

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

AIRS Project Status

T. Pagano

NASA AIRS Project Office

California Institute of Technology Jet Propulsion Laboratory

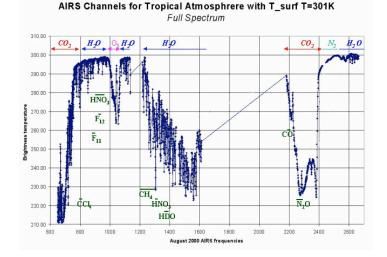
April 15, 2008

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Agenda

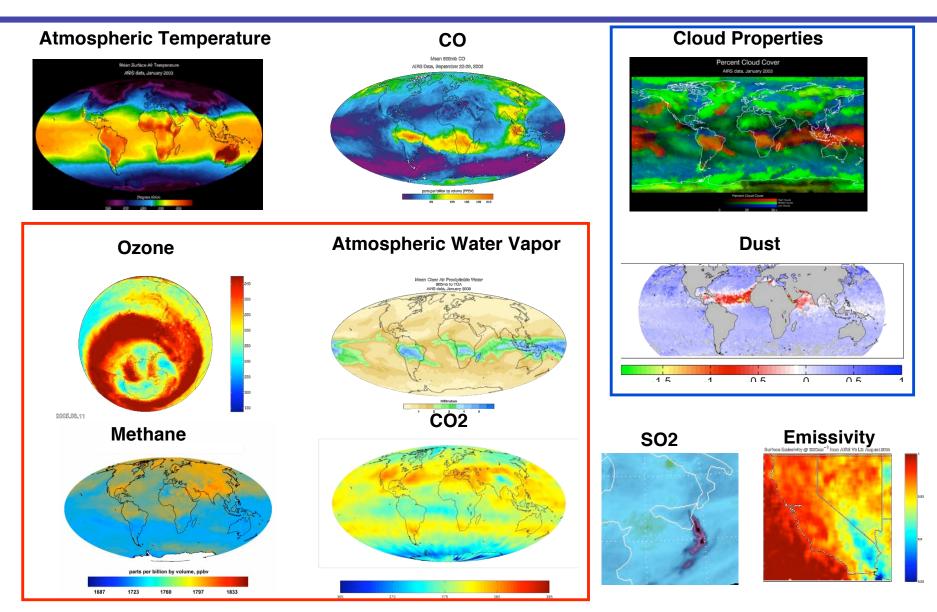
- Introduction
- Instrument Operations and Calibration
- Version 5 Product Generation
- Version 5 Validation
- Science Highlights
- Version 6 Status
- Preparing for the Future

