achenie also demonstrated a reasonable approach to the solution of the I-

QSAR problem in 2001.241 Taking a target scaffold of an antifolate molecule for dihydrofolate 

reductase inhibition, these authors generated a QSAR for both activity and selectivity.  They 

solved the I-QSAR problem to maximize selectivity through changing substitutents on the 

scaffold, subject to a constraint of a threshold activity.  Finally, a work by Skvortsova, et al.242 

from 2003 demonstrated that the I-QSAR problem could be solved for the Hosoya index plus 

constraints on the number of carbon atoms for a system of 78 hydrocarbons.    

All of the previous methods have limitations.  As has been demonstrated above, one can 

limit the problem size by working with a QSAR derived with only a few descriptors.  Hence, 

many solutions can be found associated with the given problem.  Additionally, one can limit the 

solution space to contain, say, only hydrocarbons or alcohols.  A third issue on the approaches 

described above concerns the degeneracy of the solution themselves.  It is not uncommon for a 

particular value of a topological index to correspond to a large number of possible compounds.  
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A novel inverse-QSAR methodology has been developed recently that addresses these issues and 

will be described briefly next. 

The Signature molecular descriptor, previously mentioned in this chapter for structural 

elucidation, has found utility in the solution of the inverse-QSAR problem.  The reason for this is 

that Signature can produce meaningful QSARs129, 243 and is the least degenerate of dozens of 

topological indices tested.129 Additionally, Signature lends itself to the inversion process.128 An 

algorithm that will enumerate and sample chemical structures corresponding to the numerical 

solutions from the I-QSAR problem has already been developed and tested for a variety of 

compounds including alkanes, fullerenes, and HIV-1 protease inhibitors.128 

The inverse-QSAR problem using Signature has also been applied to a small set of LFA-

1/ICAM-1 peptide inhibitors to assist in the search and design of more-potent inhibitory 

compounds.  After developing a QSAR, the inverse-QSAR technique with Signature generated 

many novel inhibitors.  Two of the more potent inhibitors were synthesized and tested in-vivo, 

confirming them to be the strongest inhibiting peptides to date.244 

 

 

 

Conclusion and future directions 

 

We have seen in this chapter that counting, enumerating, and sampling of molecular 

graphs from a molecular formula are not the technical challenges they once were. Counting 

formulae exist for a large variety of chemical compounds, isomer generators can enumerate 
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without construction, or count, up to 1030 molecular graphs,87 and sampling molecules can 

theoretically be performed efficiently.245 Nonetheless, the computational complexity of counting 

and enumerating molecular graphs remains an unsolved problem. It is thus expected that research 

collaboration between mathematics, computer science, and computational chemistry will 

continue to devise better techniques to count and enumerate molecules. 

As far as structure elucidation and molecular design are concerned, enumerating 

molecules from a molecular formula is only part of the problem. Indeed, as we have argued in 

this chapter, enumerating structures with constraints, such as including the presence or absence 

of overlapping fragments, is most probably an intractable problem. Alternative stochastic 

sampling approaches have been devised recently to overcome the difficulties of enumerating 

molecules with constraints. Only a few stochastic techniques have so far been published and it is 

likely that the sampling approach will continue to be developed and used in the near future for 

practical purposes such as elucidation from NMR spectra.  

Even if we knew how to efficiently enumerate or sample molecular graphs under 

constraints, our job would not be completed. Molecules are 3D objects and, ultimately, structure 

generators should produced 3D structures. Enumerating stereoisomers alone is not sufficient as 

we also need to generate the structural conformations corresponding to the problem constraints. 

The natural solution that comes to mind is to first enumerate all molecular graphs matching the 

constraints and then to explore the conformational space of each graph. While codes exist for 

constructing 3D representations of molecular graphs,246-249 exploring the conformational space of 

each molecular graph is a cumbersome task that must be added to the already costly endeavor of 

structure enumeration. Such a strategy does not appear to be computationally feasible. One 

alternative to avoid that computational bottleneck may be to use the geometrical enumeration we 
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have seen for benzenoids.76, 79 Recall that this approach consists of enumerating self-avoiding 

polygons on lattices. The enumeration is performed directly on a 2D lattice space (benzenoids 

are planar) ignoring the underlying molecular graphs. The advantage of the geometrical approach 

is that energetically unfavorable structures are never constructed. Such is obviously not the case 

when enumerating dimensionless molecular graphs. Considering that geometrical enumeration is 

currently the most powerful technique to enumerate benzenoids, such a promising approach may 

be further explored, perhaps, for structure elucidation and molecular design purposes. 
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