

Applications of Energy Storage to Enhance Wind Generation

Supplement to the EPRI-DOE Handbook of Energy Storage for Transmission and Distribution Applications

Co-funded by EPRI and the U.S. Department of Energy

DOE Energy Storage Program Peer Review Meeting November 10-11, 2004

ESHB – Wind Supplement

- Introduction
- Overview of grid connected wind power
- Applications (and functional requirements)
 - Single applications
 - Combined applications
- Benefits of respective applications
- Common financial parameters and cost elements
- Technology sections
 - Update of major ESHB related content changes, etc
 - Summarize specific wind application experiences, major case studies and additional parameters needed
 - Assessments of worthy single and combined applications

Handbook Supplement available via PDF by end of year Plans call for integrated, expanded ESHB in 2005

Wind Power with Energy Storage: Hardware Experience Energi

- Hokkaido, Japan (2000 2001)*
 - Hokkaido EPC Host, CRIEPE Analyses
 - VRB/SEI: 170 kW, 6 hrs
 - Stabilizes single 275 kW turbine
- Aomori, Japan (2000 2001)*
 - Tohoku EPC Host
 - VRLA: 300 kW, 4hrs
 - Stabilizes single 300 kW turbine
- Hachijojima, Japan (2000 2001)*
 - TEPCO Host
 - NAS/NGK: 400 kW, 7.2 hours
 - Stabilizes single 500 kW turbine
- King Island, Tasmania (2003)
 - Hydro Tasmania Host + Australian Gov't -Greenhouse Office Cofund
 - VRB/Pinnacle VRB Ltd.: 400 kW, 10 sec or 200 kW, 4 hours + Diesel Genset
 - Stabilizes 2.5 MW wind farm
- Hokkaido, Japan (Early 2005)
 - J-Power Host + NEDO Cofund
 - VRB/SEI: 6 MW, 20 min / 4 MW, 1.5 hrs
 - Stabilizes 30 MW wind farm

Wind Turbine with Vanadium Redox Flow Battery in Hokkaido, Japan (Courtesy NEDO)

Wind Generation with Energy Storage:Prominent Studies

- West Texas (2002 2003)
 - Lower Colorado River Authority, Ridge Energy Storage and Grid Services
 - Investigated construction of CAES systems to support over 900 MW of wind power generation in area of constrained transmission
 - Positive outlook for a CAES system, follow-up is planned
- Iowa (2001 2004)
 - Iowa Association of Municipal Utilities
 - Investigated construction of a 100-200 MW CAES plant with up to 200 MW wind generation (and other off-peak generation)
 - Currently under review
- Hawaii (2002 2004)
 - HELCO, State of Hawaii and Sentech
 - Investigating possible use of energy storage to stabilize grid on Big Island of Hawaii
 - Wind generation is a significant factor in instability and an important motivator for study
 - In progress
- Foote Creek Rim, Wyoming (2004 2005)
 - > SAIC
 - Investigating use of VRB system with a 135 MW wind farm
 - In progress

Single Function Applications Summary Descriptions

- J: Transmission Curtailment (TC) mitigation of power delivery constraint imposed by insufficient transmission capacity. Except for large CAES, reference duty cycle for analysis is derived from the reference 60 MW wind farm profile constrained to 50 MW by available transmission capacity, Valued at market electricity rates for the incremental wind generation delivered.
- K: Time-Shifting (TS) firms and shapes wind generation by storing wind generation during the off-peak interval (6:00 pm to 6:00 am), supplemented by power purchased from the grid when wind generation is inadequate, and discharged during the on-peak interval (6:00 am to 6:00 pm). Valued at the market rates for the time-shifted, shaped energy.
- L: Forecast Hedge (FH) mitigates errors (shortfalls) in wind energy bid three hours prior to the one-hour delivery interval. Valued at the incremental value of wind energy delivered at market rates.
- M: Grid Frequency Support (GFX) supports grid frequency during sudden large decreases in wind generation over a 15-minute discharge interval. Valued at the cost of alternative solutions.
- N: Fluctuation Suppression (FS) stabilizes wind farm generation frequency by suppressing fluctuations (absorbing and discharging energy during short duration variations in output). Valued at the cost of alternative solutions.

