Report of ITER EG / ITPA TG on MHD, Disruption & Control

O. Gruber (IPP Garching) for the Group

- meetings, scope of TG
- recommended research priorities
- assessment of R&D research / action list 2002 / highlights since last CC meeting
- international collaboration within IEA Large Tokamak and Pol. Divertor Agreements
- action list for 2003
- interaction with other ITPA TGs

General comments

TG Meeting #2 after ITPA CC #2: 21-23 Oct 2002, IPP Garching

- in combination with IAEA FEC 2002
- 26 participants
- 2 sessions with Pedestal TG
- diagnostic needs (with A. Costley)

Meeting #3 after EPS 2003 (St. Petersburg) July 2003: 2 days

Main topics:

- β limiting MHD modes and their active control (NTMs, Kinks, RWMs)
- edge MHD stability for different ELM types
- disruptions: mitigation, halo currents, forces & heat loads, DB
- control issues & related diagnostics

Scope and Task definition, physics research areas: as defined at ITPA CC#2 --> assessment of R&D research

Assessment of R&D research / action list 2002 / highlights: **NTMs limit** β with positive magnetic shear

- β_N (onset) $\propto \rho^*$; v* scaling weak:
 - both for (3,2) and (2,1) NTMs (JET, AUG, DIII-D)
 - similar scaling for NTM onset and heating ramp-down experiments (AUG, JET)
 - strong hysteresis effect

Joint International Exp: (2,1) onset in JET, AUG, DIII-D

- Increase in triangularity:
 - improves edge pressure limit
 - higher β_N for same local β_D (same q_{95} at lower B_t)
 - direct influence on NTM stability

NTMs

- Contributions from ST: confirmation of existing picture
 - MAST: large seed islands trigger NTMs
 - 3,2 and 2,1 island evolution in agreement with Rutherford-equ.
 - large sawtooth region --> strong influence on confinement
 - pressure driven kink-limit: $\beta_N \leq 5.5$ by profile broadening
 - NSTX: β_N / I_i --> 10 by profile broadening in H-mode and high triangularity - $\beta_N \le 6$, $\beta_{tor} \le 35\%$ - high Mach numbers M=0.3
- Influence of error fields on NTMs?

- re-occurence of NTM by mismatch between ECCD deposition and q=3/2 surface (Shafranov shift, changes in the current profile)
- feedback system needed: radial position
 - steerable mirror
 - tunable frequency

DIII-D (AUG), JT-60U (AUG,DIII-D) (AUG)

Sawtooth control by ECRH / ECCD around q=1 surface

- influence on plasma energy and a-power negligible modelling with /Porcelli model --> ITER Feat: τ_{st} = 50 s
- reduction of seed islands for NTMs

co-CD inside q=1 radius or ctr-CD outside --> sawtooth frequency enhanced ctr-CD inside q=1 radius or co-CD outside --> sawtooth frequency reduced towards stabilisation

JT60-U (ECCD) AUG (ECCD) TCV (ECCD) JET (ECCD)

Joint international experiments:

• High confinement in spite of (3,2) NTMs: seen on AUG and JET JT60-U, DIII-D ?

- Confinement improvement at higher plasma pressures !
- a regime with 'acceptable' Frequently Inter Rupted NTMs may exist for ITER

Operation with saturated NTMs possible ?

- (2,1) onset in JET, AUG, DIII-D
- Halo current drive to influence MHD modes by coupling:
 - first exp. at T10
 - check of feasibility at other exp.
 - discussion of joint exp. At next meeting

RWMs: stabilisation by plasma rotation or direct ?