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

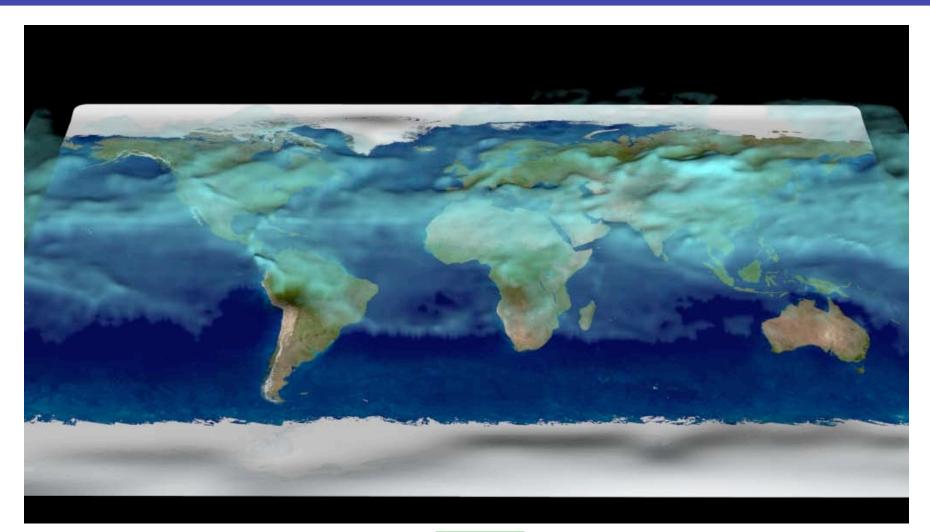

The Atmospheric Infrared Sounder on NASA's EOS Aqua Spacecraft

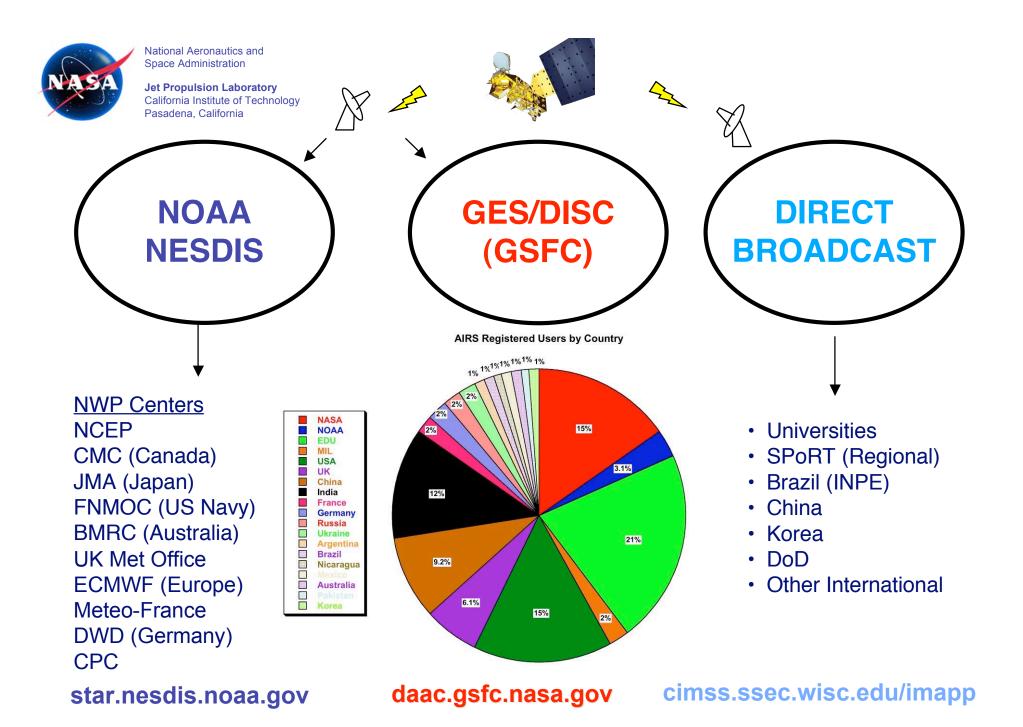
- AIRS Characteristics
- Launched: May 4, 2002
- Orbit: 705 km, 1:30pm, Sun Synch
- IFOV : 1.1° x 0.6° (13.5 km x 7.4 km)
- Scan Range: ±49.5°
- Full Aperture OBC Blackbody, ε>0.998
- Full Aperture Space View
- Solid State Grating Spectrometer
 - IR Spectral Range: 3.74-4.61 μm, 6.2-8.22 μm, 8.8-15.4 μm
 - IR Spectral Resolution: $\approx 1200 (\lambda/\Delta\lambda)$
 - # IR Channels: 2378 IR
- VIS Channels: 4
- Mass: 177Kg, Power: 256 Watts, Life: 5 years (7 years goal)

AIRS


AIRS Spectra

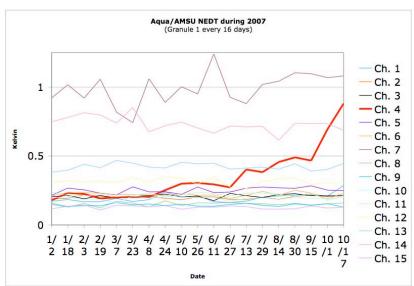
Jet Propulsion Laboratory California Institute of Technology Pasadena, California


AIRS Science Products


Jet Propulsion Laboratory California Institute of Technology Pasadena, California

AIRS Water Vapor in 3 Dimensions

Vince Realmuto, Charles Thompson



Jet Propulsion Laboratory California Institute of Technology Pasadena, California

