A Breathless Introduction to Generalized Information Theory

Cliff Joslyn

Distributed Knowledge Systems and Modeling Team Mail Stop B265, LANL Los Alamos, NM 87545, USA joslyn@lanl.gov http://www.c3.lanl.gov/~joslyn

- Los Alamos

NATIONAL LABORATORY

> Modeling, Algorithms, and Informatics (CCS-3)

Los Alamos Workshop on
Novel Approaches to Uncertainty Quantification
February 28, 2002

ZOO OF AVAILABLE UQ FORMALISMS

Traditional:

- Set Theory
- Logic
- Probability Theory

More Novel:

- Interval Analysis
- Fuzzy Systems
- Fuzzy and Monotone Measures
- Dempster-Shafer Evidence Theory
- Random Sets and Intervals
- Possibility Theory
- Probability Bounds
- Rough Sets
- Imprecise Probabilities
- Probabilistic Robustness
- Info-Gap Theory

Cliff Joslyn, 2/28/2002

DEFER OBVIOUS CONTROVERSIES ...

- Why should I care, what's this good for, anyway?
- Isn't that just the same as probability?
- Why isn't probability good enough for you?
- Where do the numbers come from?
- Can you give me an example of where X does better than probability?
- Why do you use all those silly words like "fuzzy" and "belief"? Can you be serious? and Informatics CCS-3

"CLASSICAL" POINT OF DEPARTURE: SETS AND LOGIC

Set Theory: $A \subseteq \Omega, \chi_{A}: \Omega \mapsto\{0,1\}, \chi_{A}(\omega \in \Omega)=\left\{\begin{array}{cc}1 & \omega \in A \\ 0 & \omega \notin A\end{array}\right.$
Boolen Logic: $T(p) \in\{$ false, true $\}=\{0,1\}$
Isomorphism in Boolean Algebra:
Negation
\bar{A}
Disjunction $\quad p \vee q \quad A \cup B$
Conjunction $\quad p \wedge q \quad A \cap B$
Implication $\quad p \rightarrow q \quad A \subseteq B$

$$
A=\{x, z\} \subseteq \Omega
$$

wshop, p. 3
Cliff Joslyn, 2/28/2002

INTERVALS

- $I=\left[I_{l}, I_{u}\right] \subseteq \mathbb{R}$
- $\chi_{I}(x)= \begin{cases}1 & I_{l} \leq x \leq I_{u} \\ 0 & \text { otherwise }\end{cases}$
- $I_{1} * I_{2}, * \in\{+,-, \times, \div\}$, etc.
- Extension: $x+y=[x, x]+[y, y]$

Sets ~ Boolean Logic

Restriction to \mathcal{R}

$$
[1,2]+[1.5,3]=[2.5,5] \subseteq \mathbb{R}
$$

FUZZINESS

Fuzzy Sets: $\widetilde{A} \widetilde{\subseteq} \Omega, \mu_{\widetilde{A}}: \Omega \mapsto[0,1], \mu_{\widetilde{A}}(\omega)=\widetilde{A}(\omega) \in[0,1]$ is the "extent" or "degree" to which $\omega \in A$
Fuzzy Logic: $\widetilde{T}(p) \in[0,1]$

FUZZY OPERATIONS

\widetilde{A}	$\mu_{\widetilde{\widetilde{A}}}(\omega)=c(\widetilde{A}(\omega))$	(canonical example)
$\widetilde{A} \cup \widetilde{B}$	$\mu_{\widetilde{A} \cup \widetilde{B}}(\omega)=\widetilde{A}(\omega) \sqcup \widetilde{B}(\omega)$	$\mu_{\widetilde{A}}(\omega)=1-\widetilde{A}(\omega)=\widetilde{A}(\omega)=\widetilde{A}(\omega) \vee \widetilde{B}(\omega)$
$\widetilde{A} \cap \widetilde{B}$	$\mu_{\widetilde{A} \cap \widetilde{B}}(\omega)=\widetilde{A}(\omega) \sqcap \widetilde{B}(\omega)$	$\mu_{\widetilde{A} \cap \widetilde{B}}(\omega)=\widetilde{A}(\omega) \wedge \widetilde{B}(\omega)$
$\widetilde{A} \subseteq \widetilde{B}$	$\mu_{\widetilde{A} \subseteq \widetilde{B}}(\omega)=\widetilde{A}(\omega) \rightarrow \widetilde{B}(\omega)$	$\mu_{\widetilde{A} \subseteq \widetilde{B}}(\omega)=(1-\widetilde{A}(\omega)) \vee \widetilde{B}(\omega)$
$\bullet \vee \wedge$ are max and min		

