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The mass ablation phase of a wire-array Z pinch is investigated using steady-state �r ,�� simulations.
By identifying the dominant physical mechanisms governing the ablation process, a simple scaling
relation is derived for the mass ablation rate ṁ with drive current I, in the case where radiation is
the primary energy transport mechanism to the wire core. In order to investigate the dependence of
ṁ on wire core size, a simplified analytical model is developed involving a wire core placed in a
heat bath and ablating due to radiation. Results of the model, simulation, and experiment are
compared. © 2007 American Institute of Physics. �DOI: 10.1063/1.2435332�

I. INTRODUCTION

A wire-array Z pinch is a cylindrical array of fine metal
wires which, when pulsed with current, is subject to a radial
j�B force which implodes the pinch. The resulting stagna-
tion and thermalization of the pinch on the cylindrical axis of
symmetry can yield x-ray powers in excess of 200 TW,1–3

thus making the Z pinch an attractive radiation source for a
number of applications, including inertial confinement fu-
sion, high energy density plasmas, and laboratory
astrophysics.4–11 The use of wire arrays to initiate the
Z-pinch implosion, as opposed to alternate Z-pinch loads
�i.e., annular foils, gas puffs, foams�, is of interest because
arrays with larger numbers of wires ��100� can dramatically
increase the x-ray power.1 However, many elements of wire-
array dynamics are still not well understood.

Originally, wire cores in a wire array were thought to
vaporize due to Joule heating, merge, and implode as a thin
plasma shell. Later, experiments revealed a much different
picture:12–15 early in the current pulse, a low density plasma
forms around the wire cores, due perhaps to the desorption
and ionization of contaminant hydrocarbons embedded
within the cores.16 This highly conductive plasma “corona”
provides an alternate path through which current can flow,
and effectively shunts current out of the cores. Consequently,
rather than immediately vaporizing due to Joule heating,
wires remain as dense cool cores, surrounded by hot, tenuous
“coronal” plasma which carries the majority of the current.
While wire cores carry little current and therefore remain
stationary, the current-carrying corona is acted on by the j
�B force and is swept radially inward towards the array
axis, eventually accumulating there as a precursor pinch.
However, the hot corona also acts to ablate �i.e., vaporize�
mass off the wire cores, thereby replenishing the supply of
coronal mass surrounding the wires. Thus, the lifetime of a
wire-array Z pinch is dominated by a mass ablation phase,

during which stationary wire cores continuously generate hot
corona mass via the ablation process, which is subsequently
swept towards the axis by the j�B force.

It is believed that the mass ablation phase ends when
wire cores have run out of material at certain axial positions,
and the ensuing implosion phase proceeds as a snowplow
implosion, sweeping up all the prefill plasma which had been
injected previously into the array interior. Since the mass
ablation phase determines the radial redistribution of array
mass prior to implosion, it is of critical importance in deter-
mining the timing and amplitude of the radiation pulse pro-
duced by the wire-array implosion. As has been argued in
Ref. 14, it is believed that there is an optimum mass distri-
bution for maximum radiation power.

In this paper we attempt to elucidate the physics of the
mass ablation phase, which has been studied previously in
the context of astrophysics17 and inertial confinement
fusion,18–21 as well as in the wire-array Z-pinch
setting.14,22–24 The ablation process is in fact axially
nonuniform,13 but for the sake of simplicity we ignore this
axial dependence and focus on steady-state ablation in the
2D �r ,�� plane. By interrogating wire-array simulations, we
will gain intuition into the dominant physical mechanisms,
and develop a simple analytic ablation model which agrees
reasonably well with simulation. In particular we are inter-
ested in making a connection to the experimental observation
that mass ablation rate appears to vary with wire core
size,25,26 as well as the ratio of the interwire gap to core
size.27 The origin of this dependence has been addressed
theoretically by Sasorov,28 in the limit in which the azi-
muthal width of the coronal plasma surrounding wire cores is
much less than the interwire gap.

II. SIMULATION DESCRIPTION

Much of the work in this paper revolves around a suite
of steady-state wire-array simulations, run using
ALEGRA-HEDP,29–31 a resistive magnetohydrodynamica�Electronic mail: epyu@sandia.gov
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�MHD� code developed at Sandia National Laboratories,
which also includes thermal and radiative transport model-
ing. Although ALEGRA supports more advanced radiation
transport methods �i.e., multigroup implicit Monte Carlo�
and allows for separate ion and electron temperatures, all
simulations here employ a single-group radiation diffusion
model and assume equal ion and electron temperatures. As
remarked earlier, wire-array dynamics are 3D in nature, but
we restrict our simulations to the �r ,�� plane �see Fig. 1�.

As pointed out by Chittenden,23 ideal MHD wire-array
simulations driven with a constant current eventually reach
an equilibrium, with the exception of the precursor pinch
region on axis, which is continually accumulating mass. In
this paper we are interested in the physics of steady-state
wire ablation, which will turn out to be determined by a thin
layer surrounding the wire cores �see Sec. III A�. All simu-
lations are run with constant current drive. Furthermore, all
arrays are of fixed radius R0=0.01 m, and consist of tungsten
wires of varying number N, and initial radius rw. The simu-
lations are initialized with a cold �T=1450 K� core at solid
density ��=1.93�104 kg/m3� of radius rw �varying from
5 to 35 �m�, surrounded by a hot �T=4�105 K�, low den-
sity ��=0.19 kg/m3� plasma corona, of radius 2rw. The equi-
librium reached is insensitive to the initial conditions of the
corona, which rapidly expands and is swept downstream to-
wards the array axis, thereby establishing the equilibrium
shown in Fig. 1. The core initial condition is probably unre-
alistically cool and dense. Recall that the cores carry all the
current �and are therefore subject to Joule heating� until the

formation of coronal plasma. Experimental images of tung-
sten cores reveal that, at this time, cores are heated suffi-
ciently that they are no longer solid density objects, but
rather comprise a complicated liquid droplet/vapor
mixture.32,33

Although our core initial condition may be unrealistic,
we are interested here less on simulating exact experimental
conditions, and more on understanding the physics govern-
ing an idealized case of wire ablation, namely, the case of a
hot corona ablating a stationary, cold core, which is acting
solely as a mass source. To this end, the exact initial condi-
tions of the core are not so important, so long as the tem-
perature remains cool enough that the core does not begin to
expand appreciably.

ALEGRA uses high fidelity equation of state tables34

and electrical conductivity models �based on quantum mo-
lecular dynamic simulations35�. In these simulations, how-
ever, we reduce the core electrical conductivity �c by a factor
of 100, thereby artificially driving current completely out of
the core. The reasons for this reduction are twofold. Al-
though the corona carries the majority of current, if �c is left
unmodified, the core carries enough current that the resulting
Joule heating continuously increases the core temperature,
causing it to expand and eventually vaporize. Such a time-
varying condition is not compatible with our goal of achiev-
ing a steady state. A second reason for reducing �c stems
from a comparison between experiment and simulation,25,36

which suggests that in the unmodified simulations, cores va-
porize �due to Joule heating� too early, and the resulting
plasma shell implosion begins prematurely relative to experi-
ment. Much better agreement with experiment, both in terms
of the start of array implosion, as well as x-ray backlighting
radiographs of the array taken during the mass ablation
phase, is found by reducing �c by at least a factor of 10.

The physical reason for the need to reduce the core con-
ductivity is open for debate. Since in reality tungsten cores
consist of a liquid droplet/vapor mixture, a possible explana-
tion is provided by percolation theory,37 which states that
once the average density of the mixture falls below �L /3,
where �L is the liquid density, the mixture becomes a very
poor conductor. The idea here is that the vapor separating
liquid droplets is poorly conducting, whereas the droplets
themselves constitute a “good” conductor. Consequently
once the separation between droplets exceeds a critical value,
a conducting path no longer exists between droplets.