- C7: Combined Applications K, M, D (TS + GFX + RC)
- C8: Combined Applications L, M, D (FH + GFX + RC)
- C9: Combined Applications M, L, D (GFX + FH + RC)
- C10: Combined Applications N, M, K (FS + GFX + TS)

Single Function Applications and Duty Cycles

	Gri	d Stabiliza (GS)	tion	Grid Op Sup (GC	erational port DS)	Distril Power (P	bution Quality Q)	Load-S (L	Shifting S)	Wind Generation (WGS)			Support		
cations	Angular	Voltage	Fre- quency Excur- sion Sup-	Regula-	Conven- tional Spinning	Short Duration	Long Duration	Short Duration	Long	Fir Trans- mission Curtail	Firming & Shaping Trans- mission Curtail- Time- Forecast		Stabili Grid Fre-	zation Fluctu- ation	
/ Appli	Stability (GAS)	Stability (GVS)	pression (GFS)	Control (RC)	Reserve (SR)	PQ (SPQ)	PQ (LPQ)	LS (LS3)	LS (LS10)	ment (TC)	Shifting (TS)	Hedge (FH)	GFX)	pression (FS)	
Parameters	Α	B	С	D	Ε	F	G	H	Ι	J	K	L	М	Ν	
ES System Unit Power MW	10 to 500	10 to 500	10 to 500	2 to 200	2 to 200	1 to 50	1 to 50	1 to 200	1 to 200	2 to 200	2 to 200	2 to 200	2 to 200	2 to 50	
Tower, MIW	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(2)	
ES System AC Voltage kV	4.2 to 750	4.2 to 750	4.2 to 750	4.2 to 115	4.2 to 115	4.2 to 34.5	4.2 to 34.5	4.2 to 115	4.2 to 115	4.2 to 34.5 4.2 to 34.5 4.2 to 34.5		4.2 to 34.5	4.2 to 34.5		
vonage, kv	(13.8)	(13.8)	(13.8)	(13.8)	(13.8)	(13.8)	(13.8)	(13.8)	(13.8)	(13.8)	(13.8)	(13.8)	(13.8)	(13.8)	
Equivalent Full Power Discharge Duration	few seconds	few seconds	10 to 30 min	3 to 30 min	2 hr max	seconds	hours	1 to 4 hrs	5 to 12 hrs	5 to 12 hrs (varies by ES Technology)			10 to 30 min	few seconds	
	(1 sec)	(1 sec)	(15 min)	(7.5 min)	(2 hr)	(2 sec)	(4 hrs)	(3)	(10)		(*****)			(10 sec)	
	10 MJ to	5 MJ to 30	0.2 to 25	0.1 to 25	(2 11)	2 MJ to 3	(1115)	1 to 200	5 to 600				0.2 to 25	10 to 200	
Energy Discharged	1 GJ	GJ	MWh	MWh	2 to 100	GJ	1 to 400	MWh	MWh	50 to 120 MWh			MWh	MJ	
Per Event	(10	(10	(2.5	(2.5	101 00 11	(50	101 00 11	(30	(100	(varies)			(2.5	(20 MD	
	MJ)	MJ)	MWh)	MWh)	(20 MWh)	MJ)	(40 MWh)	MWh)	MWh)				MWh)	(20 1013)	
	10 events/yr	10 events/yr	10 events/yr	Contin- uous Market	10 events/yr	events/yr	I event/yr	60 events/yr	events/yr				events/yr	Contin- uous triangular	
Energy Discharge	1	1	1		1	5		1	1	Per reference	e wind profile	, optimized	1	wave,	
Duty Cycle	event/d	event/d	event/d	(Ref 2	event/d	events/d		event/d	event/d	Ior	each technolo	ogy	event/d	Disch.	
	20 cvc/event			cycles/hr)		1 event/hr								90cy/hr	
	cyc/cvciit					event/m									
System Response	< 20	< 20	< 20	<10	<10	< 20	< 20	<10	<10	< 1	< 1	< 20	< 20	< 20	
Time	msec	msec	msec	min	min	msec	msec	min	min	min	min	msec	msec	msec	
Basis for Economic Benefits	Capitalize Al	ed Costs and B ternative Syste	enefits of em	Marke	Rates	Capitalized Benefits of Sys	l Costs and Alternative tem	Reduced Charge, plu Savings plus Costs and Alternativ	T Demand us ∆ Energy s Capitalized Benefits of we System	Capitalized Costs and Benefits of Alternative Sys Rates, Tax Credits, and Green Price Prem			ernative Syster Price Premiur	n, Market ns	

