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Abstract 
 

Random set theory provides a convenient mechanism for 
representing uncertain knowledge, including probabilistic 
and set-based information, and extending it through 
functional relationships. Where the available information 
is in terms of lower and upper bounds on a set of 
probability measures  these bounds will not necessarily 
correspond respectively to belief and plausibility 
functions. In this case when a random set cannot be 
obtained from the Möbius inversion we propose an 
Iterative Rescaling Method for constructing a random set 
with corresponding belief and plausibility functions that 
are a close outer approximation to the lower and upper 
probability distributions. In situations where information 
about an uncertain input parameter comes from more 
than one source, approaches to information fusion based 
on averaging, Dempster’s rule of combination and a set 
union version of Dempster’s rule are discussed.  
 
Keywords. Random set theory, belief and plausibility 
functions, Möbius inversion, Iterative Rescaling Method 

1 Random sets 

Random set theory provides a general mechanism for 
handling interval-based measurements, fuzzy sets and 
discrete probability distributions. Following Dubois and 
Prade (1990, 1991), a finite support random set on a 
universal set X is a pair (ℑ, m) and a mass assignment is 
a mapping 

m : ℑ → [0,1]  (1) 

such that m(Ø) = 0 and  

∑
ℑ∈

=
A

Am 1)(  (2) 

Each set A∈ℑ contains the possible values of a variable 
x∈X, and m(A) can be viewed as the probability that x∈A 
but does not belong to any special subset of A. Given a 

random set (ℑ, m), a belief function Bel (Shafer, 1976) 
can be defined as the following set function  

∀A∈X, ∑
⊆

=
AB

BmABel )()(  (3) 

and its dual plausibility function Pl(A) is defined by  

∀A∈X, Pl(A) = )(1 ABel−  (4) 

Bel(A) can be viewed as the lower bound on a family of 
probability measures and Pl(A) as the upper bound, 
although the converse is not true, i.e. upper and lower 
probability functions are more general than belief and 
plausibility functions. When ℑ contains only singletons 
Bel = Pl is a probability measure (with finite support).  
 
When ℑ is a nested family A1 ⊂  A2 ⊂… ⊂ An then Bel is a 
necessity measure ? and Pl is a possibility measure p 
(Zadeh 1978), and the random set is said to be 
consonant. A fuzzy set F can be defined from any 
random set (ℑ, m) as follows: 

∀x, })({})({)()( xxPlAmx
Ax

F πµ === ∑
⊆

 (5) 

where µF is the fuzzy membership in F. 

2 Extending random sets through 
functional relations  

Let g be a mapping X1×…×Xn→Y. Let x1,…xn be 
variables whose values are incompletely known. The 
question dealt with in the Challenge Problems of 
Oberkampf et al. (2001) is to find the range of the 
variable y = g(x) : x = (x1,…xn), and, where sufficient 
information exists to do so, a probability distribution 
over the range of y, from the available information 
restricting the values of x1,…xn. In the Challenge 
Problems each of the variables is specified as being 
independent, but we first address the general case, where 
the dependency between (x1,…xn) can be expressed as a 
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random relation R, which is a random set (ℜ, ρ) on the 
Cartesian product X1×…×Xn, in which case the range of y 
is the random set (ℑ, m) such that:  

ℑ = {y(Ri) | Ri ∈ ℜ},     y (Ri) = {y (x) | x ∈  Ri} (6a) 

m(A ) = ∑
= )(

)(
iRyA

iRρ  (6b) 

Special cases of Equations (6) for (i) set-valued variables 
(ii) consonant random Cartesian products (iii) 
stochastically decomposable Cartesian products and (iv) 
joint probability distributions, were addressed by Dubois 
and Prade (1991). In the case of consonant random sets 
the extension principle for fuzzy sets applies (Zadeh, 
1975) and the image of the random relation R can be 
constructed from the images of the level cuts of R.  
 