AIRS and AMSU Instruments Operating Well

- AIRS
 - Hardware in excellent shape
 - Slow trends exist for some parameters but none are cause for concern
 - The most rapidly changing parameter is the Cooler B drive level, which is increasing by 0.6% per year and is now at 66.4% (yellow alarm level is 80%)
- AMSU-A
 - No alarming trends in temperatures or voltages
 - Channel 4 cannot be calibrated using existing algorithms—looks at warm target are contaminated by radiation leaking from a bad diode
 - Channel 5 NeΔT is slowly rising (has been doing so since November 2003) but is still only 0.3 K
 - Other channels are relatively stable

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

New Anomaly-Handling Documentation

- AIRS/AMSU Anomaly Resolution Plan has been written, reviewed, and approved
 - Specifies organizational responsibilities when an anomaly has occurred
 - Specifies organizational interfaces
 - Provides high-level procedures for anomaly resolution
- AIRS/AMSU Fault Trees (separate) now being developed
 - Intended to be "Owners Manuals" for reference when an anomaly occurs
 - Categorize all potential anomalies we can think of
 - Will provide pointers to existing documentation describing the relevant hardware, software, and or operational procedures for each category

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

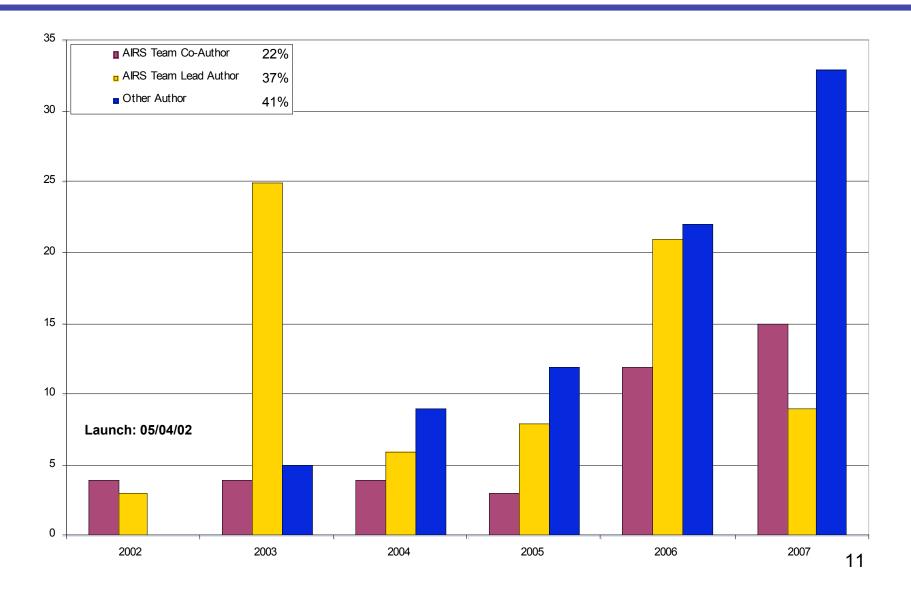
- Version 5 Released to the Public: 07/25/07

 Verification Report and User Documentation Complete
- AMSU Channel 4 Anomaly Resolution Complete
- GES/DISC Reprocessing for AIRS Complete
 - Processing with Version 5.0 Prior to October 1, 2007
 - Processing with Version 5.2 October 1, 2007 to Present
- All AIRS Data Available at
 - http://disc.sci.gsfc.nasa.gov/news/airs_v5_072507.shtml

National Aeronautics and Space Administration

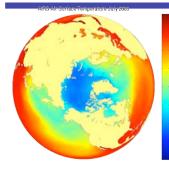
Jet Propulsion Laboratory California Institute of Technology Pasadena, California

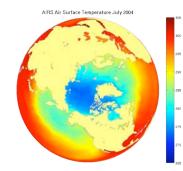
Validation of Version 5 Core Products is **Project Priority**


