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a] Research that has been done so far 
 
This research has been aimed at developing a systematic methodology for the cost-effective 
reduction of water usage and discharge in pulp and paper plants. As the industry moves towards 
increased system closure, the build-up of non-process elements (NPEs) leads to serious 
consequences on the process equipment. In response, this research has achieved the following: 
 
• A mathematical model to track water and primary NPEs throughout the pulping process. 
• Rigorous targeting for water usage and discharge. 
• A systematic framework for water reduction using mass integration strategies including 

no/low cost techniques as well as capital-based techniques. 
• An optimization model for the optimization of allocation, recyc le, and separation of aqueous 

streams. 
 

These mathematical models and allocation strategies have been coded into a computer-aided 
tool using LINGO programming platform. The program can be readily modified to address a 
variety of cases. In order to demonstrate the applicability of the developed tools, a case study has 
been addressed. Furthermore, this research provides a generic framework that can be effectively 
utilized by industry to develop cost-effective water management strategies and to identify critical 
research needs. 
 
 
 

b] Any preliminary insights on what the study findings suggest 
 The research has yielded the following useful insights: 
§ Water conception in pulp and paper mills may be reduced by more than 75% while 

providing value-added solutions (based on the savings in water usage, reduction in 
wastewater treatment, reduction in chemical usage, and debottlenecking). 



  
 

§ As the extent of water recycle increases, small quantities of impurities begin to 
accumulate. If gone un-resolved, those impurities can lead to the total failure of the 
process. 

§ There are multiple technologies to remove impurities but they have vastly different 
economics. Process integration provides a unique and systematic approach to screenings 
these alternatives and determining the optimal solutions. 

§ Optimum solution strategies involve a combination of in-process modifications and 
recycle/reuse alternatives. 
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Abstract- This paper is aimed at developing a systematic methodology for the cost-effective 
reduction of water usage and discharge in pulp and paper plants. As the industry moves towards 
increased system closure, the build-up of non-process elements (NPEs) leads to serious 
consequences on the process equipment. In response, this paper achieves the following: 
 
• A mathematical model to track water and primary NPEs throughout the pulping process. 
• Rigorous targeting for water usage and discharge. 
• A systematic framework for water reduction using mass integration strategies including 

no/low cost techniques as well as capital-based techniques. 
• An optimization model for the optimization of allocation, recycle, and separation of aqueous 

streams. 
 

These mathematical models and allocation strategies have been coded into a computer-aided 
tool using LINGO programming platform. The program can be readily modified to address a 
variety of cases. In order to demonstrate the applicability of the developed tools, a case study has 
been addressed. Furthermore, this paper provides a generic framework that can be effectively 
utilized by industry to develop cost-effective water management strategies and to identify critical 
research needs. 
 
INTRODUCTION 
 

Pulp and paper mills have historically been one of the major consumers of water since 
large amounts are needed for washing, bleaching, and processing.  Slowly, mills began to close 
the water loop and reduce effluent discharge by looking for ways to 



 

reduce, reuse or recycle water streams in order to comply with environmental regulations. 
Between 1975 and 1995, water consumption in the US pulp and paper industry decreased 
from 27000 gal/ton of product to 16,000 gal/ton of product (Patrick, 1994).  This huge 
consumption along with its economic burden and environmental impact underscores the 
need and potential for more aggressive water reduction strategies. 
 

Indeed, recently there has been a growing demand in the pulp and paper industry 
to adopt waste minimization strategies in order to create a minimum impact mill.  A 
minimum impact mill, or MIM, does not strictly mean a zero-discharge mill, but rather 
one which either has no discharge or whose effluent discharge has a minimum or no 
impact on the environment.  The MIM makes optimal use of its raw materials, reduces air 
emissions, water usage, waste generation, and is a net producer of electricity (Elo, 1995).  
The need for MIM’s in the pulp and paper industry can be summarized as follows 
(Nguyen, 1995): 

 
• To eliminate the discharge of undesirable compounds, such as organic halides, 

to  receiving waters 
• To reduce or eliminate the cost of waste water treatment, which is currently 

$1.5 - $5/ton of pulp 
• To eliminate fresh water use, as there is currently a shortage of fresh water 
• To reduce the cost of water use ($5/ton pulp) and energy use 
• To meet increasing demands for environmentally friendly products 
 

 In order to achieve a minimum impact mill, it is desirable to partia lly or 
completely close the water loop of the process.  System closure will result in the 
accumulation of non-process elements (e.g. Al, Si, K, Cl, Mg, Mn), suspended solids, 
dissolved solids, and other pollutants in the closed water system.  This buildup will result 
in increased equipment corrosion, detrimental plugging, problematic scaling, and deposit 
formation, and can adversely affect the papermaking process. 
 
 The traditional solution to waste minimization has involved simple in-plant 
modifications and end-of-pipe treatment systems.  However, these modifications fall 
short of providing cost-effective solutions to the industry.  What is needed is a 
comprehensive, generic approach to waste minimization which is applicable to a wide 
variety of solid, liquid and gaseous wastes and which would incorporate economics, 
reliability and product quality along with maximizing the use of already available process 
internal resources.  Over the past decade, a new methodology has been developed which 
is capable of systematically minimizing waste and improving overall process efficiency.  
This approach, known as mass integration, involves the optimal allocation of species 
throughout the process utilizing four main strategies: stream mixing/segregation, 
recycle/reuse, unit manipulation, and interception. 
 
 A typical kraft pulp and paper mill with an ODEDED bleaching sequences has 
been the model for this case study.  The overall objective is to optimize water usage, 
reduce discharge, reduce solid waste and debottleneck the process to improve overall 



 

production and yield.  To achieve this, a global understanding of the mass flow within the 
process is needed to provide insight as to how to minimize waste.   
 
