OPTICAL NONDESTRUCTIVE EVALUATION TECHNIQUES FOR ENVIRONMENTAL BARRIER COATINGS

W. A. Ellingson, R. J. Visher, S, Hopson, R. Lipanovich and C. Deemer

ENERGY TECHNOLOGY DIVISION ARGONNE NATIONAL LABORATORY

Presented to: Environmental Barrier Coatings Workshop 2005

NOVEMBER 15-16, 2005 NASHVILLE, TN

Work supported by the U.S. Department of Energy/Energy Efficiency and Renewable Energy/Office of Distributed Energy

OUTLINE

Description of Optical NDE methods
 Results of application to Slurry Cast EBC
 -Green state
 -Sintered
 Results of application to BSAS and Yb₂SiO₅
 Summary/Conclusions

COOPERATIVE EFFORTS

Ceramatec— --oxide-based slurry deposited coatings NASA-Glenn Research Center Alternative EBC compositions for SiC/SiC P&W/United Technology Research Center **EBCs on SiC/SiC** GE Global Research Center **EBCs on SiC/SiC** Siemens-Westinghouse EBCs for oxide/oxide CMCs

PARAMETERS FOR APPLICATION OF OPTICAL METHODS

Coatings MUST have optical translucency

Optical transmission characteristics of one EBC for Oxide/Oxide composite

FGI Stepwedge

Optical Techniques Under Development at Argonne

Elastic Optical Scattering (EOS)

Uses polarized laser light to probe the subsurface characteristics of optically translucent ceramic materials

Optical Coherence Tomography (OCT)

Uses a time-gated reflectometer to obtain crosssectional images of subsurface features of optically translucent ceramic materials in axial and transverse planes

Automated System Schematic

Experimental Setup

- Issue with diameter of fibers in current fiber array
- Compensating for spatial resolution of current fiber array
 - C-cracks were oriented with largest diameter perpendicular fiber array in center of scan
 - Scan speed reduced four times slower than initial scans
 - Increased acquisition frequency
 - Increased signal to noise ratio
 - 2 minutes per ball
- New design will give close to an order of magnitude better spatial resolution

Diagram of Optical Coherence Tomography System

THEORETICAL SPATIAL RESOLUTION LIMITS FOR OCT SYSTEM

In-Plane resolution

Vertical plane resolution

 $2\ln(2)$

 π

Where

λ=laser wavelength
f=focal length of the
focusing lens
d=diameter of the focusing

lens

For our system $\Delta x = \sim 10$ um(theory suggests $\sim 2-5$ um $\Delta Z = \sim 18$ um(theory suggests ~ 10 um

Note that for ΔZ , if $\Delta \lambda$ is larger, then ΔZ is smaller. Recent work in Austria, using femtosecond laser, has reduced ΔZ to ~4 um and Δx to ~ 2 um over regions of size ~ 5 mm square.

SCHEMATIC OF ELASTIC OPTICAL BACKSCATTER NDE EXPERIMENTAL TEST SETUP

The backscattered light from each point is represented by one pixel in a gray scale image.

CONDTIONS TO BE DETECTED/CHARACTERIZED : COATING THICKNESS EXISTENCE OF SUBSURFACE CRACKING EXTENT OF DELAMINATION/PRE-SPALL

OCT Measurement of Thickness of 7 % YSZ, EB-PVD

along red line perpendicular to the surface

120 130 140 150 160 1 cm Pressure Side OCT Vertical Cross-Sectional Image Λ=1310 nm

TBC thickness ~175 um

OCT Investigation of EBCs on Composites Vertical Cross-Section Images

NDE OCT Measurement of EBC Coating Thickness **BSAS on MI SiC/SiC OCT Cross-Sectional Image 5x Cross Sectional Optical Micrograph** EBC layer 0.5 mm 0.5 mm **EBC Thickness Measurements** 0.29 mm Micrograph OCT 0.30 mm

All measurements +/- 10 µm

Cooperative efforts with Ceramatec

TAILORABLE ENVIRONMENTAL BARRIER COATINGS FOR SUPER ALLOY TURBINE ENGINE COMPONENTS IN SYNGAS

P.I. Shekar Balagopal

DOE contract # DE-FG 02-03ER83620 Applications: Graded Ceramic oxide coating on Alloy substrates for protection from corrosion gases up to 1500°C:

SLURRY CAST OXIDE EBCS From Ceramatec

Two as-cast samples deposited on quartz plates
 --One ~40 um thick
 --One ~8-10 um thick

Two dense samples on quartz plates
 --One ~40 um thick
 --One ~8-10 um thick

Photos of slurry-cast coating

9.

