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ZOO OF AVAILABLE UQ FORMALISMS

Traditional:

• Set Theory

• Logic

• Probability Theory

More Novel:

• Interval Analysis

• Fuzzy Systems

• Fuzzy and Monotone Measures

• Dempster-Shafer Evidence Theory

• Random Sets and Intervals

• Possibility Theory

• Probability Bounds

• Rough Sets

• Imprecise Probabilities

• Probabilistic Robustness

• Info-Gap Theory
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DEFER OBVIOUS CONTROVERSIES . . .

• Why should I care, what’s this good for, anyway?

• Isn’t that just the same as probability?

• Why isn’t probability good enough for you?

• Where do the numbers come from?

• Can you give me an example of where X does better than

probability?

• Why do you use all those silly words like “fuzzy” and “be-

lief”? Can you be serious?
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“CLASSICAL” POINT OF DEPARTURE:
SETS AND LOGIC

Set Theory: A ⊆ Ω, χA:Ω �→ {0,1}, χA(ω ∈ Ω) =

{
1 ω ∈ A
0 ω �∈ A

Boolen Logic: T(p) ∈ {false, true} = {0,1}
Isomorphism in Boolean Algebra:

Negation ¬p A
Disjunction p ∨ q A ∪ B
Conjunction p ∧ q A ∩ B
Implication p → q A ⊆ B

1

ΩΩΩΩ

χχχχA(ωωωω)

x y z w

Boolen Logic Sets=

A = {x, z} ⊆ Ω
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INTERVALS

• I = [Il, Iu] ⊆ IR

• χI(x) =

{
1 Il ≤ x ≤ Iu

0 otherwise
• I1 ∗ I2, ∗ ∈ {+,−,×,÷}, etc.

• Extension: x + y = [x, x] + [y, y]

Sets ~ Boolean Logic

Intervals

Restriction to R

1 2 3 4 x

1

.5

χI(x)

5

[1,2] + [1.5,3] = [2.5,5] ⊆ IR
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FUZZINESS

Fuzzy Sets: Ã ⊆̃ Ω, µ
Ã
:Ω �→ [0,1], µ

Ã
(ω) = Ã(ω) ∈ [0,1] is the

“extent” or “degree” to which ω ∈ A

Fuzzy Logic: T̃(p) ∈ [0,1]

1

ΩΩΩΩ

µµµµA(ωωωω)

x y z w

Sets ~ Boolean Logic

Fuzzy Sets ~ Fuzzy Logic

To [0,1]
.5

Ã = {〈x, .5〉 , 〈z,1〉 , 〈w, .25〉} ⊆̃ Ω
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FUZZY OPERATIONS

(canonical example)

Ã µ
Ã
(ω) = c(Ã(ω)) µ

Ã
(ω) = 1 − Ã(ω)

Ã ∪ B̃ µ
Ã∪B̃

(ω) = Ã(ω) � B̃(ω) µ
Ã∪B̃

(ω) = Ã(ω) ∨ B̃(ω)

Ã ∩ B̃ µ
Ã∩B̃

(ω) = Ã(ω) � B̃(ω) µ
Ã∩B̃

(ω) = Ã(ω) ∧ B̃(ω)

Ã ⊆ B̃ µ
Ã⊆B̃

(ω) = Ã(ω) → B̃(ω) µ
Ã⊆B̃

(ω) = (1 − Ã(ω)) ∨ B̃(ω)

• ∨,∧ are max and min

• c: [0,1] �→ [0,1] is a complement function

c(0) = 1, c(1) = 0, x ≤ y → c(x) ≥ c(y)

• � (�) is a triangular norm (conorm) (associative copulas/co-

copula): �,�: [0,1]2 �→ [0,1], associative, monotonic,

0 � x = x � 0 = x, 1 � x = x � 1 = x
x � y x ∧ y ≥ x × y ≥ 0 ∨ (x + y − 1) ≥ �x��y�
x � y x ∨ y ≤ x + y − xy ≤ 1 ∧ (x + y) ≤ �x��y�

• Extension: When Ã, B̃:Ω �→ {0,1}, then “crisp” set opera-

tions recovered
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FUZZY QUANTITIES,
NUMBERS AND INTERVALS

Fuzzy Quantity: Fuzzy subset of the line Ĩ ⊆̃ IR

Fuzzy Interval: Also convex and normal

Fuzzy Number: Single-peaked

Fuzzy Interval Operations: Ĩ ∗ J̃, etc.
Fuzzy Sets

Fuzzy Quantities

Restriction to R

Fuzzy Intervals

Convex and Normal

1 2 3 4 x

1

.5

µI(x)