 As a result of legislation, pulp and paper mills have taken steps to create a 
Minimum Impact Mill (MIM).  A minimum impact mill is one that will meet the 
following objectives (Nguyen, 1995):  

 
• To eliminate the discharge of harmful material to receiving waters 
• To reduce or eliminate the cost of waste water treatment 
• To meet increasing demands for environmentally-friendly products 
• To reduce the cost of water and energy 

 
Towards this end, mills have done work in applying simple modifications and good 

housekeeping approaches that can be quickly implemented without much cost (Mehta, 
1996). Their impact, however, is quite limited. As mills strived to achieve high- levels of 
water recycle, a new problem arose; the build-up of non-process elements. Non process 
elements (referred to as NPE’s from hereon) are those elements that do not take part in 
the delignification process of wood.  In an open mill, the presence of NPEs is not 
important since they are purged naturally from the system in the product, bleach plant 
effluent, black liquor losses, recovery boiler flue gas, dregs, grits, lime kiln flue gas, and 
lime mud purges.  In a closed mill, however, many of these outlets are no longer 
available.  These NPEs will begin to build up and can have a number of adverse effects 
on process equipment such as corrosion of the recovery boiler, sticky deposits on the 
evaporator tubes, and scale formation in the digester.  Non-process elements can be 
divided into two categories:  those that accumulate in the sodium cycle and those that 
accumulate in the calcium cycle.  Most NPE's will accumulate in either cycle to some 
degree but their accumulation factor and effect on process equipment will differ.  In an 
open cycle, NPE accumulation is low due to chemical and liquor losses that acted as 
natural purges.  As mills approach closure and these natural purges disappear, NPE’s will 
build up in the sodium and calcium cycle in the following manner (from most to least) 
(Galloway, 1994): 
 

Sodium Cycle:  K > Cl > Al > Fe > Si > Mn > Mg > Ca 
Calcium Cycle: Mg > Al > Fe > Mn > Si > Na > K > S > Cl 
 
Though accumulation of most NPE's will have adverse effects on process 

equipment and chemical reactions, three NPEs stood out as major offenders:  potassium, 
chloride, and sodium.  As a result, the rest of this work will focus on these three NPEs.   

 
Potassium and chloride have the greatest tendency to accumulate in the sodium 

cycle.  Both NPE's can be found in higher concentrations in the recovery boiler fumes 
(Jordan, 1996).  Chloride and potassium compounds, such as NaCl, KCl, and KOH, have 
high vapor pressures.  In the recovery boiler, these compounds can volatilize from the 
smelt bed into the dust stream and be carried over to the upper furnaces.  These particles 
will condense and form deposits on the cooler boiler tubes of the upper furnace, which 
results in tube plugging (Jordan 1996).  This leads to a unit downtime since the recovery 



 

boiler will need to be shut down for cleaning.  NaCl also causes severe corrosion of the 
superheater tubes and black liquor evaporators.  In addition, accumulation of all these 
compounds will accelerate equipment corrosion and cause ring formation in the lime kiln.  
Failure to account for the buildup of NPEs can have serious consequences. Indeed, the 
first major attempt at achieving a closed cycle mill in Thunder Bay, Ontario (Isbister, 
1979; Pattyson, 1979;  Galloway, 1994) was discontinued in 1985 with the primary 
reason attributed to the buildup of NPEs that caused severe corrosion, deposits, and 
scaling problems.  This failure and other incidents underscore the need for a 
comprehensive, generic approach to water reduction that is based on integrating the 
various units, streams, and species within the process. This approach should also 
incorporate economics, reliability and product quality issues along with maximizing the 
use of already available process internal resources.   

 
Over the past decade, a new methodology has been developed which is capable of 

systematically minimizing waste discharge and fresh-resource consumption while 
improving overall process efficiency.  This holistic approach is known as mass 
integration. It provides a fundamental understanding of the global flow of mass within the 
process and employs this understanding in identifying performance targets and 
optimizing the allocation, separation, and generation of streams and species. Various 
process objectives such as pollution prevention, debottlenecking, and resource 
conservation can be systematically tackled through mass integration. For an overview of 
the subject and application, the reader is referred to review literature (e.g.; El-Halwagi 
1997, 1998; El-Halwagi and Spriggs 1998, Bedard, 2001;  Kuofos, 2001;  Stuart, 2002; 
Paris, 2003). 
 
PROCESS DESCRIPTION 
 

Consider the Kraft pulping process shown in Figure 1. The wood chips and the 
white liquor (composed primarily of NaOH and Na2S) are fed into a continuous digester.  
The cooked pulp undergoes brown stock washing in which the pulp is separated from the 
residual liquor in a series of countercurrent vacuum drum washers.  Following brown 
stock washing, the pulp is screened and cleaned. After brown stock washing, the residual 
cooking liquor, also known as weak black liquor, is concentrated to strong black liquor 
through a series multiple effect evaporators and concentrators.  This strong black liquor is 
burned in a recovery boiler in order to reduce oxidized sulfur compounds to sulfide, burn 
the organic chemicals, recover the heat of combustion as steam, and recover the inorganic 
chemicals (known as smelt) which will be used to regenerate the cooking liquor.  The 
flue gas from the recovery furnace, which contains particulate matter such as Na2SO4 and 
Na2CO3, goes to an electrostatic precipitator, where these dust particles are removed from 
the flue gas and can be returned to the strong black liquor system. 

 



 

 
Fig. 1 A Schematic Representation of the Kraft Pulping Process 

 
The smelt from the recovery furnace is composed primarily of Na2S, Na2CO3 and some 
Na2SO4.  Weak wash liquor from lime mud and dregs washing is used to dissolve the 
smelt and form green liquor. The green liquor is clarified to remove any undissolved 
materials (known collectively as dregs) such as unburned carbon and inorganic 
impurities.  The dregs are then washed to remove any sodium compounds and then 
discarded.  The clarified green liquor and reburned lime are fed to a slaker, where the 
lime and water react to form slaked lime: 
 

CaO + H2O à Ca(OH)2 

 
Any grits (unreactive lime particles and insoluble materials) are removed via a clarifier 
contained in the slaker.  White liquor is then formed by the caustic izing reaction between 
the slaked lime and sodium carbonate  
 

Ca(OH)2 + Na2CO3 à 2NaOH + CaCO3 
 

 Much of the causticizing takes place in the slaker before flowing to the 
causticizer.  The white liquor is sent to a clarifier to remove lime mud, CaCO3 formed in 
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the causticizing reaction, unreacted Ca(OH)2, and any inert material before it is returned 
to the digester.  The lime mud from the white liquor clarifier is washed to remove 
entrained alkali and sent to the lime kiln where the lime mud is converted to reburned 
lime for use in the slaking reaction.  The filtrate from the lime mud and dregs washing is 
known as weak wash liquor and used to dissolve the smelt leaving the recovery furnace.  

