Sintered Boron as High-Strength, Lightweight Structural Material for Aerospace Vehicles¹

HY-Tech Research Corporation

Presented by C.C. Klepper

at the

Mirror Technology Days August 16, 17 & 18, 2005 at the Von Braun Center in Huntsville Alabama

¹Work supported by MDA/GMD Phase I SBIR ** Presentation approved for public release

HY-Tech Research Corporation • 104 Centre Ct, Radford, Va 24141 • (540) 639-4019 • www.hytechresearch.com CCK 25-JUL-2005

Sintered Boron as High-Strength, Lightweight Structural Material for Aerospace Vehicles

HY-Tech Research Corporation: C.C. Klepper, R.C. Hazelton, M.D. Keitz, E.P. Carlson and E.J. Yadlowsky

In Collaboration with

J.M. Williams, Materials Consultant

and the

Oak Ridge National Laboratory: L. Riester, C.A. Walls, A.E. Pasto

and the financial support of the

Missile Defense Agency

(under Contract Number W9113M-05-C-0062 -- Phase I SBIR <u>Technical Contacts</u>: Jack Massarello/Doug Deason)

HY-Tech Research Corporation • 104 Centre Ct, Radford, Va 24141 • (540) 639-4019 • www.hytechresearch.com CCK 25-JUL-2005

Introduction

- The low density, high stiffness and low thermal expansion characteristics of B₄C and B make them attractive Be/Be alloy replacement candidates.
- Telescope applications require the parameter $\alpha = (\rho^{3}/E)^{1/2}$ to be as small as possible.
 - The value of α for B₄C exceeds that of Be and SiC. For B it is comparable to that of Be:
 - □ α(B₄C) / α(Be) ~ 0.85
 - $\Box \alpha(B_4C) / \alpha(SiC) \sim 0.68$
 - □ α(B) / α(Be) ~ 1
- The thermal expansion coefficients of B and B₄C are less than half that of Be.
- New powder processing and sintering technologies can economically produce near net shapes.
- Porous materials can be made without reducing $\boldsymbol{\alpha}$

Robust Cathodes: The original "market"

Developed for HY-Tech's vacuum arcbased coater which uses **non-metal cathodes.**

No commercial boron or boron carbide cathode survives the process.

Only specific recipes that include microwave processing have survived the process.

Material / Property	Be	Boron (B) -ideal-	B sintered	SiC	B ₄ C	Graphite ATJ	Pyrolytic normal	Pyrolytic parallel
Density (g/cm ³)	1.85	2.46	1.7	3.16	2.50	1.85	1.85	1.85
Melting Point (C)	1287	2076	2000	Sub- limes	2350			
Boiling Point (C)	2196	3927	3927		>320 0			
Heat Conductivity (W/cm-K) at 300K	2.0	0.27	0.19*	0.1 to 4.0	0.23	1.1	0.1	20
Thermal expansion coef. @ 300K (10 ⁻⁶)	11.3	4.7	4.7	3.4	4.5	3.6	23.1	-0.6
Hardness (H) (GPa)	1.67	33	22.8*	18 to 24	20 to 23	0.3		
Tensile strength (GPa) ~1/3 H [9]	0.55	11	7.6	7	7	0.1		
Bulk Modulus (GPa)	130	310	214*	410	440	33		

Table 1. Comparison of properties of light materials

• *Estimated (projected values, as contained in the proposal)

For isotropic materials that do not strain harden much, the tensile strength may be estimated as about 1/3 of the hardness. George E. Dieter, *Mechanical Metallurgy, Second Edition,* McGraw-Hill, New York (1976) page 395.

Versatility & Cost Effectiveness of Demonstrated & Indicated Fabrication Techniques.

- HY-Tech, in collaboration with ORNL scientists, has developed techniques to fabricate complex components from these refractory materials.
- These techniques are significantly less costly than the state of the art for both ceramic components and Be alloys.
- These include:
 - Microwave sintering techniques, which are 50-90% more efficient than standard hot pressing or sintering in conventional furnaces.
 - Gel casting techniques to form machinable green bodies, which sinter with minimal distortion (~1%) to near net shape components.
 - Machining of sintered material and brazing to similar materials to form structures.

Gel Casting Advantages

- Gel casting allows these ceramic materials to be engineered for specific applications.
- Allows for complex shapes with minimal distortion with sintering.
- Reduces costs
 - molds can be generally reused
 - green bodies easy to machine (if needed)
 - minimal machining after sintering
- **HY-Tech**: Only company pursuing gel casting of borides for commercial applications.

2004 SiAION Radome M.A. Janney et al. e.g. SiAION Rad (ORNL/Hughes)

Full reference in www.ceramicbulletin.org

e.g. gel cast turbine

HY-Tech Research Corporation • 104 Centre Ct, Radford, Va 24141 • (540) 639-4019 • www.hytechresearch.com

CCK 25-JUL-2005

Coating Capability

- HY-Tech has also demonstrated efficient coating techniques for the deposition of amorphous B and B₄C coatings.
 - Technique uses vacuum cathodic arc evaporation (from sintered cathodes) to deposit with high deposition rates and great economy of scale.
 - For mirror applications, this could be used to coat the sintered components to improve polishing characteristics of mirror surfaces.