- $c:[0,1] \mapsto[0,1]$ is a complement function

$$
c(0)=1, c(1)=0, x \leq y \rightarrow c(x) \geq c(y)
$$

- $\sqcap(\sqcup)$ is a triangular norm (conorm) (associative copulas/cocopula): $\sqcap, \sqcup:[0,1]^{2} \mapsto[0,1]$, associative, monotonic,

$$
\begin{aligned}
& 0 \sqcup x=x \sqcup 0=x, \quad 1 \sqcap x=x \sqcap 1=x \\
& \begin{array}{lll}
x \sqcap y & x \wedge y \geq x \times y & \geq 0 \vee(x+y-1) \\
x \sqcup y x \vee y \leq x+y-x y \leq 1 \wedge(x+y) & \leq\lceil x\rfloor y\rfloor \\
\lceil x\rceil\lceil y\rceil
\end{array}
\end{aligned}
$$

- Extension: When $\widetilde{A}, \widetilde{B}: \Omega \mapsto\{0,1\}$, then "crisp" set operations recovered

Modeling, Algorithms, and Informatics CCS-3

Cliff Joslyn, 2/28/2002

FUZZY QUANTITIES, NUMBERS AND INTERVALS

Fuzzy Quantity: Fuzzy subset of the line $\widetilde{I} \widetilde{\mathbb{R}}$
Fuzzy Interval: Also convex and normal
Fuzzy Number: Single-peaked
Fuzzy Interval Operations: $\widetilde{I} * \widetilde{J}$, etc.

Modeling, Algorithms, and Informatics CCS-3

FUZZY SETS AS GENERALIZED "DENSITIES" OR "DISTRIBUTIONS"

Fuzzy Quantity: $\widetilde{I} \widetilde{\subseteq} \mathbb{R}$
Probability Distribution: Fuzzy quantity where

$$
\int_{x \in \mathbb{R}} \mu_{\widetilde{I}}(x)=1
$$

Fuzzy Interval $=$ Possibility Distribution: Fuzzy quantity where

$$
\sup _{x \in \mathbb{R}} \mu_{\widetilde{I}}(x)=1
$$

Probability Distribution

Modeling, Algorithms, and Informatics CCS-3

GENERALIZED MEASURES

- From point functions to set functions
- Generalizes relation between probability density and probability measure
- Fuzzy Measure: $\nu: 2^{\Omega} \mapsto[0,1]$, where

$$
\nu(\emptyset)=0, \quad \nu(\Omega)=1, \quad A \subseteq B \rightarrow \nu(A) \leq \nu(B)
$$

- Trace as concept of density $\rho_{\nu}: \Omega \mapsto[0,1], \rho_{\nu}(\omega):=\nu(\{\omega\})$.
- Distributional or decomposable if $\exists \sqcup, \nu(A)=\bigsqcup_{\omega \in A} \rho_{\nu}(\omega)$.
- Normalization: $\bigsqcup_{\omega \in \Omega} \rho_{\nu}(\omega)=1$.
- A probability measure is a fuzzy measure $(A \subseteq B \rightarrow \operatorname{Pr}(A) \leq$ $\operatorname{Pr}(B))$ with an additional additive constraint:

$$
\begin{aligned}
& \operatorname{Pr}(A \cup B)-\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A)+\operatorname{Pr}(B) \\
& \rho_{\operatorname{Pr}}(\omega)=p(\omega)
\end{aligned}
$$

Pr is distributional for $\sqcup=+_{b}$ and Informatics CCS-3

DEMPSTER-SHAFER EVIDENCE THEORY

- Belief and plausibility as dual fuzzy measures:

$$
\begin{aligned}
& \operatorname{Bel}(A \cup B) \geq \operatorname{Bel}(A)+\operatorname{Bel}(B)-\operatorname{Bel}(A \cap B) \\
& \operatorname{Pl}(A \cap B) \leq \operatorname{Bel}(A)+\operatorname{Bel}(B)-\operatorname{Bel}(A \cup B) \\
& \operatorname{Bel}(A)+\operatorname{Bel}(\bar{A}) \leq 1, \quad \operatorname{Pl}(A)+\operatorname{Pl}(\bar{A}) \geq 1 \\
& \operatorname{Bel}(A)=1-\operatorname{Pl}(\bar{A}), \quad \operatorname{Pl}(A)=1-\operatorname{Bel}(\bar{A}) \\
& \operatorname{Bel}(A) \leq \operatorname{Pl}(A)
\end{aligned}
$$