5 6
Intervals

{0,1}
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FUZZY SETS AS GENERALIZED
“DENSITIES” OR “DISTRIBUTIONS”

Fuzzy Quantity: Ĩ ⊆̃ IR

Probability Distribution: Fuzzy quantity where∫
x∈IR

µ
Ĩ
(x) = 1

Fuzzy Interval = Possibility Distribution: Fuzzy quantity where

sup
x∈IR

µ
Ĩ
(x) = 1

1 2 3 4 x

1

.5

µI(x)

1 2 3 4 x

1

.5

µI(x)
1 2 3 4 x

1

.5

µI(x)

Fuzzy Quantity

Fuzzy Interval Probability Distribution
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GENERALIZED MEASURES

• From point functions to set functions

• Generalizes relation between probability density and proba-

bility measure

• Fuzzy Measure: ν: 2Ω �→ [0,1], where

ν(∅) = 0, ν(Ω) = 1, A ⊆ B → ν(A) ≤ ν(B).

• Trace as concept of density ρν:Ω �→ [0,1], ρν(ω) := ν({ω}).
• Distributional or decomposable if ∃�, ν(A) =

⊔
ω∈A ρν(ω).

• Normalization:
⊔

ω∈Ω ρν(ω) = 1.

• A probability measure is a fuzzy measure (A ⊆ B → Pr(A) ≤
Pr(B)) with an additional additive constraint:

Pr(A ∪ B) − Pr(A ∩ B) = Pr(A) + Pr(B)

ρPr(ω) = p(ω)

Pr is distributional for � = +b
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DEMPSTER-SHAFER EVIDENCE THEORY

• Belief and plausibility as dual fuzzy measures:

Bel(A ∪ B) ≥ Bel(A) + Bel(B) − Bel(A ∩ B)

Pl(A ∩ B) ≤ Bel(A) + Bel(B) − Bel(A ∪ B)

Bel(A) + Bel(A) ≤ 1, Pl(A) + Pl(A) ≥ 1

Bel(A) = 1 − Pl(A), Pl(A) = 1 − Bel(A)

Bel(A) ≤ Pl(A)

• Codetermined by a basic probability assignment m: 2Ω �→
[0,1] where

∑
A⊆Ω m(A) = 1:

Bel(A) =
∑

B⊆A

m(B), Pl(A) =
∑

B∩A �=∅
m(B)

m(A) =
∑

B⊆A

(−1)|A−B|Bel(B) =
∑

B⊆A

(−1)|A−B|(1 − Pl(B))
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DEMPSTER-SHAFER EVIDENCE THEORY

Focal Set: F = {Aj ⊆ Ω : m(Aj) > 0}
Body of Evidence: 〈F , m〉 =

〈
{Aj}, {m(Aj)}

〉
Example:

F = {A1, A2, A3, A4}
m(A1) = .1, m(A2) = .2

m(A3) = .3, m(A4) = .4

Bel(B) =
∑

Aj⊆B

m(Aj)

= m(A4) = .4

Pl(B) =
∑

Aj∩⊆B

m(Aj)

= m(A2) + m(A3) + m(A4)

= .2 + .3 + .4 = .9

.1

.2

.3

.4

B
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RANDOM VARIABLES, RANDOM SETS,
AND BODIES OF EVIDENCE

• Transform a body of evidence:
〈
{Aj}, {m(Aj)}

〉
=

{〈
Aj, m(Aj)

〉}
• Recalling that

∑
Aj

m(Aj) = 1, then m(Aj) sure looks like a

density p(Aj)

• Random Variable: Given a probability space 〈X,Σ,Pr〉, then

S:X �→ Ω is a random variable if S is Pr-measurable: ∀ω ∈
Ω,S−1(ω) ∈ Σ.

• General Random Set: S:X �→ 2Ω − {∅} is a random subset

of Ω if S is Pr-measurable: ∀∅ �= A ⊆ Ω,S−1(A) ∈ Σ. m acts

as density of S.

• Finite Random Set: S =
{〈

Aj, m(Aj)
〉}

.