MDA Phase I SBIR Project

- Current MDA/GMD Phase I project is allowing a 1st evaluation of these materials for structure applications.
 - The emphasis is on pure B, which has been sintered for the first time to 70% using a patented mm-wave processing technique.
 - Mechanical and thermal properties measured on these materials have been extrapolated to predict values for fully densified materials.
 - No limitation on the ultimate densification achievable has been encountered.
 - Results suggest that B₄C and B could be used for structural telescope members and also mirrors.

Sample Availability

- The Phase I project relied on the study of existing samples, remaining from the cathode development projects. These included:
 - cold-pressed, then mm-wave sintered B (to 70% TD), which worked well as cathode material.
 - Gel cast B_4C that was sintered to 80% TD with 2.45 GHz microwaves, but did very poorly as cathodes.
- This MDA-funded project provided the first opportunity to carry out a microstructural characterization of these materials and an attempt to determine mechanical properties.
- Most of the processing of the existing samples was carried out by national lab collaborators; this SBIR is allowing HY-Tech to bring the whole technology home.

Metalization Techniques

- Surface metalization of sintered B and B₄C are being explored for a number of reasons:
 - Possibility of using in joining with known brazing techniques for metals.
 - To provide high electrical conductivity to surface of components (e.g. to prevent charging).
 - To allow for possible transition to metal reflective surfaces in mirror applications.
- At least one metalization technique has been demonstrated: Microwave-enhance, chromium diffusion.
- Brazing directly to B and B₄C has also been shown.

CCK 25-JUL-2005

B35 2kx Metalization still works

Open-pore microstructure

appears to be typical of sintered compacts that do well as arc discharge cathodes (high thermal stress environment).

B35 = Pure B, cold-pressed, mm-wavesintered to 70% of theor. density

Brazing Results

- It was found that the simplest, most economical approach is to braze directly to the boron-based ceramics.
- At least one Active Brazing Alloy (ABA) was found to work well between similar components.
- Since most ABAs are Tibased, they would allow brazing to Ti-alloys as well.

SEM of successful braze (500x)

Characterization Results: Indentation Hardness and Modulus

- Both micro- and nano- indentation results for hardness and modulus gave values comparable to fully dense material:
 - e.g. H~30 GPa, E~450 GPa for the open-cell porous
 B compacts
- Indentation-based fracture toughness studies were found difficult to do for porous materials, but still being tried for the B₄C samples.
- For the **BULK MODULUS**, Resonant Ultrasound Spectroscopy (**RUS**) is being used.

Characterization Results: Bulk Modulus

- For porous material, the results of micro- and nano- indentation reflect properties of the grains.
- RUS was used to determine the bulk modulus:
 - E~100 GPa for the open-cell porous B compacts
 - E~200 GPa for the closed-cell porous B₄C compacts
- The value of E for our B₄C samples is consistent with models for the reduction of E as a function of the porosity.
- However, for both B and B₄C, α = (ρ³/E)^{1/2} is still about equal to that for fully dense material,
 → still ideal for mirror structures.

Thermal Conductivity

- Use laser flash technique according to *M.V. Krishnaiah et al., Rev. Sci. Instrum.* 73 (9) 3353-3357, 2002 to get thermal diffusivity from laser pulse propagation through sample.
- Multiply by density and heat capacity (e.g. for B, $\rho = \rho_0 \times .7 = 1640$ Kg m⁻³ and C = 1300 J Kg⁻¹K⁻¹) to get thermal conductivity
- **Result:** 6 W m⁻¹ K⁻¹ for our B samples
- **Result:** 20 W m⁻¹ K⁻¹ for our B₄C samples
 - Compare to ~200 $W m^{-1} K^{-1}$ for Be
 - Compare to ~20 $W m^{-1} K^{-1}$ for steel
 - Compare to $\sim 30 W m^{-1} K^{-1}$ for solid B₄C
- The result for our sintered B is not unreasonable, given the open pore structure. May be useful as a thermal barrier.
- Customizing this property for both B and B₄C looks quite feasible!

Gel Casting Results

- Early ORNL recipes for B₄C have been successfully reproduced at HY-Tech.
 - Objects of complex shape have been now produced at HY-Tech.
- First (ever) successful gel cast B compact has been produced at HY-Tech in the shape of a disk. Work is continuing.
- The refinement and scale-up of the process will be an important focus of the next Phase.

Content -- Summary

- 1. The low density of boron rich ceramics makes them attractive candidates for Be replacement materials; however, their refractory properties make the processing of these materials challenging.
- 2. Innovative processing technologies developed by HY-Tech to satisfy its needs for robust cathodes in its coating systems can lead to economic means for processing these materials for structural applications as well.
- 3. Current (Phase I) SBIR program, sponsored by the MDA, is allowing a first evaluation of these materials for structures.
- 4. Initial results show feasibility for machining of sintered material, brazing to similar material to form structures, as well as the potential for near-net shape casting of green bodies before sintering.
- 5. The emphasis has been on pure B, which has already been sintered to 70% MF, using a patented mm-wave processing technique.