 
PROBLEM STATEMENT 
 

The problem to be addressed can be stated as follows: 
 

Given a typical Kraft pulping process, it is desired to develop cost-effective strategies 
for the reduction of water discharge from the mill.  Any water reduction objectives will 
entail the use of recycle; consequently, various species will build-up, leading to operation 
problems.  To alleviate the detrimental effect of build-up, comprehensive mass 
integration strategies are required to provide answers to the following questions: 

 
• What are the rigorous targets for reduction in water usage and discharge? 
• Which streams need to be recycled?  To which units? 
• Should these streams be mixed or should mixing be avoided? 
• What load should be removed by interception devices?  
 
APPROACH 
 
 In order to address the abovementioned problem, the following critical tasks must 
be undertaken: 
 

• A simulation model should be developed to track water and the targeted NPEs 
throughout the process. The model should allow simulation for the modeling case 
as well as the process after.  

 
DEVELOPMENT OF SPECIES TRACKING MODEL 
 
 In developing a model to track the various species of interest, it is necessary to 
strike the right balance in details. A too-detailed model cannot be readily incorporated 
into the process integration and optimization framework and will negatively impact the 
effectiveness of the optimization computations. On the other hand, a too-simplified 
model cannot describe the process with high fidelity and may not capture critical aspects 
of the process. A particularly useful tool for providing the appropriate levels of details for 
the process is the "path diagram equation" (El-Halwagi et al., 1996; Noureldin and El-
Halwagi, 1999). It is a mass integration tool whose objective is to track targeted species 
(e.g., NPEs and water) as they propagate throughout the process and provides the right 
level of details to be incorporated into a mass integration analysis. A typical form of the 
path equations is to describe outlet flows and compositions from each critical unit as a 
function of inlet flow, inlet compositions, and appropriate design and operating 
parameters.  



 

CASE STUDY 
 
The base-case data and assumptions for the case study are given in the Appendix.  The 
model development and details are also shown in the Appendix.  The resulting model 
consists of a set of nonlinear equations which may be solved simultaneously using the 
software LINGO.   
 
 The LINGO program was run on a PC Pentium II with a convergence time of 3 
seconds. The results are shown in Appendix I and are illustrated in Fig. 2. 
 
 

 
 

Fig. 2. Solution to Nominal Case Study (all numbers are in tons per day) 
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TARGETING FOR OPTIMIZATION OF WATER USAGE AND DISCHARGE 
 
Overall Water Balance 
 
 Before proceeding to determine the optimal strategies for water management, it is 
insightful to determine maximum targets for reduction in fresh water usage and 
discharge. We start with the nominal material balances shown in Figure 2. Based on these 
results, the overall water balance can be determined.  
 
 We now turn our attention to the water balance for streams that include fresh 
water usage of the discharge of recyclable water streams.  Fig. 3 depicts the four fresh 
water streams currently used (S2, S6, S24, and S33). By adding up the flowrates of these 
streams, the total usage of fresh water is 52,197 tons per day. The figure also shows the 
potentially recyclable wastewater streams (S8, S10, S12, and S37). Based on these streams, 
the total flowrate of water that may be potentially recycled is 42,365 tons per day. If all 
the recyclable water is intercepted and cleaned up till their contents are acceptable to be 
used in lieu of fresh water and if self recycle (reuse of wastewater from a unit in the same 
unit after cleanup), then the target for fresh water usage can be calculated as follows: 
 
Target for minimum water consumption = 52,197 – 42,365 = 9,832 tons per day          (1) 
 
These results are schematically illustrated in Fig. 4. Also, by adding up the flowrates of 
the water streams leaving the process except the recyclable streams (S8, S10, S12, and S37) 
and water in the produced pulp (W35), we get a target for wastewater discharge to be 
1,669 tons per day. 

 
Fig. 3. Fresh and Recyclable Water Streams  
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Fig. 4. Determination of Target for Minimum Fresh Water Consumption 
 
Water Targeting without Self-Recycle 
 
 A particularly important constraint is recycle without self-recycle. In some cases, 
it is forbidden to recycle effluent to the same unit to be used in lieu of fresh water. 
Several reasons can cause this limitation including the following:  
 

• To prevent the accumulation of certain impurities that will build up in a flow 
loop. 

• To avoid dynamic instabilities that may arise as a result of high interconnection 
between output (effluent) and input (recycled effluent replacing fresh water) 

• To enhance process reliability by disengaging the dependence of input (recycled 
water) from output (effluent). 

 
If self-recycle is not allowed, then the minimum water target may not be attained even if 
interception is used to clean up the recycled water. For practical reasons, we will consider 
the use of an interception device. For the case study, we also assume that the bleach plant 
can only accept water without any dissolved solids (e.g., same quality as the stripper 
water leaving the multiple effect evaporator or the concentrator). Let us calculate the new 
target without self recycle with one interceptor for two cases: 
 

• Interception of bleach plant effluent (S37) 
• Interception of screening effluent (S8) 
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In the case of intercepting S37, the flow of W37 (30,990 tpd) is high enough to provide 
all the need for fresh water in the pulping process. Hence the target for fresh water in 
pulping is zero. As for the bleach plant, only the effluent from the multiple effect 
evaporator (W10 = 8901) and the concent rator (W12 = 1024) can be used to replace fresh 
water. Hence the target for fresh water usage in the case of no self- recycle with one 
interceptor applied to the bleach plant effluent is calculated through equation 2.  These 
results are shown in Fig. 5 

 
Water target  = 30,990 – 8,901 – 1,024 = 21,065 tpd         (2) 

 

 
 
Fig. 5. Minimum Water Target without Self Target while Intercepting Bleach Plant 
Effluent 
 

The same approach can be adopted for estimating the minimum-water target for 
the case of no self-recycle while intercepting the screening effluent. Assuming that the 
quality of the bleach plant effluent is acceptable for direct recycle to the pulping process, 
we can recycle 21,207 to replace all the fresh water used in pulping. We can also replace 
a portion of the fresh water needed for bleaching with the effluent from the multiple 
effect evaporator, the concentrator and intercepted screening effluent.  Hence, in this 
case, the water target is calculated in equation 3.   These results are shown in Fig. 6. 
 
Water target  = 30,990 – (1,450 + 8,901 + 1,024) = 19,615 tpd      (3) 
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Fig. 6. Minimum Water Target without Self Target while Intercepting Screening 
Effluent (S8) 
 
Need for Detailed Strategies 
 
 The aforementioned discussion indicates that there is a significant potential for 
reducing fresh water usage from 53,194 tpd to 9,832 tpd.  How do we determine the 
detailed strategies that can attain this target (Fig. 7)? Mass integration strategies should 
be employed to determine optimal ways of reaching this target. This will be the subject of 
the next section. 

