

The Effects of Lunar Dust on Advanced EVA Systems: Lessons from Apollo

James R. Gaier

NASA Glenn Research Center

Ronald A. Creel

SAIC

"Dust is the number <u>one</u> concern in returning to the moon"

- Apollo 16 Astronaut John Young

July 2004

Office

- NASA's Vision for Space Exploration
 - Goal advancement of "...U.S. scientific, security, and economic interests through a robust space exploration program."
 - The Vision is based around a spiral development that extends "...human presence across the solar system, starting with a human return to the Moon by the year 2020..."
 - Spiral 2: 4 14 day human missions to lunar surface

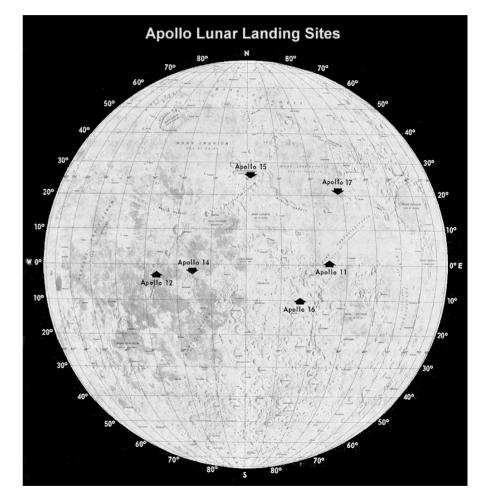
AEVA program has been charged

- Develop technology
- Develop flight hardware
- Spacesuits, tools, and vehicular interfaces for the lunar surface exploration
- **AEVA Environmental Protection Program**
 - Mitigate risks due to **dust**, radiation, toxicological

- Apollo astronauts cited multiple problems caused by lunar dust
- Dust degradation effects can be sorted into categories
 - Vision obscuration
 - False instrument readings
 - Loss of foot traction
 - Dust coating and contamination
 - Seal failures
 - Clogging of mechanisms
 - Abrasion of materials
 - Thermal control problems
 - Inhalation and irritation risks
- Lunar dust properties which cause these effects must be understood, simulated, and mitigated if AEVA systems are to operate effectively

Dust Free

Dust Covered



First noted on Apollo 11 LM landing

- Began noticing at altitude of 100 ft
- More severe as altitude decreased
- Apollo 12 even more severe

- Concerned LM foot could land on boulder, small crater
- Landing profile changed, Apollo 14 had fewer problems
 - Had fewer dust problems of all types
 - Intrinsically less dust site?
- Apollo 15, 16 both reported problems on landing
 - Both used higher landing profile
- No mention in Apollo 17 debriefing
 - Also had fewer dust problems reported
- Minor camera problems on Apollo 15
 - Fixed by brushing off lens

- Apollo 12 velocity trackers gave false readings
 - Locked onto moving dust and debris during descent
- Apollo 15 landing radar outputs affected
 - Altitudes less than 30 feet
- Dust on visors adversely affected Lunar Roving Vehicle (LRV) indicators and gage readings
- Apollo 17 reported minimal problems of this sort
 - Less loose dust at landing site(?)
 - Each landing site will be different!

- **Neil Armstrong reported material** on boot sole made ladder slippery
- No other similar reports

- Apollo 12 astronauts report specifically there were no problems
- Astronauts started kicking ladder before ingress
 - Kept some of the dust out of the LM
 - May have shaken enough dust off to prevent slipping
 - Limited number of egress-ingress cycles
- Not thought to be a major concern

Mission Support LM Model

Dust quickly and effectively coated surfaces

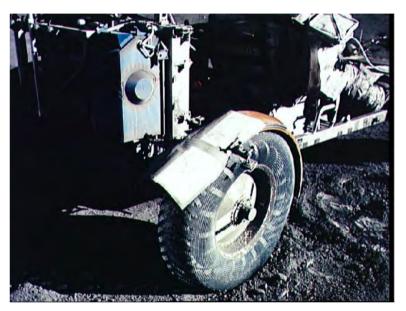
- Boots, gloves, suits, and hand tools affected
- Dust on Apollo 11 TV cord concealed it and created tripping hazard
- Dropped Apollo 12 contrast chart became unusable
- LRV fender extensions knocked off, resulting in astronauts and equipment being covered with dust

Coating problems developed into other problems

- Clogging of mechanisms
- Seal failures
- Abrasion

- Thermal control
- Dust created housekeeping problems
 - Much astronaut time devoted to ineffective brushing off and wiping down equipment