Note that �c is effectively a knob by which we can ex-
plore two different limits of wire ablation. If �c is left un-
changed, the dominant core ablation mechanism is Joule
heating, and the entire volume of the core heats, expands,
and vaporizes prematurely relative to experiment. Con-
versely, if �c is reduced by a factor of 100, Joule heating no
longer plays a role in the core; the body of the core remains
cool and unexpanded, while only the core surface experi-
ences heating due to radiation transport from the surrounding
hot plasma corona �electron thermal conduction is secondary
to radiation transport, as we will show�. In this paper, we will
focus on this limit, in which the core functions only as a

FIG. 1. �Color� �r ,�� simulation of an N=30, R0=0.01 m wire array, with
wire cores of radius rw=25 �m. Note the presence of cold wire cores sur-
rounded by hot plasma corona �the temperature scale is in units of Kelvin�,
which is continuously swept towards the array axis. In actuality, only a
single wedge of the array is simulated, with periodic boundary conditions
applied at the azimuthal boundaries �denoted by solid white lines�. The inner
boundary of the mesh, located at R=1.0�10−4 m, is rigid �i.e., reflective�.
Resolution is fairly high in and around the wire core �cell size 1 �m�, in
order to resolve the steep gradients which develop there.
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passive mass source, slowly ablating due to radiation trans-
port.

III. GENERAL LAYER PHYSICS

A. Resistive layer

In this section we begin consideration of the physics
governing steady-state mass ablation, in the context of resis-
tive MHD. The importance of nonideal MHD effects in the
Z-pinch setting has been considered previously by Oliver
and Mehlhorn.38 Recall that the MHD Ohm’s law

E + v � B = �j , �1�

coupled with Faraday’s law and Ampére’s law, yields the
time variation of the magnetic field

�B

�t
= � � �v � B� +

�

�0
�2B , �2�

where we have assumed the plasma resistivity � is spatially
constant, for the sake of simplicity. All other variables in
Eqs. �1� and �2� have their usual meaning, and SI units are
used throughout. The first term on the right-hand side de-
scribes the usual convection of magnetic field with the
plasma flow, a consequence of the plasma and field being
frozen together in the ideal ��→0� limit. The second term
on the right-hand side of Eq. �2� describes how finite �
breaks this frozen field constraint, and permits diffusion of
the magnetic field through the plasma. Consider the ratio of
terms �� �v�B� / �� /�0��2B. For a system with a charac-
teristic length scale L and characteristic plasma velocity v,
this ratio can be expressed as a dimensionless quantity, the
so-called magnetic Reynold’s number:

RM =
�0vL

�
. �3�

Consequently a flow satisfying RM �1 is basically ideal
MHD flow, whereas RM 	1 corresponds to nonideal flow in
which magnetic diffusion is dominant.

As has been described elsewhere,14,23 the Z-pinch
plasma can be divided into two regions. The first region en-
compasses most of the pinch, extending from the array axis
out to nearly the array radius R0. The scale length of the
region is “large” �L�R0�, and the typical velocity is “fast”
�i.e., super-Alfvénic�. Hence, RM �1 and the flow is essen-
tially ideal. This region was studied in Refs. 23, 39, and 40;
there it was found that the steady-state ideal MHD equations
in the pressureless limit possess analytic solutions for v

vA, where vA is the Alfvén speed, but solutions break down
at the trans-Alfvénic point, v=vA, leading to a natural con-
dition for the boundary of this first region.

This brings us to the second region, which constitutes a
thin boundary layer near the wire cores, at R�R0 �note that
R measures distance from the array axis, as in Fig. 1�. In this
layer plasma is accelerated from zero velocity �as it leaves
the core surface�, up to the Alfvén speed. In this thin layer,
the characteristic size is “small” and the characteristic veloc-
ity is “low” �v�vA�, so RM �1, as was shown more rigor-

ously in Ref. 41. Consequently nonideal �i.e., resistive� ef-
fects are important in the layer, which we henceforth refer to
as the resistive layer. Since within the resistive layer the
plasma satisfies RM �1, while in the bulk of the pinch RM

�1, it is natural to expect that the transition between the two
regions occurs at RM �1. From Eq. �3�, this condition en-
ables an estimate of the size 
 of the resistive layer:


 �
�

�0v
. �4�

For the case R0=0.01 m, N=300, I=3 MA, rw=15 �m, typi-
cal values for the resistivity and velocity in the resistive layer
are v�2.5�104 m/s and ��1.6�10−5 � m, which sug-
gests 
�0.5 mm. Note that in Fig. 2, the resistive layer may
be identified as the plasma region to the right of the contour
C, and includes the much thinner “ablation layer,” which will
be discussed in the following section.

In this paper we focus on the physics of wire ablation.
As was pointed out by Sasorov,14 we can address this prob-
lem by restricting attention to the resistive layer. We now
attempt to elucidate the general physics of the resistive layer
by application of the steady-state conservation laws of mass,
momentum, and energy. As noted in Ref. 14, the resistive
layer, being thin compared to the array radius, can be ap-
proximated in the Cartesian sense, with coordinate x playing
the role of R, the radial distance from the array axis. Appli-
cation of the MHD momentum equation

�� �v

�t
+ v · �v� = − �p + j � B �5�

to the steady-state, 1D Cartesian case yields

�v
dv
dx

= −
dp

dx
−

d

dx
� B2

2�0
� , �6�

where we have assumed a purely “azimuthal” global mag-
netic field B=Bŷ, and � and p represent the plasma mass
density and pressure, respectively. Since �v is a spatial con-
stant, by steady-state mass conservation, Eq. �6� can be inte-
grated to yield a magnetic Bernoulli-type equation:

FIG. 2. �Color� Resistive layer region for rw=15 �m, N=300, I=3 MA.
Recalling that we only simulate a single periodic wedge of the entire array
�see Fig. 1�, this figure focuses on that region of the wedge near the wire
core. The contour C lies at R=9.5 mm, 0.5 mm downstream of the wire core
and approximately the trans-Alfvénic point �and hence the inner boundary
of the resistive layer�, W denotes the wire boundary �T=1.5�104 K con-
tour�, and B denotes the outer boundary of the region, which lies in the
vacuum region outside the array. The surface S encompasses the region in
the x -y plane between contours C and B, excluding the wire core region
enclosed within contour W. Also plotted are plasma flow velocity vectors.
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�v2 + p +
B2

2�0
=

B0
2

2�0
, �7�

where we have assumed at the core surface, B=B0, v=0, and
p=0. We can derive an order of magnitude estimate on the
characteristic plasma velocity in the resistive layer by noting
from simulation that the resistive layer carries a significant
fraction of the total current. In the limit in which the resistive
layer carries nearly all the current, at the inner edge of the
resistive layer, B�0 from Ampére’s law. Coupled with the
fact that p is small compared to the magnetic pressure, ex-
cept very near the core, Eq. �7� yields

�v2 �
B0

2

2�0
, �8�

i.e., the characteristic velocity in the resistive layer is
Alfvénic, as is reasonable:

v �
B0

	�0�
� vA. �9�

Let us now consider the full MHD energy equation

�

�t
��e +

1

2
�v2� + � · 
��e +

1

2
�v2 + p�v − � � T + S�

= E · j , �10�

where e is the internal energy per unit mass, S is the energy
flux due to radiation transport, � is the thermal conductivity,
and E · j is the electrical power imparted to the system. It is
enlightening to integrate Eq. �10� over the resistive layer
surface S, as shown in Fig. 2, which will permit us to exam-
ine all the different energy fluxes into and out of the resistive
layer:

�
S

E · jdS = �
S

�

�t
��e +

1

2
�v2�dS + �

C
��h +

1

2
�v2�v · ndl − �

C

� � T · ndl + �
C

S · ndl

+ �
B

S · ndl + �
W
��h +

1

2
�v2�v · ndl − �

W

� � T · ndl + �
W

S · ndl . �11�

In the above equation, n represents a unit vector normal
to the contour of interest and pointing outwards from the
surface S, and dl is a line element lying along the contour.
Also, we have introduced the specific enthalpy h:

h = e +
p

�
. �12�

Figure 3 plots the magnitude of the dominant terms. The
dominant power input into the resistive layer is the electrical
power 
SE · jdS, and the dominant power output balancing
the electrical power is the convective term 
C��h
+ 1

2�v2�v ·ndl, i.e.,

�
S

E · jdS � �
C
��h +

1

2
�v2�v · ndl . �13�

The gradual temporal decay in 
SE · jdS can be associated
with the diffusion of magnetic field through the resistive
layer. We have neglected to plot the energy transported to the
core via radiation �
WS ·ndl� and thermal conduction
�−
W��T ·ndl�, as well as the term 
W��h+ 1

2�v2�v ·ndl,
which are in fact negligible compared to the electrical power
and convective terms, and consequently will not play a role
in the overall determination of the resistive layer tempera-
ture.