 
Fig 7  Water Impact Diagram 

Current Use 
          53194 

Fresh Water Target 
           9832 

Fresh Water 
Flowrate, tpd HOW? 

Pulping 

Bleach 

W2 = 13995 

W6 = 1450 

W24 = 5762 

W8 = 1450 

W10 = 8901 

W12 = 1024 

Pulp 

W37 = 30990 
Effluent 

Fresh Water 
 = 19615 

No Fresh 
Water 

Consumption by 
Chemical Reaction & 
Other Losses = 9832 

Interception 

13995 + 5762 + 1450 = 21207 

Wastewater to bio:  19615 -9832 = 9783 = 30990 - 21207 



 

 
DEVELOPMENT OF MASS INTEGRATION STRATEGIES 
 
Overall Approach 
 

In order to develop solution strategies to the problem of optimizing water 
allocation in a pulping process, it is necessary to coordinate two important activities in 
tandem: process integration and process simulation. As shown in Fig. 8, process 
integration techniques can handle process objectives, data, and any requirements or 
constraints. The application of process integration provides performance targets, solution 
strategies, and proposed changes to the process. As a result of these changes, the process 
performance must be reassessed using process analysis or simulation (such as the afore-
mentioned modeling equations, etc).  The use of process simulation enables the update of 
flowrates and compositions throughout the process. By closing the information loop of 
integration and simulation, it is ensured that the developed insights and solution strategies 
activities are refined and validated. 

 

 
 

Fig. 8. Coordination of Process Integration and Simulation  
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of the needed process integration tools. The first step in creating a mass integration model 
is the development of a mass allocation representation of the process from a species 
viewpoint.  For each species there are sources and sinks.  Sources can be defined as any 
stream that has the desired species (e.g., water) in it and sinks are any stream or unit that 
can accept the species.  For our case, the sources are recyclable water streams and the 
sinks are the various units that consume fresh water. Each source, I, has a flowrate 
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denoted by LI and Nions. The composition of each ion (NPE) is referred to as yion,I . The 
index for ions is referred to as ion and it ranges from 1 to Nions where ion is Cl, K, Na, 
etc. 

 
The overall objective of mass integration is to provide maximum utilization of 

water while satisfying all process requirements and constraints. In other words, what is 
the best scheme to allocate the water and deal with NPEs? As can be seen in Fig. 9., mass 
integration seeks to identify optimum allocation of water streams from sources to sinks. 
The integration strategies include segregation and mixing of streams, assignment to units, 
and adjustment of NPE content using interception (e.g. separation) devices that employ 
mass and energy separating agents. The following analysis shows how these solution 
strategies can be developed. 
 

Consider a number Nsinks of process units (sinks) that employ fresh water which 
are designated by the index j, where j ranges from 1 to Nsinks. For the jth sink, there are 
two sets of constraints on flowrates and compositions:  

 
maxmin
jjj WWW ≤≤   j=1,2,…, Nsinks     (4) 

 
where Wj is the water flowrate entering the jth sink. 
 

max
,jion,

min
,  Y jionjion YY ≤≤   j=1,2,…, Nsinks and ion =1,2,…, Nions   (5) 

 
where Yion,j is the composition of a certain NPE (indexed ion) entering unit j. 
 



 

 
 
Fig. 9. Mass Integration Framework for Water Allocation (El-Halwagi, et.al. 1996) 

 
We now move to the source side. Each source, i, is split into Nsink fractions that 

can be assigned to the various sinks (Fig. 10). The flowrate of each split is denoted by li,j.  

 
Fig. 10. Splitting of Sources 
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Next, we examine the opportunities for mixing these splits and assigning them to 

sinks. Figure 11. shows the mixing of the split fractions into a feed to the jth sink.   

 
Fig. 11. Mixing of Split Fractions and Assignment to Sinks 

 
Direct Recycle/Reuse 
 

It is instructive to first consider direct recycle/reuse of wastewater streams. This 
refers to the allocation of wastewater streams to process units without the use of new 
equipment to intercept and remove NPEs. This situation is important when no capital 
investment is to be spent on new equipment. The structural representation of this no/low 
cost strategy is shown in Fig. 12. Each split flowrate li,j does not have to perfectly match 
the sink requirement. It can be mixed with other split flows or water to match the sink 
requirements. This mixing (represented in Fig. 12) must satisfy the sink constraints given 
by Eqs. (4) and (5). 
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Fig. 12. Direct Recycle/Reuse Source-Sink Assignment Problem (No/Low Cost 
Solution) 

 
The following constraints represent the material balances associated with the 

splitting and mixing operations: 
 

Splitting of the ith source: 
 

∑
=

=
ksN

j
jii lL

sin

1
,  where n = 1,2, …, Nsources      (6) 

 
Mixing for the jth sink: 
 

∑
=

+=
sourcesN

i
jijj lFreshWW

1
,     where j = 1,2, …, Nsinks     (7) 

 
where FreshWj is the amount of fresh water fed to the jth sink. 



 

iion

N

i
jijionj ylYW

sources

,
1

,, ** ∑
=

=   

where j = 1,2, …, Nsinks and ion = 1,2, …, Nions    (8) 
 

Optimization Formulation for Direct Recycle  
 
  In order to solve the above-mentioned assignment problem systematically, it is 
useful to formulate the task as an optimization problem.  A theoretical model is 
formulated based on the structural representation of the problem to account for mass 
balances and assignment of sources to sinks. The objective function is to be fresh water 
used in the process. The objective function can be mathematically represented as: 

Minimize flowrate of fresh water via direct recycle= ∑
=

ksN

j
jFreshW

sin

1

    

This objective function can be readily modified to accommodate other objective 
functions. 
 
Subject to the following constraints: 
Flowrate to each sink 
 

maxmin
jjj WWW ≤≤   j=1,2,…, Nsinks   

    
NPE content in feed to each sink: 
 

max
,jion,

min
,  Y jionjion YY ≤≤   j=1,2,…, Nsinks and ion =1,2,…, Nions  

   

∑
=

=
ksN

j
jii lL

sin

1
,  where n = 1,2, …, Nsources   

     
Mixing for the jth sink: 

∑
=

+=
sourcesN

i
jijj lFreshWW

1
,     where j = 1,2, …, Nsinks 

Component material balances for the NPEs 
 

iion

N

i
jijionj ylYW

sources

,
1

,, ** ∑
=

=  , where j = 1,2, …, Nsinks and ion = 1,2, …, Nions   

  
Non-negativity of each fraction of split sources: 

 
0, ≥jnl  where n = 1,2, …, Nsources and j = 1,2, …, Nsinks   

  
 Finally, since the various sources are interconnected and will be affected when 
fresh water is replaced with recycled water, it is necessary to include a simulation model 



 

to track the changes for the NPEs throughout the process. This is consistent with the 
philosophy summarized by Fig. 8. Hence, we include the path equations developed in 
Chapter Five in the mathematical formulation. 
 