Nonuniform

surface

in green-state on quartz plate

Direct measurements Quartz slide thickness : ~ 1.08mm ~Quartz plus Coating: ~1.13mm

Visible hole

Optical Coherence Tomography data for thick * slurry cast green-state oxide EBC

OCT data of Green slurry-cast oxide EBC Thick EBC sample

OCT Horizontal Image ~25-30 um distance below surface

1mm

Black region Suggests Crack or delaminated region

OCT data for Slurry-Cast green-state thin <10 um sample BC1

Accidental removal of coating

Vertical OCT scans 2.3 um/pixel

Scan region 1

photograph

Results: Beyond the present Vertical resolution capability

Scan region 2

OCT data for sintered slurry cast oxide EBC Thick sample (Vertical scans)

The coating on this slide chipped off during transportation, therefore only a piece of the coating was scanned for thickness values.

> ~2.3 um/pixel Result ~40 um thick

Scan region 1

Scan region 2

Scan region 3

OCT data for sintered slurry-cast oxide EBC Thin sample <10 um

Photograph of sintered thin EBC sample

Results demonstrate that present OCT system cannot achieve this level of spatial resolution

NASA EBCs on MI SiC/SiC K. Lee*

* (Now at Rolls-Royce)

Si/Mullite/BSAS (5 mil/8 mil/8mil) On MI SiC/SiC (sample 1a) 1000 h, 1380C-1h cycles, 90H₂O- Bal O₂

LASER BACKSCATTER INVESTIGATION OF EBCs EBC: BSAS(8 mil) On MI SiC/SiC

Substrate: MI SiC/SiC(1a) Si (5 mil)/Mullite(8mil)/BSAS (8 mil)

Substrate: MI SiC/SiC(3a) Si (5 mil)/ Mod Mullite(8mil)/BSAS (8 mil)

Substrate: MI SiC/SiC(2a) Substrate: MI SiC/SiC(4a) Si (5 mil)/Mullite + SAS(8mil)/BSAS (8 mil) Si (5 mil)/Mod Mullite + SAS(8mil)/BSAS (8 mil)

Si/Mullite/Yb₂SiO₅ (5mil/8mil/8mil) On MI SiC/SiC (sample 1b) 1000 h, 1380C-1h cycles, $90H_2O$ - Bal O₂

Si/Mullite+SAS/Yb₂SiO(5 mil/8mil/8mil)) On MI SiC/SiC (sample 2b)

1000 h, 1380C-1h cycles, 90H₂O- Bal O₂

LASER BACKSCATTER INVESTIGATION OF EBCs EBC: Yb2SiO5 (8 mil) On MI SiC/SiC

Substrate: MI SiC/SiC(1b) Si (5 mil)/Mullite(8mil)/ Yb2SiO5(8 mil)

Substrate: MI SiC/SiC(3b) Si (5 mil)/ Mod Mullite(8mil)/ Yb2SiO5 (8 mil)

Substrate: MI SiC/SiC(2b) Substrate: MI SiC/SiC(4b) Si (5 mil)/Mullite + SAS(8mil) / Yb2SiO5(8 mil) Si (5 mil)/Mod Mullite + SAS(8mil)/Yb2SiO5 (8 mil)

SUMMARY/CONCLUSIONS

 Two optical NDE methods, OCT and EOS, have been demonstrated to detect features/characteristics of interest for EBCs

-mapping thickness variations

-Detecting delaminations

- Use of OCT has been demonstrated for application to as-deposited (green-state) slurry-cast EBCs for thickness mapping
- EOS data have been shown to correlate with cracking observed for various EBCs deposited on CMCs

• Higher spatial resolution of OCT can be obtained by installing new femtosecond lasers with greater optical band width

• While correlations between TBC spallation and laser scatter data have been demonstrated , this has NOT been demonstrated to-date for EBCs on monolithic substrates.