- **DIII-D**:- plasma rotation slows as β_N exceeds β_N (no wall); consistent with ideal MF
 - RWM grows when rotation drops below crit. value

 Ω_{crit} a few percent of $\Omega_{A,tor,}$

- marginally stable RWM amplifies plasma response to n=1 error field, (small damping rate or drag)
- active control reduces amplified error field response:
 - stabilisation is consequence of sustained plasma rotation
 - feedback or pre-programmed error correction currents --> same result
 - direct RWM hard to demonstrate
 - achieved: β_N up to 1.5 β_N (no wall) for several confinement times β_N up to β_N (ideal wall) transiently
 - agreement with VALEN / DCONN

Modelling for ITER started --> - strong stabilising effect from CFC tiles - β_N up to 3.6

* better reference equilibria needed (action for 2003) Analytical models (with conformal wall surface) available

RWMs: PROPOSED IMPROVEMENT OF RWM FEEDBACK ON DIII-D

Additionalsix upper- and six lower- coils and internal Bp sensors increase achievableb very close to ideal-walb limit (VALEN CODE / no rotation) No Present coil Present coil Present coil New coils Feedback an d an d and and New feedback (no FB) internal Bp internal Bp External Br Internal Br coil 104 g(sec-1) Internal 10 2 dBp Present Coil 10 0 0.0 0.2 0.4 0.8 1.0 0.6 New feedback no wall limit ideal wall bno-wall coil blimit bndeal-wal - bndeal-wall

- FIRE: RWM active coil embedded in port plugs
 - resonant error field minimization
 - rotation maximisation (a few kHz)
 - active control

JFT-2M: influence of ferritic steel

Joint international experiments:

Kink / RWM stability (JET, DIII-D, AUG): - influence of wall distance

- size scaling of critical rotation frequ.
- sensitivity of high-beta plasmas to error fields

Extension of operational regime for type II ELMs

- high edge shear \IDRA ELM suppression due to a change in edge stability
 - q > 3.5
 - closeness to double null essential (triangularity connected)
 - high edge density

supportive due to higher pedestal collisionality --> reduced edge BS (v* = 1±0.5; comparable in type I ELMs)

Active ELM control

Pellet injection (AUG)

- reference discharge just with type I / compound ELMs at 3 Hz
- each small pellet with shallow penetration (< 10²⁰ particles, 600 m/s) triggers a type I ELM

- repetition time to 20 Hz enhanced

Oscillating edge currents (TCV)

- vertical oscillations induced by position control
- type III ELM frequency adapts

Disruptions: mitigation

Killer pellets: - cooling by ionization, dilution, radiation -> thermal fluxes reduced

- faster current quench -> lower halo current & force load
- but: often runaways observed (JT-60U, DIII-D, AUG) !
- cryogenic system not suitable in stand-by !

Strong gas puff superior to killer pellet

- simpler, fast system, Ne / Ar / Kr

- DIII-D: reservoir with 70 bar, 4 10^{22} atoms, but p(jet) < p(plasma)
 - ten-fold increase in n_e up to > 10^{22} m⁻³
 - no runaways due to high electron density
 - radiation can be controlled by hydrogen additions
- AUG: 120 mbar I = 4 10^{21} atoms

Result: - fast quench --> reduction of Δz , I_h , force down to 30%

- reduction of heat loads due to radiation down to 30%

Further exp. at JT60-U, JET, TEXTOR

Disruptions:

Fastest current quenches in RS discharges

- shortest decay times are independent from pre-disruption currents
- RS plasmas have the lowest li (--> 0.5)
- clear documentation from JT60-U

Asymmetric halo currents ⇔ horizontal force

- JET: large horizontal movement of 7 mm
- AUG: horizontal movement (0.3 mm) and forces much smaller

--> vessel support, stiffness,

Other experiments ?