 This optimization program can be solved using software LINGO to identify the 
minimum consumption of fresh water, the optimal allocation from each source to each 
sink, and the new steady state after these changes are implemented. Appendix II shows 
the detailed formulation for the case study along with the solution obtained from LINGO 
software. Again, this is a general purpose formulation that can be readily modified to 
address other case studies or specific mills.  
 
 In the case study, we have four recyclable sources: wastewater from screening, 
multiple effect evaporator, concentrator, and, bleach plant effluent. Also, fresh water can 
be used at minimum consumption. There are four sinks that employ fresh water: 
screening, brown stock washer, washers/filters and the bleach plant. Figure 13. shows the 
assignment representation for the case study. In our case study, no self-recycle is allowed 
(i.e., effluent from a unit cannot be used in the same unit to replace fresh water). This 
constraint (done by assigning a zero flow from sink to unit) is placed to ensure practical 
operation and to reduce control problems. It is further assumed that the bleach plant can 
only accept demineralized water. 
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Fig. 13. Assignment Representation for the Case Study 



 

 Our objective is to minimize the usage of fresh water in the four sinks subject to 
the process constraints. The primary constraint on the buildup of NPEs is associated with 
the “stick temperature” for the recovery furnace. It can be related to the Cl, K, and Na 
through the following constraints: 
 

23
1.0

1.39
181611181611 NNNKKK ++

≤
++

     (7.8) 

)
3923

(02.0
35

181611181611181611 KKKNNNCCC ++
+

++
≤

++
   (7.9) 

 
where Ci, Ni, and Ki are the ionic loads of Cl, Na, and K (respectively) in the ith source.  

 
The results are illustrated in Fig. 14.  
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Fig. 14. Optimum Solution for Direct Recycle/Reuse (all flows are in tons per day) 
 
 As can be seen from Fig. 14, the fresh water consumption is now reduced to 
40,123 tons per day. This is a 23% reduction from the nominal fresh water usage of 
52,197 tons per day. The solution is a direct recycle/reuse which requires piping and 



 

pumping but involves no capital investment for new processing units. Another advantage 
of the developed mathematical program is its ability to generate alternative solutions.  
 
Interception Problem 
 
     The minimum fresh water targets when interception is employed have been 
determined earlier.  It is important to identify the interception tasks that can lead to such 
targets. Typically, the cost of an interceptor of a specific stream is monotonically 
increasing with the load to be removed. Hence, our objective will be to minimize the 
NPE load to be removed from the intercepted stream so as to reach the minimum water 
target. Since we are considering three NPEs, we will solve the program three times (one 
per ion). Therefore, we formulate an optimization program whose objective is to 
minimize the load of the NPE to be removed from the intercepted stream. The 
formulation can be described as follows: 
 
Minimize Load of NPEs to be removed from targeted species 
 
Subject to: 
 

• Desired water target 
• Path equations for tracking water and NPEs 
• Recycle model 
• Interception equations 
• Constraints on units 

 
For instance, in order to reach the water usage target of 21,065 (shown in Fig. 15), 

8.997 tpd of Cl must be removed from the bleach plant effluent. The same procedure can 
be repeated for removing NPEs from any source. After all single- interception solutions 
are exhausted, the rest of water reduction strategies will have to include new technologies 
that enable self recycle and may involve the use of hybrid interception devices. For each 
intercepted stream, the same optimization model can be used to determine the task of the 
new technology. The specific nature of this new technology is not known yet. However, 
its task has been determined. This is a valuable finding that defines needed research to be 
carried out. Figure 16 shows the water impact diagram for the case study. 

 
 
 



 

 
Fig. 15 Schematic Representation for Revised Flowsheet with Interception of 

Bleach Plant Effluent 
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CONCLUSIONS  
 

This work has developed a comprehensive framework for the systematic management 
of water and non-process elements pulp and paper plants. Specifically, this research has 
achieved the following: 

 
• Process simulation: In order to track water and the NPEs throughout the process, a 

mathematical model has been developed to simulate the performance of a typical 
kraft bleached process under nominal conditions. Algebraic equations have been 
developed based on conservation laws, literature values, and judicious assumptions. 
The model has the capability of simulating the process under nominal conditions as 
well as after changes recommended by mass integration. 

• Targets: Based on mass-integration strategies, rigorous targets have been developed 
for minimum feasible water usage and discharge. 

 
Solution strategies: Based on mass integration techniques, various strategies have 

been recommended to attain the targets. These strategies include no/low cost techniques 
as well as capital-based techniques. To extend the applicability of this work, a 
mathematical programming code has been developed and implemented for the 
optimization of allocation, recycle, and separation of aqueous streams. This program has 
been coded into LINGO platform. The program can be readily modified to address a 
variety of cases. In order to illustrate the usefulness and applicability of the developed 
framework, a case study has been solved. The results demonstrate that for a typical kraft 
mill, significant reduction in water usage can be achieved. For the selected case study, 
23% reduction in water usage can be achieved using simple recycle/reuse strategies. 
When interception is added to recycle/reuse, 62% reduction in water usage can be 
achieved. Finally, when new technologies are developed for removal of NPEs, 81% 
reduction in water usage can be accomplished. Although the work here does not specify 
the exact nature of these new technologies, it defines what tasks must be undertaken by 
these technologies and points out the research needed to reach this target. 