In general Equations (6) involve calculating the image of 
each focal element Ri ∈ ℜ, by applying twice the 
techniques of global optimisation. If the focal elements 
of Ri are compact sets and g is a continuous function 

g(Ri) = [li,ui] (7) 

where 

)(min xgl
iRx

i
∈

=  (8) 

)(max xgu
iRx

i
∈

=  (9) 

When each parameter xi is specified by a marginal 
random set, whose focal elements are each an interval [li, 
ui], then methods of interval analysis (More 1966) are 
applicable.  
 
Under certain special conditions the Vertex method 
(Dong and Shah 1987) applies and can be used to greatly 
reduce computational expense. Suppose each focal 
element Ri of the random relation (ℜ, ρ) is a p-
dimensional box, whose 2n vertices are indicated as vj, j = 
1,…, 2n. If y = g(x) is continuous in  Ri and also no 
extreme points exist in this region (including its 
boundaries), then 

g(Ri) = 
}]2,...1:)({max

},2,...1:)({min[
n

j
j

n
jj

jvg

jvg

=

=
 (10) 

Thus function f has to evaluated 2n times for each focal 
element Ri. This computational burden can be further 
reduced if g is continuous, its partial derivatives are 
continuous and if g is a strictly monotonic function with 
respect to each parameter xi, in which case 

∃!vj : g(vj) = }2,...1:)({min n
j

j
jvg =  (11) 

∃!vk : g(vk) = }2,...1:)({max n
kk

kvg =  (12) 

and vj and vk can be identified merely by consideration of 
the direction of increase of g. Thus g has to be calculated 
only twice for each focal element Ri (Tonon et al . 2000). 

3 Random set approximations to lower and 
upper probability distributions  

Consider the distribution of a continuous random 
variable x. By definition  

Pr(x∈A) = ∫
A

dxxf ),( a  (13) 

where f is a probability density function and a is a vector 
of parameters of f, a = [a1, a2,…, an]. The cumulative 
distribution function F(x) is  

F(x) = Pr(x = x) = ∫
∞−

x

dttf ),( a  (14) 

Definition 1: If each parameter ai in a is specified by a 
closed interval [li, ui] then a is constrained by an n-
dimensional box Q. We define the lower probability 
P∗ (A) as the capacity functional 

P∗ (A) ∫∈
=

A
Q

dxxf ),(inf a
a

,    ∀A ∈ P(X) (15) 

where P(X ) is the power set of X. The upper probability 
P∗ (A) is  

P∗ (A) ∫
∈

=
A

Q
dxxf ),(sup a

a
,    ∀A ∈ P(X) (16) 

P∗ ( A ) and P∗ (A) will be located at the same value of a, 
so P∗( A ) = 1 - P∗ (A) and it suffices to consider lower 
probabilities. The capacity P∗(A) as defined by Equation 
(15) is not necessarily a belief function.  
 
Lemma 1: (see Shafer 1976 for proof) Suppose X is a 
finite set and r and s are functions on the power set P(X), 
then  

∑
⊆

=
AB

BsAr )()(  (17) 

for all A ⊂ X if and only if  

∑
⊆

−−=
AB

BA BrAs )()1()( || . (18) 

where |A-B| denotes the cardinality of the set A-B i.e. 
|| BA ∩ . Equation (18) is referred to as the Möbius 

inversion. Observing that Equation (17) is equivalent to 
the definition of a belief function Bel from a mass 
assignment m (Equation (3)), Shafer (1976) proposed the 
use of the Möbius inversion as a general mechanism for 
reconstructing m from Bel i.e. 
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∑
⊆

∩−=
AB

BA BBelAm )()1()( ||  (19) 

Lemma 2: Suppose that r is  an unknown function on 
P(X ) i.e. not necessarily a belief function, if the function 
s generated from Equation (18) conforms to the axioms 
of a mass assignment i.e.  

1)( =∑
⊆ XA

As  (20) 

and 

s(A) ≥ 0, ∀A⊆X (21) 

(and s(Ø) is automatically equal to zero ), then s is a mass 
assignment m and r is a belief function Bel.  
 