We can be even more specific about the dominant energy
balance in the resistive layer by noting from Eq. �1�,

E · j = �j2 + v · �j � B� . �14�

Consequently Eq. �13� can be written as

�
S

�j2dS + �
S

v · �j � B�dS

� �
C

�hv · ndl + �
C

1

2
�v2v · ndl . �15�

We must point out that the approximate balance represented
in Eq. �15� is relevant only to high wire number arrays �i..,
N�300�, where, due to the small interwire gap, the cores
and relatively dense surrounding corona effectively play the
role of a hohlraum wall, thus trapping radiation inside the
array. As N decreases and the interwire gap increases, the
array acts as more of a “leaky” hohlraum. Consequently, ra-
diation flow out of the array becomes more important and
must be included in Eq. �15�.

Using j�B0 /�0
, coupled with Eqs. �4� and �9�, we find
that the first, second, and fourth terms in Eq. �15� can be
estimated to have the same order of magnitude B0

2R0v /�0

�recall that R0 represents the array radius�. In fact, as can be
inferred from Fig. 3, simulation suggests all four terms in Eq.
�15� are of the same order of magnitude, permitting us to
obtain an estimate of the enthalpy by balancing the convec-
tive enthalpy term �
C�hv ·ndl� with any of the remaining
three terms: �hvR0�B0

2R0v /�0. Hence, the overall enthalpy
of the resistive layer is on order the magnetic energy density,
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h��,T� �
B0

2

�0�
. �16�

Note that all of the main relations so far, Eqs. �4�, �9�, and
�16�, were found in Ref. 14.

B. Ablation layer

Up to this point, we have not mentioned the actual abla-
tion mechanism. To address this, we will study the dominant
energy transfer close to the core. We rewrite the steady-state
energy equation:

� · ���h + 1
2�v2�v − � � T + S� = E · j . �17�

Close to the core there exists a region of approximate cylin-
drical symmetry in which v�vrr̂ �see Fig. 2�, and � ,vr ,T are
approximately functions only of r, the radial distance from
the core center �although B and jz will not possess this sym-
metry�. In Fig. 4 we plot the terms in the above equation, as
a function of r, and find that the rate at which energy is
imparted to the plasma electrically �E · j� and via thermal
conduction �−� ·��T� is secondary. In a thin layer
��20 �m� near the wire core, which we will henceforth re-
fer to as the ablation layer, the dominant heating mechanism
is in fact radiation �� ·S�, which is in turn balanced by the
dominant cooling mechanism, convective energy flow ���h
+ 1

2�v2�v�.
Consequently, in the ablation layer, the energy equation

reduces to

� · ���h + 1
2�v2�v + S� � 0, �18�

which, using cylindrical symmetry, reduces to

r���h + 1
2�v2�vr + Sr� � const. �19�

As will be argued in the next section, the constant vanishes,
yielding

��h + 1
2�v2�vr + Sr � 0. �20�

In Fig. 5 we plot these two terms, as well as the heat flux due
to thermal conduction. Note that close to the core, there is
indeed a region where the radiation flux is balancing the
convective energy flux. Note also that the above two terms
are very small at the core surface, which explains why we
were able to ignore 
W��h+ 1

2�v2�v ·ndl and 
WS ·ndl in go-
ing from Eq. �11� to Eq. �13�. However, both terms rapidly
increase as we move away from the core surface, allowing

FIG. 3. �Color� Magnitude of dominant power flows into and out of the
resistive layer, for rw=15 �m, N=300, I=3 MA. Since we only simulate a
single periodic 2D �r ,�� wedge, all powers are measured per unit axial
length of the array, and furthermore must be multiplied by N, the number of
wires, to obtain the value relevant to the entire array. The components
shown are electrical power deposited within the resistive layer 
SE · jdS
�solid black�, enthalpy and kinetic energy convected out 
C�vx�h+ 1

2v2�dl
�solid red�, radiation flux out 
BS ·ndl �green�, radiation flux in 
CS ·ndl
�blue�, and �� /�t
��e+ 1

2�v2�dS� �magenta�. We also plot 
S�j2dS �black
dashed� and 
C�hvxdl �red dashed�. In fact the current is ramped up over a
period of 40 ns to its target steady-state value; the time at which this value
is reached is defined as t=0.

FIG. 4. �Color� Divergence of energy flows for rw=15 �m, N=300, I
=3 MA. The components are E · j �red�, � · ��h+ 1

2�v2�v �black�, −� ·S
�green�, and � ·��T �blue�. As in Fig. 2, r represents distance from the core
center. To be precise, these values are computed along a lineout extending
from the core center and oriented in the ŷ direction. The dashed vertical line
denotes the location of the core surface, which has ablated down to r
=14 �m. These profiles, as well as all subsequent profiles, are shown at a
time at which ṁ has reached its equilibrium value.

FIG. 5. �Color� Energy fluxes near the wire core, for rw=15 �m, N=300,
I=3 MA. The components are convective energy flux ��h+ 1

2�v2�vr �black�,
radiation flux −Sr �green�, thermal conduction flux �dT /dr �blue�, and ki-
netic energy flux � 1

2�v2�vr �red�. The dashed vertical line represents the
location of the core surface.
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them to become the dominant terms in the energy equation
within the ablation layer.

Since the contribution to the convective energy flux from
kinetic energy � 1

2�v3� is relatively small, Eq. �20� further re-
duces to

�hvr � − Sr. �21�

In the limit that the corona is optically thick enough that it
radiates like a black body, −Sr��T4, where T is a character-
istic temperature of the corona and � is the Stefan-
Boltzmann constant, we obtain our final relation governing
ablation physics in the layer

�h��,T�cs��,T� � �T4. �22�

In the above equation we have noted that within the ablation
layer, the plasma velocity is of order the sound speed cs. We
can justify this estimate by noting that within the ablation
layer, the magnetic pressure varies little �its characteristic
scale length being the much larger resistive layer�. Conse-
quently, from Eq. �7�, we see that the increase in �v2 is
balanced by a decrease in p, implying v�cs. Note that there
are 3 length scales for variations in v: �1� the ablation layer
near the core, over which v is accelerated �by pressure� to on
order the sound speed, �2� the resistive layer over which v is
accelerated to the Alfvén velocity, and finally �3� the remain-
ing bulk of the array, roughly of size R0 �the array radius�,
over which the flow is accelerated to super-Alfvénic speeds.

C. Scaling with current drive I

Note that, given explicit expressions for cs�� ,T� and
h�� ,T�, Eqs. �9�, �16�, and �22� constitute three equations in
the four unknowns � ,v ,T ,B0, which are to be interpreted as
values “characteristic” of the corona in the resistive layer.
Consequently, we can express � ,v ,T in terms of B0, which is
in turn linearly related to the drive current I via B0

��0I /2�R0. Hence we can find how typical values of the
corona density, velocity, and temperature scale with the cur-
rent drive I.

To this end, we adopt an expression for the specific en-
thalpy from Ref. 18,

h = h0�−0.14T1.6, �23�

which produces good agreement with our simulation, and
also assume

cs = c0T , �24�

which is consistent with the observation �from simulation�
that 1+Z�T, where Z represents the ionization state of the
plasma. In Eqs. �23� and �24�, h0 and c0 are constants, where
h0=2.1 J /kg�kg/m3�0.14�1/K1.6� and c0=0.05 m/s�1/K�.
Using Eqs. �23� and �24�, Eqs. �9�, �16�, and �22� yield the
following scaling relations:

� � B0
1.09, �25�

T � B0
0.67, �26�

v � B0
0.46. �27�

Note that scaling relations were obtained previously by
Sasorov,14 in the case where electron thermal conduction,
rather than radiation transport, is the dominant heating
mechanism. Recall that Eqs. �25�–�27� predict how “charac-
teristic” values of � ,v ,T in the corona scale with global
magnetic field B0, or equivalently, drive current I �for fixed
array radius R0�. Comparing these scaling predictions with
simulation is nontrivial because all three variables vary spa-
tially over the resistive layer, and it is not clear which value
to use as our “characteristic” value.