- Ability to seal suits for EVA's compromised
- Apollo 12 higher than normal suit pressure decay
 - Pete Conrad's suit was tight before first EVA
 - After first EVA 0.15 psi/min
 - After second EVA 0.25 psi/min
 - Safety limit was 0.30 psi/min
 - Dust could not be completely cleared off of fittings
- All Apollo environmental, gas, and regolith sample seals failed
 - Samples contaminated before reached earth

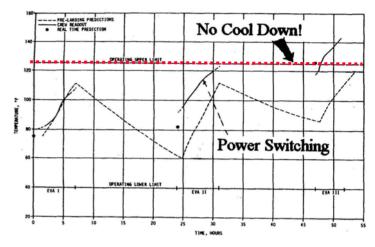


- Equipment clogged and mechanisms jammed on every mission
 - Equipment conveyor to LM
 - Lock buttons
 - Camera equipment
 - Velcro® fasteners
 - Zippers
 - Wrist locks
 - Hose locks
 - Faceplates
 - Sunshades
 - Vacuum cleaner
- Particularly problem when fender extensions were knocked off LRV
- Several crew remarked could not have sustained more surface activity

Apollo 17 Fender Fix

- Conrad and Bean's suits worn through above boot
 - Micrometeoroid protection layer breached
 - Several layers of Kapton[®] multi-layer thermal insulation breached
- Brushing dust off scratched indicator dial faceplates
 - Made some LRV indicators unreadable on Apollo 16
- Obscured vision
 - Harrison Schmitt's visor sun shade so scratched he could not see in certain directions
- Apollo 17 astronaut cover gloves for core drill were worn
 - Worn through after drilling cores on two (of three) EVA's
- Abrasion caused some of the most serious problems

- LRV batteries exceeded temperature limits
 - Losing fender extensions increased dust exposure for dust covers and radiators
 - Power switching required on Apollo 16


- Communications, TV camera, experiment radiators also adversely affected
 - Surface Electrical Properties (SEP) experiment failed

Valuable EVA time spent trying to clean radiators

Limited effectiveness

Ground-based tests for dust removal by brushing were inadequate and misleading

- Need high quality thermal/vacuum test facility
- Need "believable" testing of prevention and mitigation methods, correlated with actual system models

Battery No. 2 Temperature

Astronaut Brushing Radiator

- Dust could compromise astronaut health
- Apollo 11 reported dust gave off distinctive, pungent odor
 - Suggests small particle sizes were suspended in spacecraft
 - May have reactive volatiles on the surface of the dust
 - Dust irritated eyes, but was easily removed
 - Dust under fingernails was persistent
- Apollo 12 reported eye and lung irritation on return trip
 - Contaminated the CM after docking with LM
- Apollo 12 crew reported dust got in everywhere
 - Conrad and Bean covered with dust when they removed space suits
- Harrison Schmitt reported hay fever-like symptoms from dust
 - Lasted much of the return trip

- Wide range of experts generated a report that identified:
 - Systems that would be affected by dust
 - How those systems would be affected
 - Risks associated with each system so affected
 - Requirements that need to be developed
 - Knowledge gaps
- Resulting list of potential problem areas in EVA systems
 - Those culled from the Apollo experience
 - Possible electrical problems such as power drains and shorts

- TRL 6 development for Spiral 2 surface suit, other AEVA components by 2009
 - Testing requirements now being developed
 - Realistic testing facilities identified or built up
 - Requirements for appropriate simulants being developed
- How well they hold up in the dusty environment
 - Evaluation of candidate suit materials that would be exposed to the dust New mitigation strategies will be tested at this level
 Effectiveness quantified
 - Component-level testing

Particularly important for joints and connections

- Evaluate new designs and materials identified in the first stage
- Full-up suit and system tests

Identify system problems that are not obvious from the component tests.

- Functional properties of dust are key
 - Optical properties
 - Abrasive properties
 - Adhesion properties
 - Thermal properties
 - Tribological properties
 - Electrical properties
 - Magnetic properties
 - Other properties?
- May use different simulants to test different properties
 - The fewer that can be used, the better
 - Must not compromise fidelity in properties to minimize number of simulants

- Required characteristics of the lunar simulants yet to be defined
- AEVA simulant(s) properties driven by requirements
 - Goal is to reduce risk of AEVA failure due to dust
- **ISRU** simulant properties driven by requirements
 - Goal is to develop resource utilization technology
- Since the goals are different, the simulants might also differ
 - Communication between the AEVA and ISRU teams must be maintained
 - The more commonality of simulants, the better
 - Fortunate coincidence if simulants required by both efforts are the same.