 
In addition to developing specific solution strategies systematically, this work shed 

insightful light on the integrated nature of the task of managing water and NPEs. It also 
provides an easy-to-modify platform, which can be effectively utilized to address a wide 
variety of water-conservation objectives in pulp and paper plants. 
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NOMENCLATURE 
 
Ci     Mass Fraction of chloride ion in stream 
CHIPS  Total flowrate of woodchips on a wet basis 
CY    Mass Fraction of pulp in slurry leaving washing system 
DF    Dilution Factor of excess wash water in brown stock washing 
FreshWj Flowrate of fresh water to jth sink  
Ki     Mass Fraction of potassium ion in stream 
Li    Total flowrate of component i to jth sink 
li,j    Split flowrate in stream ij 
Moisture Moisture content of chips 
Ni     Mass Fraction of chloride ion in stream 
Pulp  Pulp produced = Dry Chips * Yield 
Si     Total stream entering or leaving unit 
SSBL    Solids in Strong Black Liquor 
Wj   Water flowrate entering the jth sink 
Yion,j    Composition of a certain NPE (indexed ion) entering unit j 
Yield  Pulp yield from dry chips  
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APPENDIX 
 
DEVELOPMENT OF THE NOMINAL BALANCE MODEL 
 
 The first step in the analysis is to develop a mathematical model that provides the 
appropriate level of details for mass integration. In this appendix, a model for the nominal 
case of the process is developed to track pulp, water, and three main ions (chloride, 
potassium, and sodium). These ions are selected because they are among the most 
important species that cause buildup problems and limit the extent of mass integration. 
The mass flowrate of water, chloride, potassium, and sodium in stream i are referred to as 
Wi, Ci, Ki, and Ni, respectively. We now proceed to model development unit by unit.  
 
Digester: 
 

The flowrate of the wood chips (wet basis) is referred to as Chips, the moisture 
content (mass fraction) of the wood chips is referred to as Moisture, and pulp yield  

(
digester  tofed chipsdry -bone of Mass

produced pulp of Mass
) is designated by Yield.  

 
The following equations can be written: 
 
W1= Moisture*Chips         (A.1) 
 
Thus, the flowrate of the bone-dry chips can be calculated as follows: 
 
Dry Chips = Chips*(1-Moisture)        (A.2) 
 
The flowrate of pulp (bone-dry basis) can be related to the flowrate of dry chips through 
yield: 
 
Pulp = Dry Chips*Yield        (A.3) 
 
The ion content of the chips varies depending on the type of wood. The load of the 
targeted ions in the chips can be expressed as follows: 
 
C1 = Mass fraction of chloride ion in incoming wood chips * Chips   (A.4a) 
K1 = Mass fraction of potassium ion in incoming wood chips * Chips  (A.5a) 
N1 = Mass fraction of sodium ion in incoming wood chips * Chips   (A.6a) 
 

To track the ions in the chips, we will use the data provided by Keitaanniemi and 
Virkola (1978) 

 
C1 =  1.0*CHIPS/6000         (A.4b) 
K1  = 2.50*CHIPS/6000        (A.5b) 
N1= 0.973*CHIPS/6000        (A.6b) 
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Brown-Stock Washer 
 

The dilution factor (DF) in the washers is expressed as pound of water per pound 
of dry pulp and typically ranges from 1.5 to 3.0 (Smook, 1994, p. 102, 104).   Hence,  

 

DF = 
Pulp

42 WW −
         (A.7) 

 
The mass fraction of pulp in the slurry leaving the washing system is commonly 

referred to as the consistency (CY). Hence, 
 

CY = 
 Waterof Mass  pulp of Mass

pulp of Mass
+

      (A.8) 

i.e., the water content in the slurry can be expressed as 

W4 = Pulp*)
CY
CY-1

(          (A.9) 

 
The consistency typically ranges from 0.10 to 0.16 (Smook, 1994, p. 119).  

Equation (A.7) can be used to calculate the wash water, W2, after W4 has been 
determined from Eq. (A.8).  

 
The ionic content (ppm) of Cl, K and Na in the wash water can be specified based 

on typical values of 3.7, 1.1, and 3.6, respectively.  Thus, 
 

C2  = (3.7*10-6)*W2          (A.10) 
K2 = (1.1*10-6)*W2         (A.11) 
N2 =  (3.6*10-6)*W2           (A.12) 
 

To calculate the flowrate of the targeted ions in the slurry stream (S4), we will 
assume ratios to the flowrate of the ions in the black liquor stream (S5).  

 
C4 = 0.05 * C5          (A.13) 
K4 = 0.02 * K5          (A.14) 
N4 = 0.009 * N5         (A.15) 
 

Figure A.1 illustrates the digester-washer system. Recall that it has been stated 
that all inlet streams values are known.  Through the above ratios and equations, stream 4 
is also known.  Stream 5 will need to be determined.  As can be seen, the number of 
unknowns is four (flowrates of water and the three ions in S5). These can be obtained via 
the four material balances for the four species: 

 
W5 = W1 + W2 +W3 - W4        (A.16) 
C5 = C1 + C2 +C3 - C4         (A.17) 
K5 = K1 + K2 + K3 - K4        (A.18) 
N5 = N1 + N2 +N3 - N4        (A.19) 
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WASHER
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White Liquor

(all species data will be calculated as an output
stream from white liquor clarifier)

S2
Wash Water
W2 (from consistency)
C2 (from composition of chloride in wash water)
K2 (from composition of potassium in wash water)
N2 (from composition of sodium in wash water)

S4
Slurry
W4 (from dilution factor)
C4 (from ratio to C5)
K4 (from ratio to K5)
N4 (from ratio to N5)

S1
Chips
W1 (from moisture content)
C1 (from composition of chloride 
      in wood chips)
K1 (from composition of potassium 
      in wood chips)
N1 (from composition of sodium 
      in wood chips)

S5
Weak Black Liquor
W5
C5
K5
N5

 
 

Fig. A.1  A Loop around the Digester-Washer System 
 
Multiple Effect Evaporators  
 

The water in the evaporator condensate can be calculated using the water recovery 
ratio (equation 5.20).  For the case study, we will assume that 80 % of the water in the 
weak black liquor is evaporated (i.e., water recovery ratio is 0.8).   In addition, it is 
assumed that there are no ions in the condensate of the multiple effect evaporator. 

 
W10 = water recovery in evaporator*W5      (A.20) 

 C10 = 0          (A.21) 
 K10 = 0          (A.22) 
 N10 = 0          (A.23) 
 
Then, material balances can be used to calculate the concentrated stream leaving the  
evaporators: 
 
W9 = W5 - W10         (A.24) 
C9 = C5 - C10          (A.25) 
K9 = K5 - K10          (A.26) 
N9 = N5 - N10          (A.27) 
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Fig. A.2 Multiple Effect Evaporators  

 
Concentrator 
 

As with the multiple effect evaporator, the water in the concentrator condensate 
can be calculated using the water recovery ratio (eqn A.28).  For the case study, we will 
assume that 46 % of the water in the black liquor entering the concentrator is evaporated 
in the  (i.e., water recovery ratio is 0.46).  Again, it is assumed that there are no ions in 
the condensate of the concentrator. 