One quantity which is spatially constant is the mass ab-
lation rate ṁC=
C�R��v ·ndl, where C is a contour down-
stream of the wire, located at fixed R �see Fig. 2�, n is a unit
vector normal to C, and dl is a differential line element lying
along C. Note that physically ṁC measures the mass per unit
time �per unit axial length of the pinch� flowing through the
contour C. In the steady state, ṁC must be independent of the
contour location R, by mass conservation, i.e., to avoid mass
build up �or loss�, the flux of mass entering and leaving a
region must be equal.

Figure 6 plots ṁC for the contour C fixed at R
=9.5 mm. In addition, we plot an alternative measure of the
ablation rate ṁwire, defined as the rate at which the wire core
is losing mass due to ablation. Here, we define the wire core
as any cold material satisfying T�1.5�104 K, roughly the
critical point for tungsten. In Fig. 2, any mass contained
within the boundary W is considered core material. Note that,
as we would expect, in equilibrium the rate at which mass is
burning off the wire, ṁwire, is equal to the rate at which mass
is flushed downstream, i.e., −ṁwire= ṁC� ṁ. The steady-state
value ṁ is denoted by the dashed line. Note that equilibrium
cannot be maintained forever; material is continually stagnat-
ing on the array axis and eventually begins to affect plasma
conditions near the cores.

Since ṁ�2��vR0 /N, from Eqs. �25� and �27� we can
obtain the scaling for the mass ablation rate with global mag-
netic field B0:

FIG. 6. Plot of −ṁwire �solid� and ṁC �dashed-dotted� for N=300, rw

=15 �m, I=3 MA. The steady-state value is denoted by the dashed line.
Note the ablation rates here are representative of a single wire; to obtain the
total ablation rate we must multiply by N.
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ṁ � B0
1.55 � I1.55, �28�

where in the last relation we have assumed R0 is fixed. In
Fig. 7 we compare this scaling with the results of constant
current simulations, where array radius R0 was held fixed. It
appears that this predicted scaling is too strong, but nonethe-
less fairly close to the scaling produced by simulation. Note
that the scaling in Eq. �28� depends fairly sensitively on the
exponents used in the constitutive relations �23� and �24�.

IV. SIMPLE ABLATION MODEL

In the previous section we outlined the dominant physics
governing the resistive layer. There we found the existence
of an even thinner region surrounding the core, the ablation
layer, where the global magnetic field is of secondary impor-
tance. Namely, the flow is approximately cylindrically sym-
metric, implying j�B is dominated by �p in the momentum
equation, and the magnetic field �or more specifically Joule
heating� is also secondary in the dominant energy balance,
which primarily involves radiation transport and convective
enthalpy flux.

Consider the possibility that the ablation rate is governed
solely by the physics in this thin region of cylindrical sym-
metry. In this case we can gain considerable insight by
switching our attention away from the problem of a wire
ablating in a wire array, and focusing instead on the far sim-
pler problem of a cylindrical core embedded in a heat bath
and ablating due to radiation. This reduced problem is also
cylindrically symmetric and is free of the complication of a
magnetic field. We assume that far from the core the heat
bath is maintained at temperature T0, i.e.,

T�r → �� = T0. �29�

In this picture the role of B is to determine the temperature
T0, which, being a characteristic temperature of the plasma
corona, will scale with magnetic field as in Eq. �26�.

Let us now attempt to determine the mass ablation rate
for the reduced problem described above, delaying justifica-
tion of its relevance to Sec. V. To reiterate, we consider the

case of a cold �T=0� cylindrical core of radius rw, placed in
a large heat bath, with the ablated plasma surrounding the
core satisfying the boundary condition �29�. As usual, we
will limit ourselves to steady state. In the absence of electri-
cal current the full energy equation �10� reduces to

� · ���h + 1
2�v2�v + S� = 0, �30�

where we have assumed radiation conduction is dominant
over electron thermal conduction. As demonstrated in the
Appendix, this is a reasonable assumption for densities and
temperatures of interest. Assuming cylindrical symmetry and
h�

1
2v2 �a good approximation near the core, as evidenced

by Fig. 5�, Eq. �30� simplifies to

ṁ

2�
h + rSr = const, �31�

where the constant will be shown to be zero. Here we have
introduced the mass ablation rate ṁ�2��vrr, which we can
identify as the mass per unit time �per unit axial length of the
core� crossing through a circular contour of radius r. Note
that the equation of mass conservation, in the steady-state
limit and applied to a cylindrically symmetric system, yields

�vrr = const, �32�

so that ṁ is a spatial constant. Now, Eq. �31� is basically the
same as Eq. �21�, derived in the previous section, and the
interpretation remains the same: the radiation flux towards
the core �rSr� is balanced by the convective enthalpy flux
away from the core �ṁh /2��.

Ultimately we would like to integrate Eq. �31�, which
requires an explicit expression for the radiation flux S. We
adopt the radiation diffusion approximation

S = −
lc

3
� U , �33�

where l is the Rosseland mean free path and U is the radia-
tion energy density, which is sometimes used to define a
radiation temperature Tr:

U �
4�Tr

4

c
, �34�

where � is the Stefan-Boltzmann constant. Strictly speaking
the diffusion approximation holds only in the limit in which
the plasma corona surrounding the core is optically thick,
and U changes slightly over distances of order the mean free
path l. In fact, from our wire-array simulations, the resistive
layer is reasonably optically thick for high wire number, i.e.,
the optical depth 
dx / l�3 for N=300, where the integral is
taken across the layer, not including the core of course �note
that l is of order 100 �m in the integral and throughout the
bulk of the resistive layer�. However, U increases very rap-
idly near the core, on order distances �10 �m, which is also
roughly the mean free path there. Consequently the limits of
the diffusion approximation are strained at the core/corona
interface. Nonetheless as a rule of thumb, even in such cases
the diffusion approximation yields qualitatively correct
results.42

FIG. 7. Scaling of the mass ablation rate for a single wire, ṁ, with I, in the
case N=300, rw=15 �m. The crosses are simulation results, while the
dashed line represents ṁ� I1.55, the prediction from our scaling relations. A
better fit is provided by the solid line, ṁ� I1.4.
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Returning to our reduced problem, in general the mean
free path l, as well as the enthalpy h, are functions of both
temperature and density

h = h0�mTn, �35�

l = l0��T�, �36�

where h0 and l0 are constants, and typical values for the
exponents are m=−0.14, n=1.6, �=−1.3, �=1.5 �note that
for this value of � and �, l0�3�10−11 m�kg/m3�1.3 K−1.5�.18

It follows that the boundary condition T�rw�=0 implies
h�rw�=Sr�rw�=0, so that the constant in Eq. �31� vanishes.
Substituting Eq. �33� into Eq. �31�, the energy equation be-
comes

ṁ

2�
h��,T� =

rl��,T�c
3

dU

dr
. �37�

To obtain a rigorous solution of the problem, we must simul-
taneously solve the steady-state equation of radiation trans-
port

� · S =
c

l
�Up − U� , �38�

where

Up =
4�

c
T4 �39�

is the equilibrium radiation energy density, as well as the
steady-state momentum equation

�vr
dvr

dr
= −

dp��,T�
dr

, �40�

and steady-state equation of mass conservation �32�, which
constitute four equations in four unknowns �� ,vr ,T ,U�. Ob-
taining an analytic solution to this system of equations may
not be possible, so we instead focus our efforts on integrating
Eq. �37�, using approximations garnered from simulation.