- Codetermined by a basic probability assignment m: $2^{\Omega} \mapsto$ $[0,1]$ where $\sum_{A \subseteq \Omega} m(A)=1$:

$$
\begin{aligned}
& \operatorname{Bel}(A)=\sum_{B \subseteq A} m(B), \quad \mathrm{PI}(A)=\sum_{B \cap A \neq \emptyset} m(B) \\
& m(A)=\sum_{B \subseteq A}(-1)^{|A-B|} \operatorname{Bel}(B)=\sum_{B \subseteq A}(-1)^{|A-B|}(1-\mathrm{PI}(\bar{B}))
\end{aligned}
$$ and Informatics CCS-3

DEMPSTER-SHAFER EVIDENCE THEORY

Focal Set: $\mathcal{F}=\left\{A_{j} \subseteq \Omega: m\left(A_{j}\right)>0\right\}$
Body of Evidence: $\langle\mathcal{F}, m\rangle=\left\langle\left\{A_{j}\right\},\left\{m\left(A_{j}\right)\right\}\right\rangle$ Example:

$$
\begin{aligned}
& \mathcal{F}=\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\} \\
& m\left(A_{1}\right)=.1, m\left(A_{2}\right)=.2 \\
& m\left(A_{3}\right)=.3, m\left(A_{4}\right)=.4 \\
& \operatorname{Bel}(B)=\sum_{A_{j} \subseteq B} m\left(A_{j}\right) \\
& \\
& =m\left(A_{4}\right)=.4 \\
& \operatorname{PI}(B)=\sum_{A_{j} \cap \subseteq B} m\left(A_{j}\right) \\
& \quad=m\left(A_{2}\right)+m\left(A_{3}\right)+m\left(A_{4}\right) \\
& \quad=.2+.3+.4=.9
\end{aligned}
$$ and Informatics CCS-3

RANDOM VARIABLES, RANDOM SETS, AND BODIES OF EVIDENCE

- Transform a body of evidence: $\left\langle\left\{A_{j}\right\},\left\{m\left(A_{j}\right)\right\}\right\rangle=\left\{\left\langle A_{j}, m\left(A_{j}\right)\right\rangle\right\}$
- Recalling that $\sum_{A_{j}} m\left(A_{j}\right)=1$, then $m\left(A_{j}\right)$ sure looks like a density $p\left(A_{j}\right)$
- Random Variable: Given a probability space $\langle X, \Sigma, \operatorname{Pr}\rangle$, then $S: X \mapsto \Omega$ is a random variable if S is Pr-measurable: $\forall \omega \in$ $\Omega, \mathcal{S}^{-1}(\omega) \in \Sigma$.
- General Random Set: $\mathcal{S}: X \mapsto 2^{\Omega}-\{\emptyset\}$ is a random subset of Ω if \mathcal{S} is Pr-measurable: $\forall \emptyset \neq A \subseteq \Omega, \mathcal{S}^{-1}(A) \in \Sigma$. m acts as density of \mathcal{S}.
- Finite Random Set: $\mathcal{S}=\left\{\left\langle A_{j}, m\left(A_{j}\right)\right\rangle\right\}$.

$$
\begin{aligned}
& \operatorname{Pr}(\mathcal{S}=A)=m(A) \\
& \operatorname{Pr}(\mathcal{S} \subseteq A)=\operatorname{Bel}(A), \quad \operatorname{Pr}(\mathcal{S} \cap A \neq \emptyset)=\operatorname{PI}(A)
\end{aligned}
$$ and Informatics CCS-3

DECOMPOSABLE CASE: PROBABILITY MEASURES

- Assume \mathcal{F} is a disjoint class: $\forall A_{1}, A_{2} \in \mathcal{F}, A_{1} \cap A_{2}=\emptyset$.
- More particularly, $\mathcal{F}=\{\{\omega\}\}$.
- $\operatorname{Bel}(B)=\operatorname{PI}(B)=\operatorname{Pr}(B)$
- Probability distribution $p(\omega)=\operatorname{Pr}(\{\omega\}), \sqcup=+_{b}$:

$$
\operatorname{Pr}(A)=\sum_{\omega \in A} p(\omega), \quad \operatorname{Pr}(\Omega)=\sum_{\omega \in \Omega} p(\omega)=1
$$

- $\operatorname{Bel}(B)=\operatorname{PI}(B)=$ $\operatorname{Pr}(B)=.3+.4=.7$
- $\operatorname{Pr}(B \cup C)=\operatorname{Pr}(B)+$ $\operatorname{Pr}(C)-\operatorname{Pr}(B \cap C)=.9$