	AIRS Product	Uncertainty Estimate (Version 5)	Val Status (Version 5)	Source
	Radiances			
	AIRS IR Radiance	<0.2%	Stage 3	Project
	AIRS VIS/NIR Radiance	15-20%	Stage 1	Project
	AMSU Radiance	1-3 K	Stage 3	Project
	HSB Radiance	1-3 K	Stage 3	Project
Senior Review	Core Products			
Requested Peer-Review of	Cloud Cleared IR Radiance	1.0 K	Stage 2	Project
	Sea Surface Temperature	1.0 K	Stage 2	Project
	Land Surface Temperature	2-3 K	Stage 1	Project
	Temperature Profile	1 K / km	Stage 2	Project
Validation	Water Vapor Profile	15% / 2km	Stage 2	Project
Status of	Total Precipitable Water	5%	Stage 2	Project
	Fractional Cloud Cover	20%	Stage 2	Project
Standard	Cloud Top Height	1 km	Stage 2	Project
	Cloud Top Temperature	2.0 K	Stage 2	Project
Products	Neccesary Products*			
By end of 2008	Total Ozone Column	5%	Stage 2	Project
	Ozone Profile	20%	Stage 2	Project
	Land Surface Emissivity	10%	Stage 1	Project
	IR Dust**	0.5 K	Stage 1	Project
	Research Products			
	Carbon Monoxide	15%	Stage 2	NOAA/UMBC
	Methane	2%	Stage 1	NOAA
	Carbon Dioxide**	1-2 ppm	Stage 1	NASA/NOAA
	OLR	5 W/m2	Stage 1	GSFC
	HNO3**	0.2 DU	Stage 1	NOAA/UMBC
	Sulfur Dioxide**	1 DU	Stage 1	NOAA/UMBC

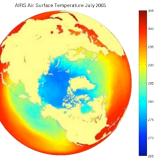
*Necessary Products are required to retrieve accurate temperature profiles (1K/km) in all condition **Product not yet available in AIRS Level 2 Files. Products will be available in Version 6

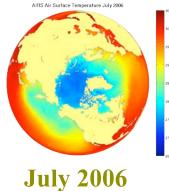
Jet Propulsion Laboratory California Institute of Technology Pasadena, California

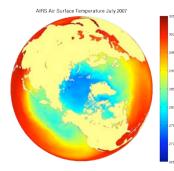

Over 200 AIRS Peer Reviewed Science Publications



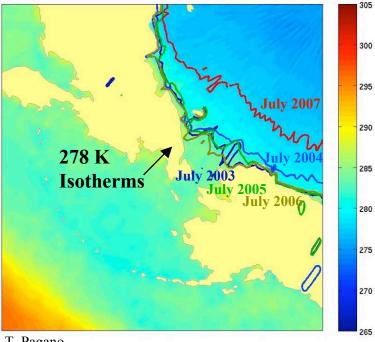
Jet Propulsion Laboratory California Institute of Technology Pasadena, California

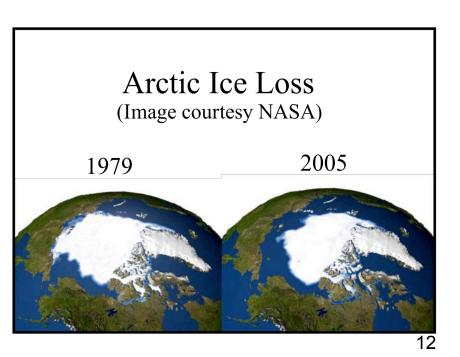

5 Years of AIRS Data Aid in Trending Global Climate Change



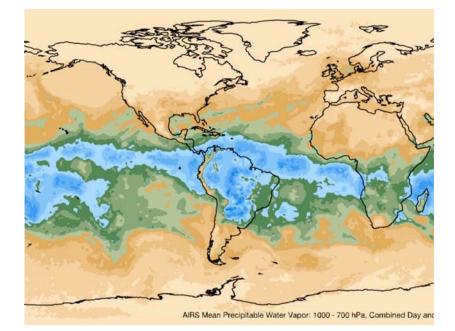


July 2004





July 2007


T. Pagano

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

JPL Participating in Facilitating use of GIS for Weather Science Applications

- Multi-sensor, multi-parameter, multi-dimensional analysis through Geographic Information Systems (GIS)
 - JPL, Univ. Redlands, ESRI collaboration
- Case study focus on Pacific Basin "warm conveyer belt"
 - Jan 2005 CA severe weather event
 - 40 inches of rain
 - La Conchita landslide
- Incorporate AIRS H2O Profiles, QuikSCAT Winds, GHRSST L4 SST (AMSR-E and AVHRR) and ground-based GPS (SCIGN)
 - Relate height resolved water vapor and surface winds to coastal rainfall

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Science and Validation Papers Since Last Science Team Meeting (1 of 3)