It is tempting to assume a state of local thermodynamic
equilibrium �LTE� between the radiation and plasma: U
�Up, or equivalently T�Tr �from Eqs. �34� and �39��,
which effectively allows us to discard Eq. �38�, since U has
been expressed in terms of T. However, such an approxima-
tion only holds when T varies slowly over a mean free path
l, which is not the case near the core. Furthermore U�Up

implies � ·S=0, from Eq. �38�, and consequently from Eq.
�31�, dh /dr=0. In fact h is a strongly varying function of r,
owing to the rapid increase in T away from the core �cf. Fig.
9�, thus invalidating the assumption U�Up. Physically we
expect that near the core, U
Up, so that � ·S�0, meaning
that there is a net flux of photons into the region, consistent
with radiative heating of the corona. This heating is balanced
by a cooling of the region convectively, i.e., � · ��hv�
0.

Although we cannot assume U�Up, and consequently
T�Tr, we can get a very rough relation between T and Tr by
considering the energy equation �31� ṁh /2�=−rSr in the
limit in which all photons are traveling towards the core.
Such an approximation is justified sufficiently close to the
core, where very few photons are traveling radially outward

�the core being too cold to radiate significantly�, and most
photons, having been “born” in hot regions further from the
core, are travelling radially inwards towards the core. In this
limit, the radiation flux is related very simply to the radiation
energy density via the beam-like relation S�−cU /2.42 Con-
sequently, the energy equation can be written

ṁ

2�
h��,T� � r

cU

2
. �41�

Recalling that U=4�Tr
4 /c and adopting the dependence of

the enthalpy h on density and temperature as in Eq. �23�, we
obtain a relation between T and Tr:

Tr � � ṁh0

4��
�1/4 T0.4

r1/4�0.035 , �42�

where the term enclosed in parentheses is a spatial constant.
If we were to ignore the relatively weak dependence on �
and r, we can conclude Tr�T0.4. In fact, from simulation, a
better fit is provided by

Tr = Tr0T�, �43�

where �=0.6 �regretfully we offer no physical justification
for this value� and Tr0 is a constant �see Fig. 9�.

Assuming that Tr is related to T as in Eq. �43�, the en-
ergy equation �37� reduces to

m̃̇�m−�1

r
=

dT�−n+4�

dr
, �44�

where we have introduced m̃̇, which is different from ṁ only
by a constant factor:

m̃̇ =
3�� − n + 4��h0

16Tr0
4 l0��

ṁ

2�
. �45�

Ultimately we are interested in the mass ablation rate ṁ and
its dependence on the wire size rw, the bath temperature T0,
and details of the density profile. If the density profile were
known, we could obtain ṁ by integrating Eq. �44� from r
=rw to r→� and using the boundary conditions T�rw�=0 and
T�r→��=T0. In other words, the mass ablation rate is deter-
mined by the boundary conditions of the problem and is thus
an eigenvalue of Eq. �44�, as has been noted previously.14,17

Due to � being unknown, we cannot perform this inte-
gration, but note that if it were not for the density depen-
dence, we could not satisfy our boundary condition T�r
→��=T0. Indeed, in the case �=�0=const, the solution of
Eq. �44� yields

T = �m̃̇�0
m−� ln�r/rw��1/�−n+4�, �46�

which diverges as r→�.
Now, rather than attempting to solve the coupled energy,

radiation, and momentum equations in order to obtain a den-
sity profile, we instead consider the “reasonable” profile,
valid in the plasma region r
rw,
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� =
�0

� r − rw

s
�� , �47�

where s is an arbitrary fixed length and �0���rw+s�. This
profile has the undesired property that it diverges as r→rw,
but it is nonetheless seen to provide an excellent fit to the
simulation �see Fig. 10�. With such a profile, integration of
Eq. �44� leads to an integral of the form

�
rw+�

� dr

�r − rw��r
. �48�

Note that we integrate from r=rw+�, rather than r=rw, so as
to avoid the singularity in Eq. �47�. In the case �
0, Eq.
�48� can be evaluated in closed form43

�
rw+�

� dr

�r − rw��r
=

1

���F�1,�;1 + �;−
rw

�
� , �49�

where F is the hypergeometric function. In the case 0��
�1, the integral converges in the limit �→0, resulting in

�
rw

� dr

�r − rw��r
=

�

rw
� sin ��

. �50�

If �
1 we note that in the limit rw /��1, we can use the
asymptotic relation44

F�1,�;1 + �;−
rw

�
� �

�

rw
F�1,1;1 + �;1� . �51�

Noting that, for �
1,

F�1,1;1 + �;1� =
��1 + ����� − 1�

����2 , �52�

where � is the gamma function, and also that ��1+��
=�����, we finally obtain the result

�
rw+�

� dr

�r − rw��r
�

1

��−1�� − 1�rw
. �53�

This approximation is valid for �
1 and � small �i.e.,
rw /��1� but finite. Consequently, substitution of Eq. �47�
into Eq. �44�, integrating from r=rw+� to r→�, and apply-
ing the boundary conditions T�r→��=T0 and lim�→0T�rw

+��=0 yields, for ��m−��
1,

m̃̇ �
T0

�−n+4����m − �� − 1�rw���m−��−1

�0
m−�s��m−�� , �54�

while in the case 0���m−���1,

m̃̇ =
T0

�−n+4�rw
��m−��

�0
m−�s��m−��

sin���m − ����
�

. �55�

Equations �54� and �55� demonstrate the dependence of the
mass ablation rate, for a single wire in a heat bath, on all
variables of the system, namely, the asymptotic temperature
of the bath T0, the wire size rw, and the properties of the
density profile �0, �, and s. In the case ��m−��
1, the
dependence on the parameter �, which we must regard as
small but finite, is troubling, and Eq. �54� cannot be used to

predict absolute values of the ablation rate. Nonetheless we
hope that the predicted scalings with �0 ,T0 ,rw are correct.
The dependence on � in Eq. �54� can be traced back to the
singular nature of the integral, Eq. �53�, as �→0. To illus-
trate, for 0���m−���1, the integral is well-behaved as �

→0 �see Eq. �50��, and consequently m̃̇, expressed in Eq.
�55�, is independent of �.

V. COMPARISON TO SIMULATION

We have described in the previous section a 1D �radial�,
steady-state model for wire ablation, namely, a single wire
ablating �due to radiation transport� in an infinitely large heat
bath with asymptotic temperature T0. We hope that such a
description is relevant to the much more complicated prob-
lem of a wire ablating in a wire array. Note that for our
model to be applicable, the mass ablation rate must be driven
by physics in a region close to the wire core, where flow is
still cylindrically symmetric, and the global j�B has not yet
broken this symmetry. To test the validity of our model, we
compare the prediction of the final result of our theory,
namely, Eq. �54�, with the results of simulation.

At this point we simplify Eq. �54� by setting the expo-
nents for the enthalpy and radiation mean free path, as de-
fined in Eqs. �35� and �36�, to m=−0.14, n=1.6, �=−1.3,
�=1.5, as in Ref. 18. Note that such fits appear to be in
excellent agreement with simulation. We also set �=0.6,
where � was defined in Eq. �43�, once again in accord with
simulation. Finally, as will be shown to be the case later, we
assume that Eq. �47� is a good fit to the simulation density
profile, with a fixed value of �, i.e., �=1.1. Consequently,
��m−��=1.276
1 and Eq. �54� yields the scaling relation

ṁ �
T0

2.3rw

�0
1.16 . �56�

Note that in the above equation we have omitted the depen-
dence on � and s, which are regarded as fixed.

The two major results we would like to extract from Eq.
�56� are the scaling of the mass ablation rate ṁ with wire size
rw and wire number N. However, in general both �0 and T0

will vary with rw and N, and this exact dependence cannot be
predicted by our simple model. Consequently, our aim will
be to simply test the validity of Eq. �56�. Namely, we will
determine the dependence of T0 and �0 on rw and N via
simulation, and then compare the resulting scaling of ṁ, as
determined by Eq. �56�, with simulation results. If our simple
model, embodied in Eq. �56�, is indeed an adequate approxi-
mation to the more complicated physics being modeled in
the simulation, then the scaling of ablation rate as deter-
mined by Eq. �56� and simulation should agree.