Lemma 2 provides a mechanism for establishing whether 
the capacity functional P∗ defined by Equation (15) is a 
belief function. If application of Equation (15) does not 
yield a mass assignment then P∗ is not a belief function.  
 
Example 1: Consider the following example in which X  
= {a, b, c} and  

P∗ ({a}) = 0 P∗({a}) = 0.6 
P∗ ({b}) = 0 P∗({b}) = 0.6 
P∗ ({c}) = 0 P∗({c}) = 0.6 
P∗ ({a,b}) = 0.4 P∗({a,b}) = 1 
P∗ ({a,c}) = 0.4 P∗({a,c}) = 1 
P∗ ({b,c}) = 0.4 P∗({b,c}) = 1 

 
Notice that the sets of constraints are consistent since 
they are, for example, satisfied by the probability 
distribution P({a}) = 0.4, P ({b}) = 0.4, P({c}) = 0.2. 
Applying the Möbius inversion to the singletons gives 
m({a }) = m({b}) = m({c}) = 0. Next considering sets 
with cardinality 2 we obtain m({a,b }) = 0.4, m({a,c }) = 
0.4 and m({b,c }) = 0.4, giving a sum greater than 1, so 
the condition in Equation (20) has been violated. If the 
Möbius inversion is applied at cardinality 3 a negative 
mass m({a,b ,c}) = -0.2 is obtained.  
 
In order to use Equations (6) for projecting uncertainty 
through some function g we require a mechanism for 
constructing a random set that is consistent with the 
probability bounds in Equations (15) and (16). In other 
words, we require a belief function that approximates P∗ 
from below such that Bel(A) = P∗ (A) ∀A∈X . It would 
also be desirable if the constraints generated by this 
belief measure and its associated plausibility measure 
where as close as possible to the original upper and lower 
probabilities. In the sequel we adopt the following 
measure of accuracy E for a belief function Bel 
approximating P∗ :  

( )∑
⊆

−=
XA

X
ABelAPBelE )()(

2

1
)( *  (22) 

In the case that we have coherent upper and lower 
probabilities then this measure has the pleasant property 
that 

( )

( ) ( )∑∑

∑

⊆⊆

⊆

−=+−−=

−=

XA
X

XA
X

XA
X

APAPlAPlAP

ABelAPBelE

)()(
2

1
)(1)(1

2

1

)()(
2

1
)(

**

*

( )∑
⊆

−=
XA

X
APAPl )()(

2

1 *  (23) 

Notice that for Example 1 any belief function consistent 
with *P  must have a mass assignment of the following 
form: 
 
 
 
 
 
subject to 4.0,, ≤zyx  and 1≤++ zyx . In this case the 
error associated with any consistent belief function is 
given by:  

( ) ( ) ( ) ( )( )

( )( )zyx

zyxBelE

++−=

−+−+−=

2.1
8
1

4.04.04.0
8
1

 (24) 

and this is clearly minimal for any mass assignment such 
that 1=++ zyx giving a value of 0.025. 
 
We now propose an algorithm based on a simple 
heuristic search for finding a good approximating belief 
function (on the basis of E) for *P . 
 
Algorithm: Iterative Rescaling Method (IRM) 
Order the subsets of X according to increasing cardinality 
and arbitrarily for subsets with the same cardinality. 
Specifically, suppose  

F = P(X)-{∅} = {Ai|i = 1,…, 2|X |-1}  

are ordered such that if i = j then |Ai| = |Aj|. 
 
1. For Ai evaluate ∑

⊂∈

−=
iABB

ii BmAPAm
:

* )()()(
F

 

2. If m(Ai) ≥ 0 then: 
  Let i = i+1 and goto 3 
 Else: 

For all B⊂Ai determine the largest value of k < |Ai| 
for which  

)()( * j
kBAB

APBm
j

≤∑
≤⊂ :

.  