 
W12 = water recovery in concentrator*W9     (A.28) 

 C12 = 0          (A.29) 
 K12 = 0          (A.30) 
 N12 = 0          (A.31) 
 
Then, material balances can be used to calculate the concentrated stream leaving the 
evaporators: 
 

W11 = W9 - W12        (A.32) 
C11 = C9 - C12         (A.33) 
K11 = K9 - K12         (A.34) 
N11 = N9 - N12         (A.35) 
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Fig. A.3 -  Concentrator 

 
Recovery Furnace and Electrostatic Precipitator (ESP) 
 

The strong black liquor leaving the concentrators is combusted in the furnace to 
recover the inorganic chemicals, or smelt, which are primarily Na2S and Na2CO3.  Smelt 
contains no water.  Assuming that all the water in the strong black liquor leaves with the 
ESP off-gas, we get 

 
W14 = 0.0          (A.36) 
W16 = 0.0          (A.37) 
 

To track the ions in the furnace exhaust (S13), we will use the data provided by 
Gleadow (1996): 

 
K13 = 0.278*K11          (A.38) 
C13 = 0.498*C11         (A.39) 
N13 =  0.154*N11          (A.40) 
 
 We also use the data from Gleadow (1996) to relate the ions in stream 14 (ESP 
dust) to those in stream S11 (SBL): 
 
C14 = 0.048*C11         (A.41) 
K14 = 0.028*K11          (A.42) 
N14 = 0.002*N11          (A.43) 
 
 Assuming that all the water in the strong black liquor leaves with the ESP off-gas 
and relating the entrained ions in the off-gas to the SBL stream, we get 

S5 
Evaporator Concentrate 
W5 
C5 
K5 
N5 
 

S12 
Evaporator Condensate 
W12 = Water recovery*W9 
C12 = 0 
K12 = 0 
N12 = 0 
 

S11 
Evaporator Condensate 
 
W11 
C11 
K11 
N11 

 

CONCENTRATOR 
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W15 = W11          (A.44) 
C15 = 0.02*C11         (A.45) 
K15 = 0.008*K11          (A.46) 
N15 = 0.0008*N11          (A.47) 
 
Next, we use component material balances around the ESP, 
 
W13 - W14 - W15 - W16 = 0.0        (A.48) 
C13 - C14 - C15 - C16 = 0.0        (A.49) 
K13 - K14 - K15 - K16 = 0.0        (A.50) 
N13 - N14 - N15 - N16 = 0.0        (A.51) 
 

Assuming that the salt cake has a makeup flow of 0.0375 * Pulp, we get 
 

Saltcake = 0.0375*PULP        (A.52) 
 
Using the molecular formula for salt cake (molecular weight of Na2SO4 is 142 with two 
Na atoms whose atomic weight is 23), then 
 
N18 = 2*23/142 * Saltcake         (A.53) 
 
The content of Cl and K in Saltcake is obtained by assuming ratios to Na in the Saltcake: 
 
C18 = 0.01*N18          (A.54) 
K18 = 0.0014*N18         (A.55) 
 
Since there is virtually no water contained in Saltcake, then 
 
W18 = 0.0          (A.56) 
W17 = 0.0          (A.57) 
 
For the ions in the smelt, we can use component material balances around Fig. A.4: 
 
C11 + C18  - C15 - C14 - C17 = 0.0       (A.58) 
K11 + K18  - K15 - K14 - K17 = 0.0       (A.59) 
N11 + N18  - N15 - N14 - N17 = 0.0       (A.60) 
 
Smelt Flowrate 
 

Since the solids in the strong black liquor make up are taken as 65 % of that 
stream, then 
Solids in SBL (referred to as SSBL) = 65/35*W11  
i.e., 
SSBL = 1.86*W11         (A.61) 
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The solids in the electrostatic precipitator flue gas and purge stream are small. 
Assuming 5% of the solids in the strong black liquor leave the ESP in the flue gas and the 
purge stream (streams S14 and S15) and 47% of the strong black liquor solids are 
volatilized in the furnace, we can use the following solids balance around Fig. A.4 to 
estimate the flowrate of the smelt: 

 
Saltcake + Solids in SBL (SSBL) = Smelt + Solids lost with flue gas and the purge 
stream (streams S14 and S15) + Solids volatilized in the furnace              (A.61a) 
 
 
Hence, 
Saltcake + SSBL = Smelt +  0.05*SSBL + 0.47*SSBL               (A.61b) 
 
Rearranging and simplifying, then 
 
Smelt = Saltcake + 0.48*SSBL                 (A.61c) 
 

 
Fig. A.4. Furnace-ESP System 

 
Dissolving Tank 
 

Next, we move to the dissolving tank (Fig. A.5). The dissolving water is typically 
used in a ratio of 85 to 15 to the smelt. Hence, 

 
W19 = (85/15)*Smelt = 5.67*Smelt       (A.62) 
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The ionic content in S19 is obtained by assuming ratios to the ionic content of Cl 

and K in the smelt and Na in the white liquor (Hough, p. 243): 
C19 = 0.136*C17          (A.63) 
K19 = 0.136*K17          (A.64) 
N19 = 0.196*N3          (A.65) 
 

 
 

Fig. A.5. Dissolving Tank 
 
Now, we can use component material balances around the dissolving tank to 

evaluate the ionic content in the feed to the green liquor clarifier: 
 

W20 - W17 - W19 = 0.0         (A.66) 
C20 - C17 - C19 = 0.0         (A.67) 
K20 - K17 - K19 = 0.0         (A.68) 
N20 - N17 - N19 = 0.0         (A.69) 
 
Green-Liquor Clarifier 
 

Fig. A.6. is a schematic representation of the green- liquor clarifier. In order to get 
the flows and ionic contents of the overflow and underflow streams, we assume the 
following typical ratios of overflow to feed: 

 
W21 = 0.992*W20          (A.70) 
C21 = 0.863*C20          (A.71) 
K21 = 0.880*K20         (A.72) 
N21 = 0.968*N20          (A.73) 

S19 
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W19 = 5.67*Smelt 
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N19 (from ratio to N17) 
 

S17 
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W17  
C17 
K17 
N17 
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Feed to green liquor 
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 Then, material balance equations can be written around the clarifier: 
 
W22 + W21 - W20 = 0.0        (A.74) 
C22 + C21 - C20 = 0.0         (A.75) 
K22 + K21 - K20 = 0.0         (A.76) 
N22 + N21 - N20 = 0.0         (A.77) 
 