A. Scaling with rw

We will first use Eq. �56� to predict how ṁ varies with
rw, leaving all other array parameters fixed. As mentioned
earlier, we cannot say that Eq. �56� predicts ṁ varies linearly
with rw, because T0 and �0 are also functions of rw. Our
model described in Sec. IV assumes a wire ablating in a large
heat bath, with boundary condition T�r→��=T0. In order
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for this model to apply to the wire-array simulation, there
must exist in simulations a region of cylindrical symmetry
about the core, over which the temperature rapidly increases
from a very low value �at the core surface�, to its asymptotic
value T0. We would expect that as we decrease the spacing
between wires in the array geometry, the spacing eventually
becomes so small that this cylindrically symmetric region
cannot exist, as is certainly the case in the limit in which the
cores are touching �i.e., shell limit�. With this in mind, so as
not to stress the limits of our model, we first consider a
relatively low wire number case, N=100, with relatively
large interwire gaps. Indeed if we plot � and T profiles along
the x and y directions �see Fig. 2 for orientation of x -y axes�
through the center of the core, we see a region of cylindrical
symmetry about the core �see Fig. 8�. Note that the tempera-
ture reaches its asymptotic value T0 within this cylindrically
symmetric region.

In addition to symmetry, another assumption in the deri-
vation is the scaling of T with Tr, i.e., Eq. �43�. In Fig. 9 we

demonstrate that �=0.6 provides a good fit in the region of
interest �i.e., r
rw�. As discussed earlier, near the core T
�Tr, which is consistent with radiation heating. Recall that
our simple model is based on the assumption that near the
core, the dominant heating mechanism is radiation, and the
dominant cooling mechanism, required for a steady state, is
convective enthalpy flux. Consequently, formally our model
can only apply in the region where T�Tr, i.e., from r=rw

=15 �m to r=35 �m. For larger radii, T
Tr, implying ra-
diation cooling. Hence, out here Joule heating now plays the
role of the dominant heating mechanism, and the crux of our
model, namely, the simple energy balance, Eq. �31�, no
longer holds.

In Fig. 10 we plot ��r−rw� for two values of rw, on a
log-log plot. Note that if � is described by Eq. �47�,

ln � = ln �0 + � ln s − � ln�r − rw� , �57�

then a plot of ln � vs ln�r−rw� will generate a straight line
with slope −�. Indeed the plots reveal that a straight line fit,
with �=1.1 is accurate, and in fact the slope � appears to be
an invariant of rw.

Now, �0, defined as the density at a distance s=10 �m
from the core surface, is a slowly varying function of rw, as
can be seen in Fig. 11. Note that the core boundary, rw, is
usually easily identified by an order of magnitude drop in
density as we move from core to corona. However, the 1 �m
cell resolution introduces an uncertainty into the exact loca-
tion of rw, which in turn translates into a significant uncer-
tainty in �0, due to the steepness of the density profile near
the core. In Fig. 11 we provide error bars to emphasize the
point that although �0�rw

0.3 yields a good fit, the measure-
ment of �0 is imprecise, and really simulations should be run
with finer resolution to reduce the uncertainty in �0.

Also, in Fig. 11 we demonstrate that T0 is a slowly de-
creasing function of rw. This is consistent with our previous
observation that the coronal density is increasing with rw,
coupled with our scaling relation �16� h�B2 /�0�.

With these scalings for �0 and T0, Eq. �56� predicts the
following scaling for the mass ablation rate with wire size:

FIG. 8. �Color� Lineout through the center of the core of T �solid� and � /10
�dashed� in x �red� and y �black� directions, for N=100, rw=15 �m, I
=3 MA. The fact that the profiles nearly overlay suggests a region of cylin-
drical symmetry about the wire, up to 70 �m.

FIG. 9. �Color� Lineout of T �eV� �black�, Tr �red�, and Tr,fit=103T0.6

�green�, for N=100, rw=15 �m, I=3 MA. The dashed vertical line separates
regions of radiation heating and cooling.

FIG. 10. Plot of � �kg/m3� as a function of r−rw ��m� on the log-log plot,
for rw=5 �m �lower solid curve� and rw=15 �m �upper solid curve�, in the
case N=100, I=3 MA. Also shown are fits �dashed lines� using Eq. �47�,
with �=1.1.
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ṁ � rw
2.3�−0.1�+1−1.16�0.3� � rw

0.42. �58�

The steady-state values of the ablation rate, as determined
from simulation, are plotted in Fig. 12, along with the pre-
diction of our theory, ṁ�rw

0.42. The agreement between the
two suggests that our simple model of ablation is an ad-
equate description of the physics in the simulation.

Having found that our simple model appears applicable
to the N=100 case, we now consider a higher wire number
case, N=300, which, lying closer to the shell-like limit, will
stress the assumptions of our model. In Fig. 13 we plot
ṁ�rw�. Note that unlike the N=100 case, ṁ appears to exhibit
two different scalings, depending on whether rw is greater or
less than, roughly speaking, 12 �m, which corresponds to a
core diameter to the interwire gap ratio d /��0.11; here �
�2�R0 /N.

The appearance of two different scaling regimes in ṁ is
reflected in �0�rw� and T0�rw�, plotted in Fig. 14. Error bars
on �0 should be included here, as in Fig. 11, but are omitted
in the interest of clarity. For rw�12 �m, we can fit �0

�rw
0.3 and T0�rw

−0.1 �which are the same scaling relations

found for N=100�, whereas for rw
12 �m, �0�rw
0.45 and

T0�rw
−0.16. From Eq. �56�, our simple model would predict

that for rw�12 �m, ṁ�rw
0.42, and for rw
12 �m, the scal-

ing is far weaker, ṁ�rw
0.11. These fits are plotted in Fig. 13

and once again appear in good agreement with simulation
results, implying that even in this high wire number case, our
simple model applies.

In the limit d /�→1, wire cores touch and the wire array
transitions to a purely one-dimensional �1D� shell, in which
case ṁ is independent of rw. We postulate that the weak
dependence of ṁ on rw for d /�
0.11 is a reflection of this
transition to the shell-like limit. That the transition to 1D
occurs for such a small value of d /� is not too surprising.
For instance, in the case of an array of current-carrying
plasma columns of diameter D, when the column size to gap
ratio D /� exceeds the critical value 1/�, magnetic field lines
can no longer penetrate through gaps between the columns.45

Consequently in this case the magnetic field distribution is
effectively 1D in the sense that it is equivalent to that of a
perfectly conducting shell.

In our case, current is not constrained to flow in well-
defined columns, but rather distributes itself throughout the
interwire gap. Therefore, perhaps a more appropriate condi-
tion for the transition to 1D may be found in Ref. 46, where
it is argued that the transition occurs, roughly speaking,
when 
 /�
1 �recall 
 is the resistive layer width�. Such a
viewpoint is not in contradiction to the simulations if we
define the magnetic Reynold’s number as the ratio of induc-
tive and resistive terms in the electric field �cf. Eq. �1��,
RM� =vB /�j �note that in the approximation j�B /�0
, RM�
��0v
 /�, exactly as in our previous definition for the mag-
netic Reynold’s number RM, Eq. �3��. As before, we can es-
timate the size of the resistive layer 
 as the location where
RM� �1 �cf. Eq. �4��, or equivalently where vB��j. Before
continuing we point out that such a definition for 
, which is
that used in Ref. 46, yields values smaller �by a factor of
about 5� than that using Eq. �4�. The discrepancy can be
traced to the fact that rather than j�B /�0
, more accurately
j�
B /�0
, where 
B is the change in B associated with
length scale 
. It follows that RM� ���0v
 /���B /
B�

FIG. 11. Plot of �0 �upper crosses� and T0 �lower crosses�, as determined by
simulation, as a function of rw ��m� for N=100, I=3 MA. The dashed line
is T0�rw

−0.1, while the solid line is �0�rw
0.3.

FIG. 12. Plot of ṁ vs rw for N=100, I=3 MA. The crosses represent the
steady-state values of ṁ obtained from simulation. The dashed line repre-
sents ṁ�rw

0.42, the scaling predicted by Eq. �58�.