For all B⊂Ai with |B | = k  leave m(B) unchanged. 
For all B⊂Ai with |B | > k   rescale m(B) according 
to 

{ }( ) { }( ) { }( )
{ }( ) { }( ) { }( )
{ }( ) zyxcbam

zcbmycamxbam
cmbmam

−−−=

===
===

1,,

,,,,,
0
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 −

=
∑

∑

>⊂

≤⊂

kBAB

kBAB
i

j

j

Bm

BmAP

BmBm

:

:

)(

)()(

)()(
*

. (25) 

Set m(Ai) = 0, let i = i+1 and goto 3 
 

3. If i > 2|X| - 1 then:  
Terminate 

Else: 
Goto 1 

It is natural to think of the IRM algorithm as being 
implemented in stages where for each stage masses are 
calculated according to the Möbius inversion until a 
negative mass occurs. At this point the relevant subsets 
are rescaled and the algorithm continues in the next stage 
until the next negative value is encountered. The 
following table illustrates the IRM algorithm for the 
constraints given in Example 1: 
 

Table 1 :IRM applied to Example 1 

Möbius inversion Random set from IRM  
m({a}) = 0 m({a }) = 0 
m({b}) = 0 m({b }) = 0 
m({c}) = 0 m({c}) = 0 

m({a,b}) = 0.4 m({a,b }) = 1/3 
m({a,c}) = 0.4 m({a,c}) = 1/3 
m({b,c}) = 0.4 m({b,c}) = 1/3 

m({a,b,c}) = -0.2 
rescale factor = 1/1.2 

m({a,b,c}) = 0 

 
Given the argument presented earlier we see that in this 
case IRM provides a belief function minimising E. 
 
Theorem 1 : The IRM algorithm results in a belief 
function Bel such that ∀A ⊆  X Bel(A) = P∗ (A)  
 
Proof: (Note: In the following proof we shall abuse 
notation slightly and use Bel(Ai) to denote ∑

⊆ jAB
jAm )(  

even thought for intermediate stages of the IRM 
algorithm the latter may not formally correspond to a 
belief value.) 
 
First note that for any m(Ai) < 0 the rescaling factor 

[ ]1,0)()()(* ∈













− ∑∑

>⊂≤⊂ kBABkBAB
i

jj

BmBmAP
::

 

since by definition  

∑
≤⊂

≥
kBAB

i

j

BmAP
:

)()(*  and ∑
⊂

≤
jAB

i BmAP )()(* . 

 

Suppose the IRM algorithm requires v rescalings at 

kii AA ,,
1

L where 121 21 −≤≤≤≤≤ X
viii L . Then we 

prove the result by induction on rescalings. 

 
Initial Case For rescaling 1 we have that ∀j < i1 m(Aj) 
currently has value ∑

⊂

−
jAB

j BmAP )()(* so that Bel(Aj) = 

P∗ (Aj). Since the rescaling factor is always in [0,1] then 
rescaling 1 has the effect that ∀j < i1 m(Aj) either 
decreases or remains unchanged and hence ∀j < i1 
Bel(Aj) = P∗ (Aj) after rescaling. Furthermore, )(

1i
Am  is 

set to zero and the masses of the subsets of 
1iA are 

rescaled such that )()(
11 * ii APABel = . Hence, after 

rescaling 1 it holds that ∀j < i1 Bel(Aj) = P∗ (Aj). 
 
Inductive Step Suppose that after rescaling t it holds that 
∀j < it Bel(Aj) = P∗ (Aj) then after rescaling t+1 ∀j < it 
m(Aj) either decreases or remains unchanged and hence 
by the inductive hypothesis ∀j < it Bel(Aj) = P∗ (Aj). 
 
∀j ∈ (it, it+1) m(Aj) is unaffected by rescaling t. Before 

rescaling t+1 m(Aj) is set to ∑
⊂

−
jAB

j BmAP )()(*  so that 

Bel(Aj) = P∗ (Aj). Therefore, after rescaling t+1 ∀j ∈ (it, 
it+1) Bel(Aj) = P∗(Aj) since the  scaling factor is in [0,1].  
Furthermore, after rescaling t+1 )()(