DINA simulations --> predictions

DINA could be the basis of a plasma control simulator (PSI):

- add program modules and packages

- test of DINA code with experiments:

DIII-D, analysis of JT-60U presented, TCV and AUG in progress

- simulation of ITER VDEs and disruptions presented

3d-modelling of toroidal asymmetries has started:

- CEMM: M3D (close ideal flux surface), NIMROD;
- include pressureless halo plasma and wall currents
- experts participated in TG meeting (Jardin, Paccagnella)

Disruptions: Databank

- J. Wesley will be responsible (support from GA ?)
- new set-up (formats as in other DBs)
- contact persons will define content
- decision on scalar and vector (space, time) variables
- results from simulations should enter
- DB should give platform for testing of disruption simulators
- urgent issues, as heat load on targets, have to be clarified in parallel

Control and Diagnostics

Control: TCV reported on PF control and transport simulations using MHD and "fitting" mode of DINA

Diagnostics:

- participation of O. Gruber in one session of the March meetings at GA
- requirements for NTM control provided by AUG team (M. Maraschek)
- requirements for RWM control:
 - first estimates from ITER IT (Gribov)
 - next step will be provided by DIII-D (E. Strait responsible)

Actions in 2003

- Publications or conference contributions: not decided.
- NTM stabilisation requirements for ITER, FIRE:
 - demonstration of NTM stabilisation (CD, sawtooth control, FIR modes)
 - presently no advantage of ac compared to dc CD, but ...
 - in ITER: smaller seed island size plausible ($w_{seed}/a \ll 1$)
 - slow plasma rotation \Rightarrow modulation may be neededCD in X-point not effective(not necessarily 100%)
 - needed I_{CD} within islands = missing bootstrap current: differences due to different kinetic profiles,
 - --> P_{ECCD}, frequency, mirror angles
- RWM:
 - better reference equilibria needed
 - investigation of dissipation mechanism (sound waves, neocl. rotation damping)
 - influence of momentum input & direct feedback (NI+ICRH, balanced beams)
- ELMs:
 - definition and evaluation of DB for stability calculations
 - edge stability calculations in different ELM regimes
- Disruptions:
 - development of DB

Interaction with other TGs

Pedestal TG:

- Input parameters to pedestal DB needed specific for MHD stability (collisionality, edge bootstrap current, magnetic shear, ω_e^* ,)
- common strategy to evaluate edge BS current (local Bp measurements, estimate from neoclassics and ∇p)

Transport TGs:

- confinement in beta recovered feedback stabilised NTM discharges

Steady-State & CD TG:

- evaluation of requirements (P, injection angle, frequency, ...) for ECCD stabilisation of neoclassical tearings
- MHD limits of conventional and advanced scenarios for hybrid or steady-state operation
- control simulations and PF scenarios for steady-state advanced scenarios

Divertor TG:

- heat load during disruptions on walls and targets
- impurity production at high fluxes
- penetration and radiation (KPRAD / DIII-D)
- modular code packages have to be included in disruption modelling

Contact Persons

- MHD, D & C \rightarrow Pedestal TG:
- \rightarrow Steady-State & CD TG:
- \rightarrow Divertor TG:
- $\rightarrow \text{Transport TG}$
- \rightarrow ITB TG:
- \rightarrow Diagnostic TG:

Disruption Databank:	J. Wesley
JET	
JT60-U	
DIII-D	
ASDEX Upgrade	G. Pautasso
Alcator C-Mod	R. Granetz
Compass	
MAST	
NSTX	

- H. Wilson
- C. Gormezzano
- A. Loarte
- F. Ryter
- (E. Doyle)
- A. Costley

Tokamak Physics Basis

Update of ITER physics basis

- significant progress in experimental, theoretical and modelling work towards BPXs
- providing of methodologies to project the characteristics of BPXs
- reasons for the aim of this joint undertaking
- why not in 2004 or ?
- no standard steady-state scenario comparable with the conventional H-mode standard scenario

• Time schedule

.....submission to NF Dec 2003

- ITER Physics Basis took more than 2 years:
 - after the first sumission to NF still a lot of changes have been made;
 - at least 2 EG meetings were devoted to this writing
- a large central team has coordinated and formulated most of the manuscript
- see problems of ITB TG to finish an extended manuscript
- \Rightarrow stretching of schedule by a factor of 2 needed