Pr(S = A) = m(A)

Pr(S ⊆ A) = Bel(A), Pr(S ∩ A �= ∅) = Pl(A)
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DECOMPOSABLE CASE:
PROBABILITY MEASURES

• Assume F is a disjoint class: ∀A1, A2 ∈ F , A1 ∩ A2 = ∅.
• More particularly, F = {{ω}}.
• Bel(B) = Pl(B) = Pr(B)

• Probability distribution p(ω) = Pr({ω}),� = +b:

Pr(A) =
∑

ω∈A

p(ω), Pr(Ω) =
∑

ω∈Ω

p(ω) = 1

• Bel(B) = Pl(B) =

Pr(B) = .3 + .4 = .7

• Pr(B ∪ C) = Pr(B) +

Pr(C) − Pr(B ∩ C) = .9

.3

B

.4

.2.1

C
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DECOMPOSABLE CASE:
POSSIBILITY MEASURES

• Assume F is a nested class: ∀A1, A2 ∈ F , A1 ⊆ A2 or A2 ⊆ A1

• Pl becomes a possibility measure Π distributional for � = ∨:

Π(B ∪ C) = Π(B) ∨ Π(C)

• Dual necessity measure Bel = η

• Possibility distribution π(ω) = Π({ω}),� = ∨:

Π(A) = ∨ω∈Aπ(ω), Π(Ω) = ∨ω∈Ωπ(ω) = 1

Π(B ∪ C) = Pl(B ∪ C)

= .1 + .2 + .3 = .6

= Π(B) ∨ Π(C) = .6 ∨ .3
.2

B

.1

.3.4 C
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CLASSES OF MEASURE TRACES

A      B      C      D     E

1.0

0.5

0.0

0.75

0.25

General Fuzzy

A      B       C      D      E

1.0

0.5

0.0

0.75

0.25

Probabilistic

A       B      C      D      E

1.0

0.5

0.0

0.75

0.25

Certain
(Deterministic)

A       B      C      D      E

1.0

0.5

0.0

0.75

0.25

Proper Possibilistic

A       B      C      D      E

1.0

0.5

0.0

0.75

0.25

Crisp Possibilistic
(Nondeterministic)

(Intervals)
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MEASURES AND DISTRIBUTIONS

Necessity

PlausibilityBelief

Possibility

Fuzzy Measures

Probability

�

Probability
Distributions

Possibility
Distributions

Fuzzy Sets

�
Certain

Distributions
on Points

Measures
on Subsets
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RANDOM INTERVALS

• D := {[a, b) ⊆ IR : a, b ∈ IR, a < b}.
• Random Interval: A, is a random set on Ω = IR for which

F(A) = {Ij} ⊆ D

1 2 3 4 x

m(Aj )

.1

.4

.2

.3

A1

A2

A3

A4
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PROBABILITY BOUNDS

• Cumulative Belief and Plausibility: PL,BEL: IR �→ [0,1]

BEL(x) := Bel((−∞, x)), PL(x) := Pl((−∞, x)).

• Probability Bounds: (Ferson) B :=
〈
B, B

〉
, where B, B: IR �→

[0,1], limx−→−∞ B(x) −→ 0, limx−→∞ B(x) −→ 1, and B, B

are monotonic with B ≤ B.
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RANDOM INTERVALS TO
PROBABILITY BOUNDS

• Given a random

interval A, then

〈BEL,PL〉 is a

PBound.

• Given a PBound B,

then B − B = ρPl

• If a random interval

A is consonant, then

B − B = π is its pos-

sibility distribution

1 2 3 4 x

m(Aj )

.2 A1

.4 A2

.1 A3

1

.5

.3 A4

BEL = B

PL = B
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CURRENT PROBLEM

• Set of parameters X = {Xi} with

X := ×
i

Xi

• Unknown function f :X �→ Y, f(�x) = �y

• Knowledge on X characterized by a random interval struc-

ture: statistical collection of intervals Ai on each Xi

• Induces global n-dimensional A on X

• f induces an output random interval f(A) on Y

• What knowledge of f(A) can be gained by samples of f(�x)?
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SAMPLING ESTIMATION OF
RANDOM SET PROPAGATION

• Initially simplify to finite random sets

• Estimate PlY (B) by P̂lY (B) := PlX(f̂−1(S(B)))
mX(A1) = .4

mX(A2) = .6

B1 = f(A1)
mY(B1) = .4

B2 = f(A2)
mY(B2) = .6

f(A1) = B1

f(A2) = B2

<x1,y1> = <x1,f(x1)>
y1 = f(x1)

S(B)

B

f-1(S(B))^

X Y
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BREATHE!

Thank you!
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