11 * ++
=

tt ii APABel  and 

therefore ∀j = it+1 Bel(Aj) = P∗(Aj) as required.� 
 
In order to apply the IRM algorithm to constructing a 
random set we discretise X by sampling it over a grid in 
order to obtain a discrete random set. Suppose that X is a 
finite interval [xl, xr]. A σ-algebra B can be defined on X 
by partitioning [xl, xr] into s disjoint sub-intervals: [xl, 
x2], (x2, x3],…, (xs-1, xs], (xs, xr], according to the desired 
(or feasible) accuracy. B is therefore a family of 2s sets. 
If P∗ and P∗ are continuous distributions, then the 
random set on B will be a discrete approximation, and 
the accuracy of this approximation will increase with 
increasing granularity in the definition of the partition. 
However, in practice the error in the IRM is found to 
increase slowly with the number of sets in B, so an 
optimal partition will balance the effect of these two 
approximations.  
 
In order to illustrate the proposed approach a rather 
coarse partition has been applied to the interval 
[0.1,20.0], as shown in Table 2. The upper and lower 
probability distribution on the space corresponds to the 
family of lognormal distributions: lnx ~ N(µ,σ) with the 
value of the mean µ and standard deviation σ given by 
closed intervals. The set bounds have been chosen so that 
even though x is on [0,∞], more than 0.9999 of the total 
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probability mass is contained within these bounds and 
the results are accurate to the quoted precision.  
 

Table 2 Partition of the space of X in Example 2 

Set Bounds 
{a} [0.15, 1.3] 
{b} (1.3,2.0] 
{c} (2.0,3.0] 
{d} (3.0,18.0] 

 
Example 2: Table 3 presents the results where µ ∈ 
[0.6,0.8] and σ ∈ [0.4,0.5]. In this case m(Ai) was first 
less than zero when |Ai| = 3 and rescaling was then 
applied four times to subsets of cardinality 2. For this 
example the error is E(Bel) = 0.0136. For problems of the 
size shown here the error function can be minimised 
using an optimisation method, and the result of such an 
optimisation is given in the column labelled mopt, which 
gives a belief function with an error of 0.0131. Naturally, 
global optimisation is only practical for small scale 
problems, but for this example the error from IRM is 
reassuringly close to the minimum error.  
 
For finer partitions it becomes impractical to write down 
the mass assignment and corresponding belief and 
plausibility functions. However, they can be partially 
visualised by plotting the cumulative belief and 
plausibility functions  as defined below. The remainder of 
figures in this paper adopt this format.  
 

Definition 2: Suppose that X is partitioned into s disjoint 
sub-intervals [x1, x2], (x2,x3],…, (xs-1,xs], (xs, xs+1], and 
members of the corresponding power set are labelled Xi,j, 
i = 1,…,s, j = 2,…, s+1, i>j, according to the left and right 
hand bounds xi and xj. Note that this notation does not 
result in a unique label for every set in P(X ) but is 
sufficient for the following definitions. We define the 
cumulative belief CBel(x ) at some point x in [x1, xs] as  

CBel(x) = ∑
≥ jxx

jiXm )( ,  (26) 

and the cumulative plausibility CPl(x ) is defined as 

CPl(x) = ∑
≥ ixx

jiXm )( ,  (27) 

The lower and upper cumulative probability distribution 
functions, F∗ (x) and F∗ (x) respectively, have the 
conventional definitions i.e.  

F∗ (x) ∫
∞−

∈
=

x

Q
dttf ),(inf a

a
 (28) 

and  

F∗ (x) ∫
∞−

∈
=

x

Q
dttf ),(sup a

a
 (29) 

Cumulative lower and upper probability distributions and 
the corresponding bounding cumulative belief and 
plausibility functions for a partition of 10 intervals are 
illustrated in Figure 1. In this case IRM gives and error 
E(Bel) = 0.0260. The computational expense of problems 
on this scale can be reduced by applying the fast Möbius 
inversion of Thoma (1991). 