Modeling, Algorithms, and Informatics CCS-3

Cliff Joslyn, 2/28/2002

DECOMPOSABLE CASE: POSSIBILITY MEASURES

- Assume \mathcal{F} is a nested class: $\forall A_{1}, A_{2} \in \mathcal{F}, A_{1} \subseteq A_{2}$ or $A_{2} \subseteq A_{1}$
- PI becomes a possibility measure Π distributional for $\sqcup=\vee$:

$$
\Pi(B \cup C)=\Pi(B) \vee \Pi(C)
$$

- Dual necessity measure $\mathrm{Bel}=\eta$
- Possibility distribution $\pi(\omega)=\Pi(\{\omega\}), \sqcup=\vee$:

$$
\Pi(A)=\vee_{\omega \in A} \pi(\omega), \quad \Pi(\Omega)=\vee_{\omega \in \Omega} \pi(\omega)=1
$$

$$
\begin{aligned}
& \Pi(B \cup C)=\mathrm{PI}(B \cup C) \\
& \quad=.1+.2+.3=.6 \\
& \quad=\Pi(B) \vee \Pi(C)=.6 \vee .3
\end{aligned}
$$

 and Informatics CCS-3
wshop, p. 14
Cliff Joslyn, 2/28/2002

CLASSES OF MEASURE TRACES

Modeling, Algorithms, and Informatics CCS-3
wshop, p. 15
Cliff Joslyn, 2/28/2002

MEASURES AND DISTRIBUTIONS

wshop, p. 16
Cliff Joslyn, 2/28/2002

RANDOM INTERVALS

- $\mathcal{D}:=\{[a, b) \subseteq \mathbb{R}: a, b \in \mathbb{R}, a<b\}$.
- Random Interval: \mathcal{A}, is a random set on $\Omega=\mathbb{R}$ for which $\mathcal{F}(\mathcal{A})=\left\{I_{j}\right\} \subseteq \mathcal{D}$

PROBABILITY BOUNDS

- Cumulative Belief and Plausibility: $\mathrm{PL}, \mathrm{BEL}: \mathbb{R} \mapsto[0,1]$

$$
\operatorname{BEL}(x):=\operatorname{Bel}((-\infty, x)), \quad \operatorname{PL}(x):=\operatorname{PI}((-\infty, x)) .
$$

- Probability Bounds: (Ferson) $\mathcal{B}:=\langle\underline{B}, \bar{B}\rangle$, where $\underline{B}, \bar{B}: \mathbb{R} \mapsto$ $[0,1], \lim _{x \longrightarrow-\infty} B(x) \longrightarrow 0, \lim _{x \longrightarrow \infty} B(x) \longrightarrow 1$, and \underline{B}, \bar{B} are monotonic with $\underline{B} \leq \bar{B}$.

RANDOM INTERVALS TO PROBABILITY BOUNDS

- Given
a interval \mathcal{A}, then〈BEL, PL〉 is a PBound.
- Given a PBound \mathcal{B}, then $\bar{B}-\underline{B}=\rho_{\mathrm{PI}}$
- If a random interval \mathcal{A} is consonant, then $\bar{B}-\underline{B}=\pi$ is its possibility distribution
 and Informatics CCS-3

Cliff Joslyn, 2/28/2002

CURRENT PROBLEM

- Set of parameters $X=\left\{X_{i}\right\}$ with

$$
\mathbf{X}:=\underset{i}{\times} X_{i}
$$

- Unknown function $f: \mathbf{X} \mapsto \mathbf{Y}, f(\vec{x})=\vec{y}$
- Knowledge on \mathbf{X} characterized by a random interval structure: statistical collection of intervals \mathcal{A}_{i} on each X_{i}
- Induces global n-dimensional \mathcal{A} on X
- f induces an output random interval $f(\mathcal{A})$ on \mathbf{Y}
- What knowledge of $f(\mathcal{A})$ can be gained by samples of $f(\vec{x})$? and Informatics CCS-3

SAMPLING ESTIMATION OF RANDOM SET PROPAGATION

- Initially simplify to finite random sets
- Estimate $\mathrm{Pl}_{Y}(B)$ by $\widehat{\mathrm{Pl}}_{Y}(B):=\mathrm{Pl}_{X}\left(\widehat{f}^{-1}(S(B))\right)$

Modeling, Algorithms, and Informatics CCS-3
wshop, p. 21
Cliff Joslyn, 2/28/2002

BREATHE!

Thank you!

wshop, p. 22
Cliff Joslyn, 2/28/2002