FIG. 13. Plot of ṁ �kg/m/s� vs rw ��m� for N=300, I=3 MA. The crosses
represent the steady-state values of ṁ obtained from simulation. The solid
line is ṁ�rw

0.42, while the dashed line is ṁ�rw
0.11.
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�RMB /
B. For a typical 
 calculated using vB��j, 
B /B
�1/5, thereby accounting for the aforementioned factor of 5
difference in length scale. Calculating 
 using the condition
�j�vB, we find that in the case N=300, I=3 MA, as we
increase rw from 5 �m to 25 �m, 
 increases from 50 �m to
250 �m, suggesting that in between these limits the wire
array satisfies 
���=209 �m� and therefore transitions to
the 1D scaling, in accord with Fig. 13.

In Table I, we summarize the results of our rw scan, for
various values of N. Here, the scaling for ṁ is obtained from
Eq. �56�, and for all values of N, the predicted scaling agrees
well with that found from simulation. We observed a single
ablation rate scaling for N=60 and N=100, but the interwire
gaps are so large in these cases that we only explored very
small values of d /� �the maximum values of d /� sampled
for N=60 and N=100 were 0.057 and 0.08, respectively�.
For N
100, the ablation rate scaling exhibits multiple scal-
ing, depending on the value of d /�. Note that the “critical
value” of d /� at which the scaling changes, is only meant to
be taken as a rough estimate. In any case, we observe that for
d /� small enough, the scaling of ṁ, �0, and T0 all appear
fairly independent of N, and satisfy, roughly speaking, ṁ
�rw

0.4, T0�rw
−0.1, �0�rw

0.3. For larger values of d /�, the scal-
ing of �0 and T0 are modified such as to reduce the scaling of
ṁ with rw.

B. Scaling with N

Now we wish to address the question of how ṁ scales
with wire number N, keeping all other array parameters
fixed. Once again, from Eq. �56�, we must determine how the
asymptotic temperature T0 and characteristic density �0 scale
with N. These quantities are plotted in Fig. 15, for a fixed
value of rw=15 �m. While T0�N−0.19 yields a good fit,
�0�N� is not monotonic, and consequently we cannot use a
simple power law fit. Note, however, that if we assume �0

independent of N, then Eq. �56� predicts ṁ�N−�0.19�2.3

�N−0.44, which from the figure appears to be a good predic-
tion over N ranging from 60 to 300. For N
300, however,
which corresponds to d /�
0.14, ṁ scales more strongly
with N : ṁ�N−0.85.

VI. COMPARISON TO EXPERIMENT

Let us now investigate the relevance of these steady-
state simulations to experiment, which are of course time
varying. To this end we introduce Lebedev’s “rocket
model,”13 which assumes that the current is concentrated in a
thin layer near the wire cores. The j�B force acting in the
layer rapidly accelerates plasma towards the array axis until,
at the layer edge, plasma exhausts at an “ablation velocity”
vabl. Consequently, momentum balance yields a rocket-like
equation:

ṁtotalvabl = −
�0I2

4�R0
. �59�

Note that Eq. �59� is equivalent to Eq. �8�, since ṁtotal

=−2��vR0. As shown in Fig. 16 �originally published in
Ref. 27�, Lebedev has inferred from experimental data, taken
on the 1 MA MAGPIE facility at Imperial College, a depen-
dence of vabl on the ratio � /d, where ��2�R0 /N is the
interwire gap and d is the core diameter. Note that d is mea-
sured from radiography and represents the size of the dense
ablating core. In general it will be significantly larger than
the original wire diameter d0, because the core is actually

TABLE I. Scaling of ṁ with rw, for I=3 MA, R0=0.01 m.

N
ṁ�rw

a

a
T0�rw

−b

b
�0�rw

c

c

60 0.41 0.13 0.25

100 0.42 0.1 0.3

200 �d /��0.13� 0.42 0.1 0.3

200 �d /�
0.13� 0.31 0.1 0.4

300 �d /��0.11� 0.42 0.1 0.3

300 �d /�
0.11� 0.11 0.16 0.45

400 �d /�
0.13� 0.13 0.15 0.45

FIG. 14. �Color� Plot of �0 �kg/m3� �diamonds� and T0 �eV� �crosses� as a
function of rw ��m� for N=300, I=3 MA. We plot �0�rw

0.3 �dashed green
line� and T0�rw

−0.1 �solid green�, appropriate for rw�12 �m, and also �0

�rw
0.45 �dashed red� and T0�rw

−0.16 �solid red�, appropriate for rw
12 �m.
FIG. 15. �Color� ṁ �kg/m/s� �red crosses�, T0 �eV� �black crosses�, and �0

�kg/m3� �red diamonds� vs N for rw=15 �m, I=3 MA. We plot ṁ�N−0.44

�black dashed�, ṁ�N−0.85 �black solid� and T0�N−0.19 �green�.
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slowly expanding at the sound speed, due to the Joule energy
deposited in the core prior to corona formation. In contrast,
in our simulations d�d0, because we initialize cores at low
temperature, and suppress any subsequent Joule heating �see
Sec. II�.

Now, the fundamental quantity measured in simulation is
not vabl, but rather ṁtotal, the total ablation rate of the array,
i.e., ṁtotal=Nṁ, where ṁ is the ablation rate of a single wire
in the array. The variation of ṁtotal with d /� is shown in Fig.
17. To relate ṁtotal to vabl we note that Eq. �59� suggests that
if I and R0 are held fixed, as is the case in all simulations
shown in Fig. 17, then vabl�1/ ṁtotal. Consequently, if
ṁtotal��d /���, then vabl��� /d��. In Figs. 16 and 17 we plot
such a fit for �=0.25 and demonstrate reasonable agreement
between simulation and experimental trends. Because of un-
certainties in the rigor of comparison between simulation and
experimental results, however, we emphasize only the quali-
tative agreement, namely, weak and monotonic dependence
of ṁtotal �or vabl� on d /�.

Recall from the simulation results of Sec. V that in gen-
eral ṁ exhibits two branches of solution, depending on the
value of d /�, which we attributed to a transition to the 1D
shell-like limit. Roughly speaking, for d /��0.1, ṁ
�N−0.44rw

0.42, implying

ṁtotal = Nṁ � N0.56rw
0.42 � � d

�
�0.42

N0.14, �60�

whereas in the opposite limit d /�
0.1, ṁ�N−0.85rw
0.11, so

that

ṁtotal � N0.15rw
0.11 � � d

�
�0.11

N0.04. �61�

There are several interesting points to extract from these ex-
pressions. In the case d /�
0.1, the extremely weak depen-
dence on N in Eq. �61� implies that ṁtotal is a function mainly
of d /�, in agreement with Fig. 17. In contrast, for d /�
�0.1, Eq. �60� predicts ṁtotal is not only a more strongly
varying function of d /� �i.e., ṁtotal��d /��0.42, plotted in
Fig. 17�, but also exhibits a non-negligible dependence on N,
for fixed d /�. Indeed, in the case d /��0.1, Fig. 17 demon-
strates that for fixed d /�, ṁtotal increases with N, qualita-
tively in accord with Eq. �60� �although N0.22 appears to be a
better fit than N0.14�.

Recently Sinars25 has inferred from radiographic mea-
surements, taken on the 20 MA Z facility at Sandia National
Laboratories, that ṁtotal increases with core diameter d �N
=300 and R0=0.01 m were held fixed in these experiments�.
Cuneo26,47 has attempted to quantify this dependence. Using
“small” wires �d0�12 �m�, he finds ṁtotal�d0

�, where � lies
between 0.66 and 0.92, which is considerably stronger than
our scaling obtained from the steady-state simulation ṁtotal

�d0.42 �recall that in our simulations d�d0�.
A natural question to address at this point is the rel-

evance of the steady-state analysis to the actual time-varying
case. If the time scale on which equilibrium is reached is
short compared to that on which the current I varies, then the
system might reach a quasiequilibrium. The mass ablation
rate is determined by physics within the resistive layer. Con-
sequently we expect that equilibrium within the layer is es-
tablished on either a convective time scale, �convect�
 /v, or
magnetic diffusive time scale, �diffuse��0
2 /�, where 
 is
the resistive layer width. Since the layer width is defined by
RM =1 �which we recall signifies that magnetic diffusion and
convection are of equal strength in the resistive layer�, the
two time scales are in fact the same

�diffuse �
�0


�

�

�0v
�




v
� �convect � � , �62�

where we have used Eq. �4�. For N=300, I=3MA, rw

=15 �m, R0=0.01 m, typically v�2.5�104 m/s and �
�1.6�10−5 � m, yielding ��� /�0v2�20 ns. Note from
Fig. 6 that for these same array parameters the actual time
taken for ṁ to reach equilibrium is about 160 ns, or 8�.