Electricity Rates & Financial Parameters

	On-Pe	eak (6:00 am to 6:0	0 pm)	Off-Peak (6:00 pm to 6:00 am)				
Electricity Market Rates	Firm Energy	Non-Firm Energy	Capacity Credit	Firm Energy	Non-Firm Energy	Capacity Credit		
·	\$/MWh	\$/MWh	\$/kW-mo	\$/MWh	\$/MWh	\$/kW-mo		
Wind Generation Market								
Market Rates	120	60	6	60	30	6		
Bid Shortfall Penalties	130			70				
Purchase Power Market								
Regulation Control, \$/MW-Hour (power)) 16							
Yearly Average Energy Charge, \$/MWh			3	8				

Financial Parameters								
Dollar Value, year	2003							
System Startup Date	June, 2006							
Project Life, years	20							
Real Discount Rate, %/yr	7.5%							
Property Taxes & Insurance, %/yr	2							
Fixed Charge Rate, %/yr	0.90/							
(before income taxes)	9.0%							

Wind Resource for App. J: Transmission Curtailment

Hourly Wind Generation Data Representative of 60 MW West Texas Wind Farm*

**Study Of Electric Transmission In Conjunction With Energy Storage Technology, prepared by the Lower Colorado River Authority for the Texas State Energy Conservation Office, August 21, 2003

Wind Resource for App. K & L: Time-Shift and Forecast Hedge = Pe

Hourly Wind Generation Data Representative of Typical U.S. Wind Farm*

TECHNOLOGY INSIGHTS

Comparison of NREL & TX Data for App. J: Curtailment

Hourly Wind Generation Data Representative of Typical U.S. Wind Farm*

TECHNOLOGY INSIGHTS

Change in Generation Capture with ES

TECHNOLOGY INSIGHTS

Example for App K: Time-Shift Wind Generation EPE

• 60 MW wind farm generation, NREL wind profile

• ES application:

- Store wind generation <u>plus purchased power</u> during off-peak (6:00 pm to 6:00 am) daily
- Discharge stored energy during on-peak (6:00 am to 6:00 pm) daily
- Direct wind valued at non-firm rates
- Power from ES valued at firm rates

• ES system parameters

- Power = 10MW, except underground CAES
- Energy = TBD multi-hours per technology
- TBD depth-of-discharge to match cycle life with demand
- DC voltage range to match PCS per ESHB

Time-Shift Wind GenerationAnnual Average Daily Profile

Time-Shift Wind Generation Value of Energy Storage

Electric Rates	On-Peak			Off-Peak			
	Firm	Non-Firm	Capacity	Firm	Non-Firm	Capacity	
	\$/MWh	\$/MWh	\$/kW-mo	\$/MWh	\$/MWh	\$/kW-mo	
Rates	120	60	6	60	30	6	
Penalties	130			70			
Value NO ES = 8,840 K\$/yr							
Potential Wind Generation		5,864			2,976		
Value WITH ES = 10,495 K\$/yr							
Direct Wind		5,864			2,113		
Stored Energy to Market	3,390		232				
(Value Wind to Storage)					(864)		
(Value Purch Enrg to Storage)					(240)		
Revenue NO ES, K\$/yr	8,840						
Revenue WITH ES, K\$/yr	10,495						
Net Value ES System, K\$/yr	1,655						
Discount_Rate, %	7.5%						
Project Life, years	20						
CRF, %	9.8%						
NPV, K\$	16,870						
Net ES System Value = 1,687 \$/kW							

Combined Application C7: K, M, D (TS + GFX + RC)

Application						
Requirements	App C7: Time Shift 28290 MWh/yr +GFX + RC					
Battery Selection						
Type of Modules	XYZ					
Number of Modules	TBD					
Pulse Factor	1.0					
Max Charge Voltage	1,550					
Min Discharge Voltage	930					
Maximum DOD, %	90%					
Cumulative Cycle Fraction	96%					
Replacement Interval, yr	10					
PCS Selection						
PCS Type (Chapter 5)	I					
Duty Cycles Grid Support or Power Quality (G	S or PQ)					
Event Duration Hr	0.25					
Load Shifting (LS)	10.0					
Fower, NW	10.0					
Load Shift Loopoo MW/b//r	20,291					
Cycle Life Fraction	7/%					
Regulation Control (RC)	1470					
Power, MW	10.0					
Hours per day, hr	20					
Days per year, days	165					
RC, MW-Hours/yr	33,000					
RC Losses, MWh/yr	2,504					
Cycle Life Fraction	22%					
Summary System Data						
Standby Hours per Year	0					
System Net Efficiency, % (See Note)	87.3%					
Battery Standby Efficiency, %	100.0%					
PCS Standby Efficiency, %	100.0%					
System Footprint, MW/sqft (MW/m ²)	0.0014 (0.0152)					
Battery Footprint, MW/sqft (MW/m ²)	0.0017 (0.0185)					
Note: System net efficiency includes lo and system standby expressed on an a	sses for energy conversion					