- Bhattacharjee, P.S., Prasad, A.K., Kafatos, M., Singh, R.P., Influence of a dust storm on carbon monoxide and water vapor over the Indo-Gangetic Plains, Journal of Geophysical Research Atmospheres, 2007, 112, D18, D18203
- Wang, L;, Cao, C; Ciren, P, Assessing NOAA-16 HIRS radiance accuracy using simultaneous nadir overpass observations from AIRS, Assessing NOAA-16 HIRS radiance accuracy using simultaneous nadir overpass observations from AIRS, J. Atmos.Ocean.Technol., 2007, 24, 9, 1546-1561
- John, V.O. and Soden, B. J., Temperature and humidity biases in global climate models and their impact on climate feeedbacks, Geophys.Res. Lett., 34, L18704, doi:10.1029/2007GL030429
- Monahan, K.P.; Pan, L.L.; McDonald, A. J.; Bodeker, G. E.; Wei, J.; George, S.E.; Barnet, C.D.; Maddy, E., Validation of AIRS v4 ozone profiles in the UTLS using ozonesondesd from lauder, NZ and Boulder, USA, Journal of Geophysical Research - Atmospheres, 2007, 112, D17, D17304
- Weisz, E.; Li, J.; Menzel, W.P.; Heidinger, A.K.; Kahn, B. H.; Liu, C.Y., Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievalsGeophys.Res.Lett., 2007, 34, 17, L17811
- Ho., S.P., Kuo, Y.H., Sokolovskiy, S, Improvement of the temperature and moisture retrievals in the lower troposphere using AIRS and GPS radio occultation measurements, J.Atmos.Ocean.Techol., 2007, 24, 10, 1726-1739
- Alexander, M.J., Teitelbaum, H., Observation and analysis of a large amplitude mountain wave event over the Antarctiv peninsula, J. Geophys. Res., 112, D121103, doi: 10.1029/2006JD008368
- Andersson, E., Holm, E., Bauer, P, Beljaars, A., Kelly, G.A., McNally, A.P., Simmons. A.J., Thepaut, J.N., Tompkins, A.M., Analysis and forecast of the main humidity observing systems, Quarterly journal of the royal meterorological Society (Q.J.R. Meteorol.Soc.) 2007, 133, 627, 1473-1485

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Science and Validation Papers Since Last Science Team Meeting (2 of 3)

- Yue, Q., Liou, K. N., Ou, S.C., Kahn, B., Yang, P., Mace, G.G., Interpretation of AIRS data in thin cirrus atmospheres based on a fast radiative transfer model, J.Atmos.Sci. 64, 3831-3846
- Li, Jun, Li, Jinlong, Weisz, Elizabeth, Zhou, Daniel K., Physical retrieval of surface emissivity spectrum from hyperspectral infrared radiances, Geophys.Res.Lett., 2007, 34, 16, 16812
- Prata, A.J., Bernardo, C., Retrieval of volcanic SO2 column abundance from atmsopheric infrared sounder data, Journal of Geophyhsical Research Atmosphers, 2007, 112, D20, D20204
- Liu, W.T., Xie, X., Ocean Atmoshere interaction over Agulhas Extension Meanders, Journal of Climate, Volume 20, 2007, DOI:10.1175/2007JCL1732.1
- Singh, D., Performance of the AQUA and NOAA-16 soundings over India, Current Science 93 (9): 1281-1287 Nov. 10, 2007
- Auligne, T., An objective approach to modelling biases in satellite radiances: Application to AIRS and AMSU-A, Q.J.R.Meteorol.Soc., 2007, 133, 628, 1789-1801
- Gettelman, A., Kinnison, D.E., The global impact of supersaturation in a coupled chemistry climate model, Atmospheric Chemistry & Physics, 2007, 7, 6, 1629-1643
- Shavrina, A.V., Pavlenko, Y.V., Veles, A., Syniavskyi, I., Kroon, M., Ozone Columns Obtained by Ground Based Remote Sesning in Kiev for Aur Ozone Measurement Intrument Validation, Journal of Geophysical Research Atmospheres, 2007, 112, D24, D24S45
- Huang, Y., Ramaswamy, V., Huang, X.L., Fu, Q., Bardeen, C., A strict test in climate modeling with spectrally resolved radiances: GCM simulation versus AIRS observtrions, Geophys.Res.Lett., 2007, 34, 24, L24707