 

Table 3 IRM random set approximation to upper and lower probability distribution (Example 2) 

Set P∗ P∗  Stage 1 Stage 2 Stage 3 Stage 4 m Bel Pl mopt 
{a} 0.0895 0.2498 0.0895 0.0895 0.0895 0.0895 0.0895 0.0895 0.2498 0.0895 
{b} 0.2743 0.3928 0.2743 0.2743 0.2743 0.2743 0.2743 0.2743 0.3989 0.2743 
{c} 0.2668 0.3776 0.2668 0.2668 0.2668 0.2668 0.2668 0.2668 0.3967 0.2668 
{d} 0.1063 0.2752 0.1063 0.1063 0.1063 0.1063 0.1063 0.1063 0.2893 0.1063 

{a, b} 0.3947 0.5921 0.0310 0.0174 0.0120 0.0120 0.0120 0.3757 0.6009 0.0189 
{a, c} 0.4506 0.5165 0.0943 0.0530 0.0530 0.0488 0.0488 0.4051 0.5619 0.0240 
{a, d} 0.2959 0.4163 0.1001 0.1001 0.0692 0.0638 0.0638 0.2595 0.4396 0.0513 
{b, c} 0.5837 0.7041 0.0427 0.0240 0.0240 0.0240 0.0194 0.5604 0.7405 0.0106 
{b, d} 0.4835 0.5494 0.1029 0.1029 0.0711 0.0711 0.0575 0.4381 0.5949 0.0608 
{c, d} 0.4079 0.6053 0.0349 0.0349 0.0349 0.0321 0.0260 0.3991 0.6243 0.0313 

{a, b, c} 0.7248 0.8937 -0.0736 0.0000 0.0000 0.0000 0.0000 0.7107 0.8937 0.0000 
{a, b, d} 0.6224 0.7332 0.0000 -0.0681 0.0000 0.0000 0.0000 0.6033 0.7332 0.0212 
{a, c, d} 0.6072 0.7257 0.0000 0.0000 -0.0123 0.0000 0.0000 0.6011 0.7257 0.0380 
{b, c, d} 0.7502 0.9105 0.0000 0.0000 0.0000 -0.0243 0.0000 0.7502 0.9105 0.0000 

{a, b, c, d} 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0357 1.0000 1.0000 0.0069 
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Table 4 IRM random set approximation to upper and lower probability distribution (Example 3) 

Set P∗  P∗  Stage 1 Stage 2 Stage 3 m Bel Pl 
{a} 0.0000 0.9478 0.0000 0.0000 0.0000 0.0000 0.0000 0.9478 
{b} 0.0011 0.9688 0.0011 0.0011 0.0011 0.0011 0.0011 0.9688 
{c} 0.0000 0.9574 0.0000 0.0000 0.0000 0.0000 0.0000 0.9760 
{d} 0.0000 0.4218 0.0000 0.0000 0.0000 0.0000 0.0000 0.4448 

{a, b} 0.0011 1.0000 0.0000 0.0000 0.0000 0.0000 0.0011 1.0000 
{a, c} 0.0312 0.9574 0.0312 0.0312 0.0312 0.0312 0.0312 0.9760 
{a, d} 0.0000 0.9478 0.0000 0.0000 0.0000 0.0000 0.0000 0.9707 
{b, c} 0.0522 1.0000 0.0512 0.0512 0.0512 0.0282 0.0293 1.0000 
{b, d} 0.0426 0.9688 0.0416 0.0415 0.0415 0.0229 0.0240 0.9688 
{c, d} 0.0000 0.9989 0.0000 0.0000 0.0000 0.0000 0.0000 0.9989 

{a, b, c} 0.5782 1.0000 0.4947 0.4947 0.4947 0.4947 0.5552 1.0000 
{a, b, d} 0.0426 1.0000 -0.0000 0.0000 0.0000 0.0000 0.0240 1.0000 
{a, c, d} 0.0312 0.9989 0.0000 -0.0000 0.0000 0.0000 0.0312 0.9989 
{b, c, d} 0.0522 1.0000 0.0000 0.0000 -0.0415 0.0000 0.0522 1.0000 

{a, b, c, d} 0.9999 1.0000 0.0000 0.0000 0.0000 0.4217 0.9999 1.0000 
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Figure 1 P∗  and P∗  for lognormal distributions with µ ∈ 

[0.6,0.8] and σ ∈ [0.4,0.5] and bounding belief and 
plausibility functions obtained from IRM 

 
Example 3: Table 4 presents the results where µ ∈ [0.1, 
1.0] and σ ∈ [0.1, 0.5]. Here the error given by the IRM 
belief function is E(Bel)= 0.0052.  