Note: System net efficiency includes losses for energy conversion and system standby expressed on an annual basis, i.e., one minus inefficiency, where inefficiency equals the ratio of annual energy losses to the product of system rated power times 8760 hours, expressed in percent.

xpp C7: Time Shift 290 MWh/yr +GFX + RC
78
239
100
1,523
196
18.6
42.2
0.0
54.1

Note: The total initial cost may be calculated in two ways:

1. By mutiplying the sum of PCS, BOP and Battery initial costs expressed in \$/kW by the reference power,

2. OR by mutiplying the sum of PCS and BOP expressed in \$/kW by the reference power and then adding the product of Battery Initial cost expressed in \$/kWh and the Battery Capacity

Combined Application C7: TS + GFX + RC - Results

Summary Economics	App C7: Time Shift 28290 MWh/yr +GFX + RC
Alt Solution Value, \$/kW	1,000
Initial Installed Cost, M\$	18.62
Total Costs, M\$	(28.8)
Total Benefits, M\$	31.3
Benefit to Cost Ratio	1.09
NPV, M\$	2.5

ESHB Suitability Matrices With Preliminary Wind Results Eper

				Energy Storage Technology										
	Catego	ry	Application	PbA	NiCad	NAS	ZnBr	VRB	Regenesys	SMES	Flywheels	Ultracaps	CAES (10 MW above grade)	CAES (135 MW below grade)
		•	A: Angular Stability (GAS)	~	М		М			~	~	\checkmark		
Gr	id Stabili (GS)	zation	B: Voltage Stability (GVS)	\checkmark						М		М		
		C::Frequency Excursion Suppression (GFS)	М	М										
Gi	rid Opera	tional	D: Regulation Control (RC)											\checkmark
Support (GOS)		E: Cnvntnl Spinning Reserve (SR)												
Distribution Power		F: Short Duration PQ (SPQ)	\checkmark	~	~	~			\checkmark	\checkmark	\checkmark			
	(PQ)	,	G: Long Duration PQ (LPQ)	М										
I	Load-Shit	fting	H: 3 hr (LS3)										\checkmark	
	(LS)	-	I: 10h (LS10)			\checkmark		\checkmark	\checkmark				\checkmark	\checkmark
	"T" Utility	C1: GFS +	GAS+ GVS+ RC	М	М	М								
ications		C2: SPQ +	LS10 + RC + SR			\checkmark		~	~					
Combined Appli	"D" Utility	C3: SPQ +	LS3 + RC + SR	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
		C4: LPQ +	LS3 + RC + SR	\checkmark		\checkmark		М	\checkmark					
	"T" or "D"	C5: LS10 +	RC + SR			\checkmark	М	~	\checkmark				\checkmark	\checkmark

	PRELIMINARY										
				I	Energy	Storag	ge Tecl	nolog	у		
Category		Application	PbA	NiCad	NAS	VRB	Flywheels	Ultracaps	CAES (10 MW above grade)	CAES (300 MW below grade)	
		J. Transmission Curtailment (TC)							\checkmark	\checkmark	
		K. Time-Shifting (TS)							\checkmark	\checkmark	
Wind Generation Support (WGS)		L. Forecast Hedge (FH)			М				\checkmark	\checkmark	
		M. Grid Frequency Support (GFX)	\checkmark	\checkmark							
		N. Fluctuation Suppression (FS)					\checkmark	\checkmark			
	C6: TC +	GFX, RC			\checkmark	\checkmark			\checkmark	\checkmark	
ications	C7: TS +	GFX, RC			\checkmark	\checkmark			\checkmark	\checkmark	
Combined Appli	C8: FH +	GFX, RC			\checkmark	\checkmark			\checkmark	\checkmark	
	C9: GFX +	FH, RC			\checkmark	\checkmark					
	C10: FS+	GFX, TS			\checkmark	\checkmark					

Purpose is to screen leading ES systems against candidate applications. Optimization TECHNOLOGY **INSIGHTS** needed with respective vendors.