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Science and Validation Papers Since Last Science Team Meeting (3 of 3)

- Read., W.G., Lambert, A., Bacmeister, J., etal, Aura Microwave Limb Sounder upper tropospheric and lower statospheric H20 and relative humidity with respect to ice validation, Journal of Geophysical Research Atmospheres, 2007, 112, D24, D24S35
- Zhou, Lihang, Goldberg, Mitchel, Barnet, Chris, Cheng, Zhahui, Sun, Fengying Wolf, Walter, King, Thomas, Liu, Xingpin, Sun, Haibing, Divarkala, Murty, Regression of surface spectral emissivity from hyperspectral instruments, IEEE Trans.Geosci.Remote.Sens., 2008, 46, 2, 328-333
- Eckerman, Stephen D., Ma, Jun, Wu, Dong, L., Broutman, Dave, A three dimensional mountain wave imaged in satellite radiance throughout the stratosphere: Evidence of the effects of directional wind shear, Q.J.R.Meteorol.Soc.2007, 133, 629, 1959-1975
- Heilliette, S., Garand, L., A practical approach for the assimilation of cloudy infrared radiances and its evaluation using AIRS simulated observations, Atmosphere-Ocean, 2007, 45, 4, 211-255
- Liu, X., Zhou, D.K., Lara, A., Smith, W. L., Mango, S.A., Case study of a principal component based radiative transfer forward model and retrieval algorithm using EAQUATE data, Q.J.R.Meteorol.Soc.2007, 133, 243-256
- Zhou, D.K., Smith, W.L., Cuomo, V., Taylor, J.P., Barnet, C.D., Di Girolamo, P., Pappalardo, G., Larar, A.M., Liu, X., Newman S.M., Lee, C., Mango, S.A., Retrieval validation during the European aqua thermodynamic experiment, Q.J.R.Meteorol.Soc., 2007, 133, 203-215
- Kahn, B.H., Liang, C.K., Eldering. A., Getteman, A., Yue, Q., Liou, K.N., Tropical thin cirrus and relative humidity observed by the Atmospheric Infrared Sounder, Atmos.Chem.Phys., 8, 1501-1518, 2008

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

On-Track for Version 6

<u>Task</u>

- Level 1C Climate Product (New)
 - Resampled to constant spectral grid to remove very small instrument artifacts with age
- Level 2
 - Retrieve Surface Emissivity
 - Improve Boundary Layer Sensitivity
 - Yield Improvement in Critical Areas
 - Initialization State and Error Estimation
 - RTA Improvement
 - Improve OLR computation
 - Cloud Retrieval Improvement
 - Retrieve Mid Tropospheric CO2
- Level 3
 - Reduce Sampling Bias Effects
- Validation Priorities
 - Validate all Version 5 Products

Person

Aumann /Elliott

Susskind/Hook Susskind

Strow Susskind Kahn Chahine

Granger/Fetzer

Fetzer

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

JPL Participating in CrIS and IASI Evaluation

- AIRS Successor is NPOESS CrIS and MetOp IASI
- NASA Sounder Product Evaluation and Test Element (PEATE) at JPL (NASA Science Processing)
- Goal is to continue climate products started on AIRS with CrIS and IASI
- AIRS Project hosted NASA NPP Sounder Science Team at October 2007 AIRS Science Team Meeting
- Several AIRS Science Team Members
 also on NPP Sounder Science Team
- Sounder Team actively comparing IASI and AIRS data
- Sounder Team Participating in CrIS
 TVAC Data Evaluation
- Next Meeting to also Host NPP Sounder Science Team (October 2008)

IASI

CrIS

IASI on MetOp 9:30 AM Orbit 12 km GSD, ±49° 236 kg, 210 W 1.72 m³, 1.5 Mbps CrIS on NPOESS 1:30 PM Orbit 14 km GSD, ±48.3° 3.9-15.4 μm 165 kg, 135 W, 0.5 m³, 1.5 Mbps

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Summary

- Instrument operations and calibration running smoothly
- Recovery from loss of AMSU channel 4 complete
- All AIRS Version 5 Data Available at the DAAC
- Validation of Version 5 a major priority for the next few months
- Over 25 science papers released since last science team meeting
- On-track for Version 6
- Preparing for Data Product Continuation with CrIS and IASI