4 Combining information from different 
sources 

If more than one source of information is available 
relating to some uncertain parameter xi a mechanism is 
required to combine the various sources. The two most 
common approaches for constructing a random set from 
various sources are (i) averaging and (ii) Dempster’s rule 
of combination. The set union version of Dempster’s rule 
of combination provides a third alternative.  

4.1  Averaging  

Suppose there are n alternative random sets describing 
some variable x , each one corresponding to an 
independent source of information. One interpretation of 
the situation is to suppose that only one of the sources of 
information is correct, so, in the absence of any 
information about which source is true, an unbiased 
combination of the n random sets should be adopted. For 
each focal element A∈P(X ) 

m(A ) = ∑
=

n

i
i Am

n 1

)(
1

 (30) 

Baldwin et al. (1995) use an analogous approach, which 
they refer to as a ‘voting model’, for the construction of 
fuzzy sets by assimilating multiple sources of 
information to which a consonance condition is applied.  
 
In the case when each of n sources of information is a 
single but in each case different set A1, A2,…, An, then the 
averaging treats each of these sets as a focal element and 
assigns a mass of 1/n to each Ai of these focal elements. 
If the sets are nested then the resulting random set will be 
consonant.  
 
In the case when the unknown parameters are specified 
as n lower and upper probability distributions then to 
combine the various items of evidence involves first 
finding a random set (ℑi, mi) : i = 1,…,n with 
corresponding belief and plausibility distributions that 
bound the lower and upper probability distributions, 
using the IRM, and then obtaining a merged random set 
(ℑ, m) such that  
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ℑ = U
i

iℑ  (31) 

and m(A) ∀ A∈ℑ  is obtained from Equation 30.  

Example 4 : Suppose that a parameter b corresponds to 
lognormal distributions ln b ~ N(µ,σ) with the mean µ 
and standard deviation σ specified, respectively, by 
closed intervals M = [µ1, µ2] and S = [σ1, σ2] where the 
three information sources are as follows (Challenge 
Problem 5a) 
 
M1 = [0.6, 0.8], M2 = [0.2, 0.9], M3 = [0.0, 1.0] 
S1 = [0.3, 0.4], S2 = [0.2, 0.45], S3 = [0.1, 0.5] 
 
In Figure 2 the three lower and upper cumulative  
probability distributions are plotted, together with the 
cumulative belief and plausibility distributions 
corresponding to the combined random set obtained by 
averaging. In this example the IRM generated errors 
E(Bel1) = 0.0222, E(Bel2) = 0.0398, E(Bel3) = 0.0083. 
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Figure 2 Belief and plausibility distributions 

corresponding to combined lower and upper probability 
distributions from averaging 

4.2 Dempster’s rule of combination 

Dempster’s rule (Shafer 1976) is a well-known 
mechanism for fusing evidence from different 
independent sources. Dempster’s rule is thought of as 
being applicable to the situation where each information 
source provides some imprecise yet correct and 
consistent information about an unknown quantity or 
proposition. Suppose there are two items of evidence 
expressed as two mass assignments m1 and m2 on P(X) 

K

CmBm
Am ACB

−
=

∑
=∩

1

)().(
)(

21

2,1  (32) 

for A ≠  0, where  

∑
∅=∩

=
CB

CmBmK )().( 21  (33) 

and m1,2(Ø)=0. 
 
Example 5: Dempster’s rule has been applied to the 
same problem as Example 4 (Challenge Problem 5a ). 
The cumulative belief and plausibility distributions 
corresponding to the combined random set are illustrated 
in Figure 3.  
 