 
Fig. A.6. Green-Liquor Clarifier 

 
Washer/Filter System 
 
 The system is shown in Fig. A.7. The dregs leaving the washer/filter system 
contain little water which can be estimated by relating it to the water content in the 
underflow from the green- liquor clarifier based on the data of Hough: 
 
W23 = 0.075*W22          (A.78) 
 
 We also assume ratios of Na, Cl, and K (based on Keitaanniemi and Virkola, 
1978) to water in the dregs: 
 
N23 - 0.250*W23          (A.79) 
C23 - 0.010*W23          (A.80) 
K23 - 0.001*W23          (A.81) 
 
Using the data of Hough, we can relate streams S32 and S21: 
 
W32 =  0.160*W21          (A.82) 

S21 
Overflow 
W21 (from ratio to W20) 
C21 (from ratio to C20) 
K21 (from ratio to K20) 
N21 (from ratio to N20) 
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C25 
K25 
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C32 =  0.237*C21          (A.83) 
K32 =  0.016*K21          (A.84) 
N32 =  0.156*N21         (A.85) 
 
The wash water (W24) is assumed to be 90% of smelt dissolution water, i.e. 
 
W24 = 0.9*W19          (A.86) 
 
 We also specify the ionic content of Cl, K, and Na in the wash water based on 
typical values to be 3.7, 1.1,  and 3.6 ppm, respectively. Hence, 
 
C24  = (3.7*10-6)*W24         (A.87) 
K24 = (1.1*10-6)*W24          (A.88) 
N24 =  (3.6*10-6)*W24         (A.89) 
 
Component material balances around washer/filter system: 
 
W22 + W24 + W32 - W19 - W23 - W25 = 0.0      (A.90) 
C22 + C24 + C32 - C19 - C23 - C25 = 0.0       (A.91) 
K22 + K24 + K32 - K19 - K23 - K25 = 0.0      (A.92) 
N22 + N24 + N32 - N19 - N23 - N25 = 0.0      (A.93) 
 

 
 

Fig. A.7. Washer-Filter System 
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Lime Kiln 
 
 The lime leaving the kiln (Fig. A.8) is assumed to be free of water. Hence, 
 
W27 = 0.0          (A.94) 
W25 = W26           (A.95) 
 

We also assume that the ratio of Cl and K in S26 is 0.0001 and that 95% of sodium 
entering the kiln is lost in S26 (i.e., 5% of Na leaves in S27). Hence, 

 
K26 = 0.0001*W26          (A.96) 
C26 = 0.0001*W26          (A.97) 
N27 = 0.05*N25         (A.98) 
 
Component material balances around the kiln: 
 
C25 - C26 - C27 = 0.0         (A.99) 
K25 - K26 - K27 = 0.0                   (A.100) 
N25 - N26 - N27 = 0.0                   (A.101) 

 
Fig. A.8. Lime Kiln 

 
Slaker 
 
 Figure A.9 represents the slaker. The slaking reaction is given by: 
 
CaO + H2O = Ca(OH)2                (A.102) 
 

Since the molecular weights of water and lime are 18 and 56, respectively, then 
the amount of water consumed is 18/56 or 0.32 of the consumed lime, i.e. 
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WATERSLK = 0.32*LIME                (A.103) 
 
where WATERSLK is the amount of water consumed by the slaking reaction. According 
to Biermann (p. 117, 1996), the amount of lime fed to the slaker is 35% of the pulp, so: 
 
LIME = 0.35*PULP                   (A.104) 
 
We also assume that the slaker vapor is 0.5% of the water in the green- liquor overflow 
(S21) and is ion free.  Hence, 
 
W29 = 0.005*W21                    (A.105) 
C29 = 0.0                    (A.106) 
K29 = 0.0                     (A.107) 
N29 = 0.0                    (A.108) 

 
Fig. A.9. Slaker 

 
For the grits, we can get assumptions relating it to the green- liquor overflow by 

adopting data from Hough for water and Cl and from Keitaanniemi and Virkola (1978) 
for K and Na: 

 
W28 = 0.0013*W21                   (A.109) 
C28 - 0.0015*C21                    (A.110) 
K28 = 0.0053*K21                    (A.111) 
N28 = 0.001*N21                    (A.112) 
 
Component material balances around the slaker: 
 
W21 + W27 - W28 - W29 - W30 - WATERSLK = 0.0               (A.113) 
C21 + C27 - C28 - C29 - C30 = 0.0                 (A.114) 
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K21 + K27 - K28 - K29 - K30 = 0.0                 (A.115) 
N21 + N27 - N28 - N29 - N30 = 0.0                 (A.116) 
 
Causticizer/White Liquor Clarifier 
 
 Figure A.10 shows the causticizer/white liquor clarifier system. Since the 
causticizing system provides an additional residence time for the causticizing reactions to 
take place, we can assume that the water and ionic content of the entering and leaving 
streams are the same (although their chemical forms may change). Hence, 
 
W31 = W30                     (A.117) 
C31 = C30                     (A.118) 
K31 = K30                     (A.119) 
N31 = N30                     (A.120) 
 
Then, we carry out material balances around the white liquor clarifier: 
 
W31 - W32 - W3 = 0.0                   (A.121) 
C31 - C32 - C3 = 0.0                   (A.122) 
K31 - K32 - K3 = 0.0                   (A.123) 
N31 - N32 - N3 = 0.0                   (A.124) 
 

 
Fig. A.10. Causticizer/White Liquor Clarifier 

 
Bleaching 
 
 Figure A.11. illustrates an overall view of the bleach plant. As shown in the 
figure, it is assumed that the ratio of used water to bone-dry pulp is 10.33. Also, it is 
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assumed that the bleach plant effluent has a fixed outlet composition of Cl, K, and Na 
(500, 5, and 500 ppm, respectively). Furthermore, it is assumed that used water is equal 
to discharged water. Hence, 
 
W33 = 10.33*PULP                   (A.125) 
W35 = W7                    (A.126) 
W37 = W33                    (A.127) 
C37 = 0.0005*W37                   (A.128) 
K37 = 0.000005*W37                   (A.129) 
N37 = 0.0005*W37                   (A.130) 
 
 

 
Fig. A.11. Overall Bleach Plant 

 
The foregoing equations constitute the necessary model to track the flow of water and 

targeted NPEs throughout the process. It is a general purpose simulation model that can 
be easily modified to relax or modify any assumptions. 
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