In general ��� /�0v2 will vary significantly with N, rw,
and I. Geometrically we can reduce � by decreasing the core
size to gap ratio d /��rwN, which will decrease the charac-
teristic � in the resistive layer and consequently increase v

FIG. 16. Variation of vabl with the ratio of gap to core size, � /d, as deter-
mined by experimental data �courtesy of S. Lebedev�. Also shown is the fit
vabl��� /d�0.25.

FIG. 17. �Color� Variation of ṁtotal with the ratio of core size to interwire
gap, d /�, as determined from simulation, for I=3 MA and R0=0.01 m.
Shown are the results for N=60 �+�, N=100 ���, N=200 ���, N=300
���, and N=400 ���. Also shown are the fits ṁtotal��d /��0.25 �dashed�,
ṁtotal��d /��0.42 �green�, and ṁtotal��d /��0.11 �blue�.
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�since in equilibrium �vR is a spatial constant, by mass con-
servation�. We can also reduce � by increasing I, which will
increase v �see Eq. �27�� while decreasing �.

Preliminary studies show that the steady-state scaling re-
lations, when applied to ablation rates obtained using �r ,��
simulations driven with a time-dependent Z current drive,
predict quite well the variation of ṁ with rw and I, so long as
I�6 MA. However, at larger currents, ṁ scales more
strongly with both rw and I than predicted by our steady-state
scaling relation ṁ�rw

0.42I1.4, as shown in Eq. �60� and Fig. 7
�which is perhaps not surprising since the rw scaling was
obtained with a fixed “low” value of current, I=3 MA�. This
observation is in accord with the previously mentioned ex-
perimental finding by Cuneo, and its explanation and impli-
cations require further study.

VII. CONCLUSIONS

We have observed from simulation that, close to the
core, a cylindrically symmetric region exists where the
steady-state ablation physics can be distilled into a very
simple balance between convective cooling and radiation
heating. This observation has permitted us to construct a very
simple model which predicts the scaling of ablation rate as a
function of the coronal temperature as well as properties of
the density profile. The final result, Eq. �56�, depends on
quite a few assumptions, sometimes even of a conflicting
nature! For instance, the model assumes the validity of the
radiation diffusion approximation, which holds in the limit in
which the resistive layer is optically thick, and is thus better
suited to small interwire gaps �. This condition is at odds
with the requirement that a region of cylindrical symmetry
exist about the core, as discussed in Sec. V A. Furthermore,
Eq. �56� relies on the ad hoc density profile equation �47�,
supported by simulation, as well as multiple power law fits to
the enthalpy �cf. Eq. �35�, valid for tungsten�, photon mean
free path �cf. Eq. �36�, again valid for tungsten�, and radia-
tion temperature �Eq. �43��.

Given that our model depends fairly sensitively on the
exponents used in these assumptions, Eq. �56�, and espe-
cially the values of the exponents appearing here, must be
taken with caution. Having said all this, the model appears to
predict a scaling of ablation rate with wire core radius rw that
is in accord with simulation, over a wide range of wire num-
ber N, and the simulations, in turn, are not in contradiction to
the experimentally inferred scaling of mass ablation rate with
d /�. Our simulations reveal that the mass ablation rate
scales differently, as described by Eqs. �60� and �61�, de-
pending on the value of d /�.

Primarily our goal has been twofold: first, to elucidate
the physics of the resistive layer governing ablation, as em-
bodied in Eqs. �4�, �9�, �16�, and �22�, and second, to isolate
the dominant physics governing core ablation, thereby pav-
ing the way for a 1D �cylindrical� analytical model that can
help explain the dependence of ablation rate on wire size. In
order for the model to become experimentally relevant, we
must relate its parameters �0 �“characteristic” density� and T0

�“characteristic” temperature� to the experimental parameters
I ,N ,R0 ,rw. Also, we must better understand the relevance of

the steady-state analysis to the actual time-varying situation.
Related to this topic is the fact that we assume an unex-
panded, stationary core, when in reality the core consists of
an expanded liquid droplet/vapor mixture, slowly expanding
at the sound speed. Finally, we have restricted our analysis of
the ablation process to the �r ,�� plane, when in fact the pro-
cess is 3D in nature. To be more specific, the wire cores are
known to ablate axially nonuniformly, due to an axial insta-
bility �the origin of which is still unknown, but is possibly
electrothermal in nature48�. Nonetheless, despite the limita-
tions of our analysis, we hope that the work presented here
will be of benefit to the understanding of wire core ablation
in the Z pinch.
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APPENDIX: THERMAL CONDUCTION
VS RADIATION TRANSPORT

Here we wish to estimate the relative importance of en-
ergy flux to the core due to electron thermal conduction and
radiation transport. The electron-ion and ion-ion collision
times are written �see, for instance, Ref. 49�

�ei �
6	2�3/2�0

2m1/2�kbTe�3/2

niZ
2e4 ln �

�A1�

and

�ii �
12�3/2�0

2M1/2�kbTi�3/2

niZ
4e4 ln �

, �A2�

respectively. Here ni is the ion number density, m�M� is the
electron �ion� mass, Te�Ti� is the electron �ion� temperature,
Z is the ionization state of the plasma, ln � is the Coulomb
logarithm, and kb is Boltzmann’s constant. All units are SI.
Recalling the definition of the electron cyclotron frequency
�e=eB /m and ion cyclotron frequency �i=eB /M, we find
that

�e�ei,�i�ii 	 1 �A3�

for typical tungsten plasma corona conditions near the core,
i.e., ni�1�1026/m3, Z�4, Te�Ti�T�8�104 K, ln �
�5, B�100 T. Assuming Te�Ti is reasonable, because for
the typical coronal values listed above, the temperature
equilibration time �eq��M /2m��ei�0.05 ns, which is short
compared to the ns time scale associated with most Z-pinch
generators. Equation �A3� implies that ions and electrons are
unmagnetized. In this limit, thermal conduction is dominated
by electron thermal conduction, so that in the heat flux vector
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q = − � � T , �A4�

we have

� � �e =
KCnekb

2T�ei

m
. �A5�

Here KC is a dimensionless function of Z and has been tabu-
lated by Epperlein and Haines50 �for Z=4, KC�7�.

We now employ the radiation heat conduction approxi-
mation, which assumes the radiation energy density is
Planckian U�Up and consequently, from Eqs. �33� and �39�,

S � − �rad � T , �A6�

where

�rad =
16�lT3

3
. �A7�

Although this approximation is actually invalid in the con-
text of our simple ablation model, as pointed out in Sec. IV,
it nonetheless allows us to make an order of magnitude com-
parison between radiation and electron heat conduction. The
relative importance of the two mechanisms is captured by
�e /�rad, which, combining Eqs. �A1�, �A5�, and �A7�, can be
expressed as

�e

�rad
=

9	2�3/2kb
7/2�0

2KCT−2�1.3

8�l0
	me4 ln �Z

=
�6.4e6�KC�1.3

ZT2 ln �
, �A8�

where we have used the expression for the Rosseland mean
free path l��3�10−11��−1.3T1.5 m, as found in Ref. 18.

For our typical values ��niM ��1�1026/m3��184
�1.67�10−27 kg��30 kg/m3, T�8�104 K, ln ��5, Z
�4, KC�7, we find �e /�rad�3%, so that in general radia-
tion conduction dominates over electron thermal conduction.
Now, for large enough densities and low enough tempera-
tures �i.e., very close to the core�, �e��rad, breaking the
assumption of our model, as noted in Ref. 46. However,
there it was found this region is very small ��1 �m�, and its
presence is not expected to significantly alter the analysis of
Sec. IV.
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