In the case when each of n sources of information is a 
single, but in each case different, set A1, A2,…, An, then 
Dempster’s rule of combination will result in a mass of 
unity being applied to the intersection A1∩A2∩…∩An, 
provided A1∩A2∩…∩An ≠  0. When A1∩A2∩…∩An ≠  0 
then no combination is defined.  
 
Dempster’s rule has been criticised from generating 
counter-intuitive results in situations where the 
information to be combined is not consistent (Zadeh 
1986, Walley 1991). These situations do not correspond 
with the semantic description given above of the 
situations to which the rule is applicable, so the counter-
intuitive results are unsurprising. In situations of 
significant inconsistency or conflict, averaging or the set 
union version of Dempster’s rule of combination is more 
applicable.  
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Figure 3 Bounds on three cumulative probability 
distributions and the combined distribution from the 

Dempster’s rule of combination (Example 5) 

4.3  Set union version of Dempster’s rule of 
combination 

Suppose there are two items of evidence expressed as 
two mass assignments m1 and m2 on P(X), then the set 
union version of Dempster’s rule of combination is  

∑
=∪

=
ACB

CmBmAm )().()( 212,1  (34) 
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In this case the combination of evidence is consistent 
with the belief that one or other (or both) of the experts 
are correct. This is in contrast to Dempster’s Rule where, 
up to inconsistency, it is assumed that both experts are 
correct. 
 
In the case when each of n sources of information is a 
single, but in each case different, set A1, A2,…, An, then 
the set union version of Dempster’s rule of combination 
will result in a mass of unity being applied to the union 
A1∪A2∪…∪An, which is clearly also applicable in 
situations of conflicting evidence.  
 
Example 6: The set union version of Dempster’s rule has 
been applied to the same problem as Example 4 
(Challenge Problem 5a). The cumulative belief and 
plausibility distributions corresponding to the combined 
random set are illustrated in  Figure 4.  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8
Parameter b

Lo
w

er
 a

nd
 u

pp
er

 c
um

ul
at

iv
e 

pr
ob

ab
ili

tie
s 

fr
om

 3
 s

ou
rc

es
 a

nd
 c

om
bi

ne
d 

cu
m

ul
at

iv
e 

be
lie

f 
an

d 
pl

au
si

bi
lit

y

Source 1

Source 2

Source 3
Combined

 

Figure 4 Bounds on three cumulative probability 
distributions and the combined distribution from the set 

union version of Dempster’s rule (Example 6) 

 
Example 7: To illustrate the final stage in the random set 
analysis consider the function  

abay )( +=  (35) 

Suppose that evidence of parameter a is provided by 
three independent sources who specify that a is in the 
closed interval A, for which they provide the estimates A1 
= [0.5, 0.7], A2 = [0.3, 0.8], A3 = [0.1, 1.0]. Parameter b is 
given by the probability distributions addressed in 
Examples 4, 5 and 6. Figure 5 illustrates three estimates 
of the cumulative belief and plausibility distributions of 
y, corresponding to estimates of b generated using the 
IRM in Examples 4, 5 and 6.  
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Figure 5 Cumulative belief and plausibility distributions 
on y = (a + b)a 

5 Conclusions  

Random set theory provides a general framework 
encompassing interval bounds, fuzzy sets and discrete 
probability distributions. The random set extension 
principle introduced by Dubois and Prade (1991) enables 
random sets to be projected through functional 
relationships describing system behaviour in order to 
generate a random set on the system response. In general 
this will involve the solution to a double optimisation 
problem, though when the vertex method is applicable 
the computational burden is significantly reduced.  
 
This paper has addressed two aspects of a random set 
approach to the Challenge Problems  of Oberkampf et al. 
(2001). The Iterative Rescaling Method has been 
proposed for generating a random set and corresponding 
belief and plausibility functions that are an outer 
approximation to lower and upper probability 
distributions. The Iterative Rescaling Method generates a 
low average error on problems of a practical scale. Three 
approaches to combining information from different 
sources  have been illustrated with examples. Of these the 
averaging has the attraction of general applicability, 
computational ease and acces sible semantic 
interpretation. 
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